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Abstract: The communication in the Millimeter-wave (mmWave) band, i.e., 30~300 
GHz, is characterized by short-range transmissions and the use of antenna beamforming 
(BF). Thus, multiple mmWave access points (APs) should be installed to fully cover a 
target environment with gigabits per second (Gbps) connectivity. However, inter-beam 
interference prevents maximizing the sum rates of the established concurrent links. In this 
paper, a reinforcement learning (RL) approach is proposed for enabling mmWave 
concurrent transmissions by finding out beam directions that maximize the long-term 
average sum rates of the concurrent links. Specifically, the problem is formulated as a 
multiplayer multiarmed bandit (MAB), where mmWave APs act as the players aiming to 
maximize their achievable rewards, i.e., data rates, and the arms to play are the available 
beam directions. In this setup, a selfish concurrent multiplayer MAB strategy is 
advocated. Four different MAB algorithms, namely, ϵ-greedy, upper confidence bound 
(UCB), Thompson sampling (TS), and exponential weight algorithm for exploration and 
exploitation (EXP3) are examined by employing them in each AP to selfishly enhance its 
beam selection based only on its previous observations. After a few rounds of interactions, 
mmWave APs learn how to select concurrent beams that enhance the overall system 
performance. The proposed MAB based mmWave concurrent BF shows comparable 
performance to the optimal solution.  
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1 Introduction 
The communication in the millimeter-wave band, i.e., 30~300 GHz, is considered as a 
crucial enabler of fifth-generation (5G) and beyond 5G (B5G) wireless networks due to 
its swath of available unlicensed spectrum [Wang, Kong, Kong et al. (2018)]. This large 
chunk of available bandwidth enables multi-gigabits per second (Gbps) connectivity, 
which can support intensive bandwidth 5G/B5G applications such as virtual reality (VR), 
3D video streaming, etc., [Huo, Dong, Xu et al. (2019)]. The ratified IEEE 802.11ad (ay) 
standards define a set of 60 GHz wireless network protocols, also known as WiGig for 
WLAN applications [Ghasempour, Silva, Cordeiro et al. (2017a)]. In this paper, we call a 
WiGig device for the mmWave based device, which has 60 GHz capability. However, 
mmWave band suffers from several technical challenges due to its high operating 
frequencies. About 28 (21.6) dB attenuation losses are predicted using 60 GHz over using 
the legacy 2.4 (5) GHz band, respectively, and oxygen absorption peaks at the 60 GHz 
band reaching about 15 dB/Km [Rappaport, Sun, Mayzus et al. (2013)]. Moreover, 
mmWave transmission is highly susceptible to shadowing and path blockage even a 
human body can obstruct the mmWave path [Rappaport, Xing, MacCartney et al. (2017)]. 
To overcome such tough channel conditions, WiGig standards advocate the use of 
antenna beamforming (BF) by means of antenna weight vectors (AWVs) using structured 
codebooks to increase the channel gains, especially for the non-line of sight (NLoS) paths. 
Also, they defined a medium access control (MAC) based exhaustive search analog BF as 
a suitable BF training mechanism for WiGig transmissions [Ghasempour, Silva, Cordeiro 
et al. (2017b)]. Recently, a lot of advanced BF strategies are proposed in the literature to 
reduce the incredible complexity of the exhaustive search BF training while obtaining a 
near performance [Ahmed, Khammari, Shahid et al. (2018)]. The high propagation losses 
accompanied by path blockage confines the WiGig AP coverage in a short-range. Thus, 
multiple numbers of WiGig access points (APs) should be installed to cover a target area 
with Gbps connectivity fully. However, mutual inter-beam interference among the 
constructed WiGig concurrent links affects the spatial reuse capability of the WiGig APs, 
and it degrades the total system rate of the WiGig WLAN [Mohamed, Sakaguchi and 
Sampei (2017a)]. Thus, an efficient concurrent BF strategy should be considered for 
enabling WiGig simultaneous transmissions, where mutual inter-beam interference 
should be relaxed when selecting the concurrent beams. Though exhaustively searching 
all combinations of concurrent beams and choosing the best configuration gives the 
optimal performance, it results in incredible complexity, and tremendous BF overhead 
gets it an infeasible solution in real scenarios.  
In this paper, a machine learning (ML) tool will be used to address the problem of 
concurrent BF in mmWave networks efficiently. ML is a talented approach that can 
resolve many of the wireless communication challenges using different learning 
approaches, i.e., supervised learning, unsupervised learning, and reinforcement learning 
(RL) [Wang, Jiang, Zhang et al. (2020)]. In supervised learning, the task of the ML 
algorithms is to model the relation between labeled inputs and their corresponding 
labeled outputs. The most popular supervised learning problems are regression and 
classification techniques. This approach can be applied for channel estimation, 
modulation/demodulation, and spectrum sensing in cognitive radios (CRs), etc., In 
unsupervised learning, only the inputs are available for the machine, and the task is to 
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find out the hidden patterns in the input data. This type of ML can be applied for users’ 
behavior learning and classification, resource allocation and association, optimal cell 
deployment, etc. In RL, the RL algorithm does not have any prior information about the 
environment, and it tries to maximize its long-term reward based on the 
interactions/observations with/from the environment. The RL algorithm tries to 
compromise between exploiting the best action taken so far or exploring new actions, 
formally known as exploitation-exploration trade-off. Q-learning and Multiarmed bandit 
(MAB) are famous RL algorithms. RL can be used in users’ behavior prediction, 
channel/relay/base station (BS) selections, handover decisions, etc., In this paper, 
mmWave concurrent BF is formulated as a multiplayer MAB problem. In this 
formulation, the distributed WiGig APs act as the multiple players aiming to maximize 
their long-term average data rates, i.e., the rewards. This is done by selecting the 
appropriate beam directions maximizing the received power, and undergo low mutual 
interference, where the available beam directions will act as the arms of the bandit. In this 
WiGig WLAN, all WiGig APs are operating autonomously without installing a central 
management entity or exchanging information among APs. This setting profoundly 
relaxes the complexity of the network central management operation, including the need 
for an AP controller (APC) entity, and it eliminates a large number of management 
frames that need to be exchanged among the APs. Moreover, no global synchronization is 
needed as the concurrent links are established autonomously within the WiGig WLAN. 
Based on this fully decentralized setting, the WiGig APs will play the game selfishly, i.e., 
each AP will select its beam direction independently from the other APs selections. At 
each round, every AP will learn to choose beam direction, maximizing its achievable 
reward only based on its previous interactions, i.e., beam selections and reward 
observations. Despite the selfish behavior of the WiGig APs, the WiGig APs successively 
learn actions that enhance the overall average sum rate of the WLAN. In this paper, four 
major MAB algorithms, namely ϵ-greedy, upper confidence bound (UCB), Thompson 
sampling (TS), and exponential weight algorithm for exploration and exploitation (EXP3) 
[Wilhemi, Cano, Neu et al. (2019a)] are modified to be used independently by each 
WiGig AP to find out its best beam direction for concurrent WiGig transmissions. The 
main contributions of this paper can be summarized as follows: 
• The mmWave concurrent BF is formulated as an optimization problem that 

maximizes the total sum rate of the WiGig links. Fully decentralized WiGig WLAN 
is considered where no information is exchanged among the WiGig APs, or a central 
management entity is installed inside it.  

• A selfish multiplayer MAB model is introduced to efficiently address the problem 
where each WiGig AP will play the game independently irrespective of the beam 
selections/observations of the other APs. Towards that, four MAB algorithms, i.e., ϵ-
greedy, UCB, TS, and EXP3 are modified and exploited by WiGig APs to interact 
with the environment and select their appropriate beam directions concurrently. The 
implemented MAB algorithms will learn from previous observations to proactively 
enhance the overall system performance.  

• Numerical analysis is conducted to compare the performances of the adopted MAB 
algorithms. Also, we will prove the effectiveness of the proposed multiplayer MAB 
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approach compared to the optimal performance comes from exhaustively searching 
all available concurrent beam combinations in different scenarios. Simulation results 
show that the proposed scheme has comparable performances to the optimal one in 
terms of average total sum rate and spatial reuse factor.  

The rest of this paper is prepared as follows; Section 2 gives the related works. Section 3 
previews the system model, including the used mmWave link model. Section 4 
introduces the optimization problem formulation. In Section 5, the proposed multiplayer 
MAB solution is presented, including the four modified MAB algorithms. Numerical 
analysis is given in Section 6, followed by the concluded remarks in Section 7.   

2 Literature review 
The authors in Mohamed et al. [Mohamed, Sakaguchi and Sampei (2017b)] boosted the 
performance of concurrent transmissions in random access mmWave WLANs. They did 
so by proposing a greedy scheme that operates with Wi-Fi assisted WiGig WLANs to 
receive a sub-optimal solution. They utilized statistical learning using Wi-Fi received 
signal strengths (RSSs) to control the operation inside the WiGig WLAN and assist the 
establishment of WiGig concurrent links in random access scenarios. Also, a central 
control algorithm that selects the suboptimal AP and its suboptimal beam direction that is 
expected to have low interference with the existing links has been proposed. Our scheme 
is different as the proposed online learning approach will be utilized without any out-
band/external assistance. Also, the proposed WLAN is autonomously operated, which is 
entirely different from the fully centralized WLAN architecture given in Mohamed et al. 
[Mohamed, Sakaguchi and Sampei (2017c)], where APC was an essential entity to 
manage its operation adequately. Another efficient concurrent BF technique is 
highlighted in Qiao et al. [Qiao, Shen, Mark et al. (2015a)] to increase the capacity of 
indoor mmWave channels in time division multiple access (TDMA) scenarios. The 
network sum rate is maximized through optimizing the concurrent beamformers to get rid 
of the mutual interference between APs. They proposed an iterative searching algorithm 
that suppresses the BF complexity and setup duration. Moreover, they introduced a 
codebook-based BF protocol that operates at the MAC layer to define the beam sets. 
Although this work is highly related to the work presented in this paper, they assumed the 
existence of a piconet controller (PNC) that organizes the concurrent BF process among 
the distributed mmWave links. This is different from our setting, where a fully 
autonomous and decentralized WiGig WLAN is assumed. Accordingly, their scheme 
requires highly complicated management frames, the condition that is highly relaxed 
through the proposed MAB based approach. The mmWave blockage problem was 
investigated by proposing a solution using a coordinated multi-point reception (CoMP) 
scheme in Kumar et al. [Kumar, Saloranta, Kaleva et al. (2018)]. More precisely, this is 
done by using a trusted hybrid BF approach that deals with the unavailability of 
predominant linkages. A new coordinated BF technique that is based on stochastic 
optimization methods was also proposed in Gatzianas et al. [Gatzianas, Kalfas, Vagionas 
et al. (2019)], which is appropriate for highly dense urban mmWave networks. These 
techniques and other BF coordination approaches did not consider the problem of multi-
point to multi-point concurrent BF, including mutual interference mitigations.  



 
 
 
Millimeter-Wave Concurrent Beamforming: A Multi-Player MAB Approach          1991 

MmWave BF poses distinct difficulties because of the large available bandwidth and 
uncommon channel characteristics in addition to hardware restrictions. A brief survey of 
mmWave BF in indoor and outdoor scenarios is discussed in Kutty et al. [Kutty and Sen 
(2016)]. Due to its powerful capabilities, ML algorithms have been applied to overcome the 
propagation difficulties of mmWave. A brief overview of potential solutions to 5G/B5G 
problems from ML point of view are addressed in Chen et al. [Chen, Xiong, Xu et al. 
(2019); Li, Li, Zhang et al. (2019); Gui and Zeng (2020); Liu, Peng, Wang et al. (2019); 
Song, Yang, Xie et al. (2017); Zhang, Li, Wang et al. (2018); Cayamcela, Lee and Lim 
(2019)]. The problem of neighborhood discovery of mmWave based D2D communications 
was formulated as stochastic MAB in Hashima et al. [Hashima, Hatano, Takimoto et al. 
(2020)]. A group of MAB based algorithms was modified to reflect the remaining energies 
of the devices in the selection process, which improves the mmWave D2D link 
performance. A MAB training beam selection and Bayesian learning channel tracking 
approach for time-varying mmWave channels were proposed in Booth et al. [Booth, 
Suresh, Michelusi et al. (2019)]. The proposed techniques rapidly aligned the beams, which 
strongly supports such dynamic channels environments. The overhead produced from 
mmWave beam alignment is reduced using a proposed hierarchical beam alignment (HBA) 
algorithm [Wu, Cheng, Zhang et al. (2019)]. In such an algorithm, the BA problem was 
formulated as a stochastic MAB that attains to maximize the long-term RSS during a 
specific time. HBA selects the optimal beam with considerably low time compared to 
standard BA techniques in addition to latency reduction. Another BA optimization solution 
based on MAB for mmWave systems was proposed in Hashemi et al. [Hashemi, 
Sabharwal, Koksal et al. (2018)]. Besides formulating the problem as online stochastic 
MAB, the authors proposed an equivalent structured MAB model that optimally solves the 
problem. For BF of high-speed trains (HSTs), a mmWave MAB inspired beam searching 
algorithm, that reduces the overhead and searching trials as much as possible, was proposed 
in Wang et al. [Wang, Cheng, Wu et al. (2018)]. A novel efficient ML coordinated BF 
algorithm suitable for highly mobile mmWave scenarios was proposed in Alkhateeb et al. 
[Alkhateeb, Alex, Varkey et al. (2018)], where a deep learning (DL) model is trained to 
predict the BF vectors at the BSs. A DL based beam selection that is adaptable with 5G 
standards was proposed in Sim et al. [Sim, Lim, Park et al. (2020)], in which a deep neural 
network (DNN) is utilized to calculate a power delay profile of mmWave channel. In Aykin 
et al. [Aykin, Akgun, Feng, et al. (2020)], a MAB framework assigned for beam tracking in 
mmWave systems was suggested. The authors proposed an adaptive TS that selects suitable 
beams and its transmission rates by making use of former beam quality information. To the 
best of our knowledge, despite the existing ML applications in mmWave transmissions 
stated above, modeling mmWave concurrent BF using autonomously operating WiGig APs 
as a multiplayer MAB problem is first introduced in this paper. 

3 System model 
Herein, we will explain the network architecture of the WiGig WLAN under 
consideration in addition to the mmWave link model, including antenna BF gain. 

3.1 WiGig WLAN network architecture 
Assume a WiGig WLAN network architecture that contains an M WiGig APs-user 
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equipments (UEs) links. Each of the M WiGig UEs is associated with one of the M  
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Figure 1: WiGig WLAN architecture 

WiGig APs, as shown in Fig. 1, where 4 WiGig UEs are associated with 4 WiGig APs. 
The WiGig APs are operating autonomously and independently from each other. Also, 
the UEs are associated with the APs based on maximum received power. Without loss of 
generality, downlink transmission is assumed, and WiGig APs are able to send 
directional transmissions using antenna BF while UEs are using quasi-Omni antenna 
patterns. Conventionally, due to the lack of coordination among the WiGig APs, antenna 
beams are selected based on the maximum received power criteria, leading to high 
mutual- interference among the established WiGig links. This causes a degradation of the 
total sum rate of the concurrent WiGig connections. To resolve this inter-beam 
interference, WiGig APs can use too sharp beams directed towards their associated UEs. 
However, this requires a large antenna array containing antenna elements that needs to 
search over huge number of beam patterns. Moreover, direct line-of-sight (LoS) beam 
may influence blockage, which necessitates the use of non-LoS (NLoS) beams that might 
experience high mutual interference with the other concurrent links. Thus, improving the 
concurrent BF process via selecting low mutual-interfering concurrent beams seems to be 
a more practical solution valid for any type of antenna arrays, even using wide beams. 

3.2 WiGig link model 
In this paper, we will utilize the mmWave 3D channel model mentioned in the IEEE 
802.11ad standard and used by the authors in Mohamed et al. [Mohamed, Sakaguchi and 
Sampei (2017d)]. In this model, the channel response, including the BF gain, is given as: 

𝑔𝑔(𝜏𝜏) = ∫ ∫ 𝐺𝐺(𝜃𝜃 − 𝜃𝜃𝑏𝑏 ,𝜑𝜑 − 𝜑𝜑𝑏𝑏)ℎ(𝜃𝜃,𝜑𝜑, 𝜏𝜏) sin(𝜃𝜃)𝜋𝜋
0

2𝜋𝜋
0 𝑑𝑑𝜃𝜃𝑑𝑑𝜑𝜑                                               (1) 

where 𝐺𝐺(𝜃𝜃 − 𝜃𝜃𝑏𝑏 ,𝜑𝜑 − 𝜑𝜑𝑏𝑏)  is the 3D BF gain. 𝜃𝜃  and 𝜑𝜑  are the elevation and azimuth 
directions, and 𝜃𝜃𝑏𝑏 and 𝜑𝜑𝑏𝑏 are the boresight angles of the directed beam. ℎ(𝜃𝜃,𝜑𝜑, 𝜏𝜏) is the 
multi-path channel represented by:  
ℎ(𝜃𝜃,𝜑𝜑, 𝜏𝜏) = ∑ 𝜌𝜌𝑙𝑙𝛿𝛿(𝜏𝜏 − 𝜏𝜏𝑙𝑙)(𝜃𝜃 − 𝜃𝜃𝑙𝑙)(𝜑𝜑 − 𝜑𝜑𝑙𝑙),                                               𝐿𝐿

𝑙𝑙=1      (2) 
where 𝐿𝐿  is the total number of paths, 𝑙𝑙 = 1  indicates the LoS path and 2 ≤ 𝑙𝑙 ≤ 𝐿𝐿 
represents the NLoS paths. 𝜌𝜌𝑙𝑙 , , 𝜏𝜏𝑙𝑙 , 𝜃𝜃𝑙𝑙  and 𝜑𝜑𝑙𝑙  represent the gain, delay, elevation, and 
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azimuth angles of path 𝑙𝑙. Based on the channel model given in Eq. (1), the received 
power 𝑃𝑃𝑟𝑟 including the LoS blockage, which is modeled as a Bernoulli random variable 
(RV) [Mohamed, Elhalawany, Khallaf et al. (2020)], can be expressed as:  
𝑃𝑃𝑟𝑟 = 𝑃𝑃𝑡𝑡�𝒳𝒳𝐿𝐿𝐿𝐿𝐿𝐿|𝑔𝑔1(𝜏𝜏)|2 + (1 −𝒳𝒳𝐿𝐿𝐿𝐿𝐿𝐿)|𝑔𝑔2≤𝑙𝑙≤𝐿𝐿(𝜏𝜏)|2����������������                                                           (3) 
where 𝑃𝑃𝑡𝑡 is the transmit power, and 𝒳𝒳𝐿𝐿𝐿𝐿𝐿𝐿 is Bernoulli RV that either equals 1 for LoS 
with probability p or zero for NLoS with probability 1-p. |𝑔𝑔1(𝜏𝜏)|2 is the channel gain of 
the LoS path while |𝑔𝑔2≤𝑙𝑙≤𝐿𝐿(𝜏𝜏)|2��������������� is the average channel gain over the NLoS paths. For the 
mmWave BF gain, we will utilize the steering antenna model defined in IEEE 802.11ad, 
which is based on circularly symmetric Gaussian function to identify the main loop, 
represented as: 
𝐺𝐺(𝜃𝜃 − 𝜃𝜃𝑏𝑏 ,𝜑𝜑 − 𝜑𝜑𝑏𝑏)[𝑑𝑑𝑑𝑑] = 𝐺𝐺0[𝑑𝑑𝑑𝑑] − min�−�𝐺𝐺𝐻𝐻(𝜑𝜑 − 𝜑𝜑𝑏𝑏) + 𝐺𝐺𝑉𝑉(𝜃𝜃 − 𝜃𝜃𝑏𝑏)�,𝐴𝐴�,              (4) 
𝐴𝐴[𝑑𝑑𝑑𝑑] = 12 + 𝐺𝐺0[𝑑𝑑𝑑𝑑],                                                                                                              (5) 

𝐺𝐺0[𝑑𝑑𝑑𝑑] = 20log10 �
1.6162

sin�𝜃𝜃−3𝑑𝑑𝑑𝑑2 �
�,                                                                                              (6)  

where 𝐺𝐺0[𝑑𝑑𝑑𝑑] is the maximum BF gain in decibel, and 𝐺𝐺𝐻𝐻(𝜑𝜑 − 𝜑𝜑𝑏𝑏), 𝐺𝐺𝑉𝑉(𝜃𝜃 − 𝜃𝜃𝑏𝑏) are the 
beam gains in horizontal and vertical directions, which are defined : 

𝐺𝐺𝐻𝐻(𝜑𝜑 − 𝜑𝜑𝑏𝑏) = −min �12 �𝜑𝜑−𝜑𝜑𝑏𝑏
𝜑𝜑−3𝑑𝑑𝑑𝑑

�
2

,𝐴𝐴 � ,               0 ≤   𝜑𝜑 ≤ 2𝜋𝜋                                       (7) 

𝐺𝐺𝑉𝑉(𝜃𝜃 − 𝜃𝜃𝑏𝑏) = −min �12 �𝜃𝜃−𝜃𝜃𝑏𝑏
𝜃𝜃−3𝑑𝑑𝑑𝑑

�
2

,𝐴𝐴 � ,                 0 ≤   𝜃𝜃 ≤ 𝜋𝜋                                           (8)  

where 𝜑𝜑−3𝑑𝑑𝑑𝑑 and 𝜃𝜃−3𝑑𝑑𝑑𝑑  are the half-power beamwidths of the azimuth and elevation 
angles. 

4 Concurrent BF problem formulation 
Typically, BF is the process of adjusting the beam direction of the steerable antenna array 
to optimize a predefined cost function, e.g., signal-to-interference plus noise ratio (SINR) 
and the achievable data rate in consequence. In the case of concurrent BF, the selected 
beam direction of a WiGig link affects the achievable SINR of this link in addition to the 
attainable SINRs of the other links due to possible inter-beam interference. In this case, 
the cost function is to globally optimize the sum rate of all concurrent links taking mutual 
interference into account. Thus, the set of beams pattern of all M links, i.e., 
{𝑏𝑏1,𝑏𝑏2, … , 𝑏𝑏𝑀𝑀}, should be selected to maximize the total sum rate of the concurrent 
connections, which can be expressed as: 

max
𝐿𝐿

 ∑ 𝑑𝑑𝐵𝐵log2 �1 + 𝑃𝑃𝑟𝑟𝑟𝑟(𝑏𝑏𝑟𝑟)
∑ 𝑃𝑃𝑟𝑟𝑟𝑟(𝑏𝑏𝑘𝑘)+𝑁𝑁0𝑀𝑀
𝑘𝑘=1,𝑘𝑘≠𝑟𝑟

�      𝑀𝑀
𝑚𝑚=1                                                                   (9) 

s.t                𝑆𝑆 ∈ 𝜙𝜙𝐿𝐿,    𝑏𝑏𝑚𝑚, 𝑏𝑏𝑘𝑘 ∈ 𝜙𝜙𝑑𝑑,       𝑀𝑀 ∈ 𝒵𝒵+ 
where 𝑑𝑑𝐵𝐵 is the assigned bandwidth and 𝑁𝑁0 reflects the noise power. 𝑃𝑃𝑟𝑟𝑚𝑚(𝑏𝑏𝑚𝑚) indicates 
the power received at the UE of link m from its corresponding AP using beam 
identification (ID) 𝑏𝑏𝑚𝑚, and 𝑃𝑃𝑟𝑟𝑚𝑚(𝑏𝑏𝑘𝑘) indicates the power received at the UE of link m 
from the AP of link k using its beam ID 𝑏𝑏𝑘𝑘. 𝜙𝜙𝑑𝑑 refers to the available beam space of the 
WiGig AP. 𝑃𝑃𝑟𝑟𝑚𝑚(𝑏𝑏𝑚𝑚) and 𝑃𝑃𝑟𝑟𝑚𝑚(𝑏𝑏𝑘𝑘) can be calculated using Eq. (3) utilizing their related 
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channel responses and the boresight angles (𝜃𝜃𝑏𝑏,𝜑𝜑𝑏𝑏) of 𝑏𝑏𝑚𝑚 and 𝑏𝑏𝑘𝑘 for calculating the BF 
gains. S={b1,b2,…,bM} is the set of concurrent beam IDs, 𝜙𝜙𝐿𝐿 is the space of all available 
groups of concurrent beam IDs, and 𝒵𝒵+ indicates the set of all positive integers. It is 
proved in Qiao et al. [Qiao, Shen, Mark et al. (2015b)] that the optimization problem in 
Eq. (9) mimics the Knaspasck situation [Zeng and Cremaschi (2018)], which is an NP-
complete. Even concurrent BF is more difficult than Knaspasck problem because the 
rates of the links corresponding to a certain beams set 𝑆𝑆 are unknown unless this beams 
configuration is implemented. Exhaustively searching all available beam sets results in 
obtaining the optimal solution, but it requires exponential complexity of |𝜙𝜙𝐿𝐿| = |𝜙𝜙𝑑𝑑|𝑀𝑀. 
This exponential increase with respect to the number of concurrent links makes the 
exhaustive search an infeasible solution. Instead, the authors in Qiao et al. [Qiao, Shen, 
Mark et al. (2015c)] addressed this problem using an iterative search algorithm. At each 
round, BF training is done by one of the links while the other links using their previously 
selected beams. Then, the iterative search is conducted one by one till the convergence of 
the set of selected concurrent beams is achieved. Although this proposal relaxes the 
complexity of the optimization problem, still it needs a considerable amount of BF 
training till the set of concurrent beams converges. Also, this scheme mandates the use of 
PNC to fully control the WiGig network using a large number of management frames. 
Instead, in this paper, a RL based solution will be introduced using multiplayer MAB.   

5 Proposed multi-player MAB approach 
Herein, we will devise four MAB algorithms namely, ϵ-greedy, UCB, TS and EXP3 to be 
utilized by each WiGig AP to selfishly select its concurrent beam. 

5.1 Proposed multi-player MAB based mmWave concurrent BF 
Because all WiGig APs/UEs are operating autonomously without either using APC/PNC 
or permitting information exchange, selfish multiplayer MAB will be employed to 
achieve the sub-optimal set of concurrent beams. Specifically, a MAB algorithm will be 
implemented in each WiGig AP to interact with the environment independently, and 
timely enhance its concurrent beam selection based on its successive observations. In the 
proposed MAB modeling, a WiGig AP m is acting as the player trying to maximize its 
own long- term profit at each time t via playing over its available beam space, i.e., the 
arms of the bandit. This is done through utilizing its own observations irrespective of the 
other APs selections/observations. In this scenario, the profit of a WiGig link m is its 
achievable spectral efficiency in bps/Hz at time t using beam ID 𝑏𝑏𝑚𝑚,𝑡𝑡 , which can be 
expressed as: 

ℛ𝑏𝑏𝑟𝑟,𝑡𝑡 = log2 �1 + 𝑃𝑃𝑟𝑟𝑟𝑟�𝑏𝑏𝑟𝑟,𝑡𝑡�
∑ 𝑃𝑃𝑟𝑟𝑟𝑟�𝑏𝑏𝑘𝑘,𝑡𝑡�+𝑁𝑁0𝑀𝑀
𝑘𝑘=1,𝑘𝑘≠𝑟𝑟

�,                                                                              (10)   

where 𝑏𝑏𝑚𝑚,𝑡𝑡 and 𝑏𝑏𝑘𝑘,𝑡𝑡 are the selected beam IDs of links m and k at time t. In the following, 
we will adopt four famous MAB algorithms, ϵ-greedy, UCB, TS, and EXP3, for 
performing concurrent BF selfishly. 
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Algorithm 1: ϵ-greedy based mmWave concurrent BF  
Inputs: 𝜙𝜙𝑑𝑑, 𝜖𝜖    
Initialize: 𝑡𝑡 = 0,  ℛ�𝑏𝑏𝑟𝑟,𝑡𝑡 = 0, 𝑥𝑥𝑏𝑏𝑟𝑟,𝑡𝑡 = 0, 1 ≤ 𝑏𝑏𝑚𝑚 ≤ |𝜙𝜙𝑑𝑑| 
For 𝑡𝑡 = 1:𝑇𝑇 

1. Draw a beam ID, and obtain the reward:   

• 𝑏𝑏𝑚𝑚,𝑡𝑡
∗ = �

arg max
1≤𝑏𝑏𝑟𝑟≤|𝜙𝜙𝑑𝑑|

�ℛ�𝑏𝑏𝑟𝑟,𝑡𝑡−1�     with probability 1− 𝜖𝜖

𝒰𝒰(1, |𝜙𝜙𝑑𝑑|)                    with probability  𝜖𝜖
   

   

• Obtain ℛ𝑏𝑏𝑟𝑟,𝑡𝑡
∗  

2. 𝑥𝑥𝑏𝑏𝑟𝑟,𝑡𝑡
∗ = 𝑥𝑥𝑏𝑏𝑟𝑟,𝑡𝑡−1

∗ + 1 

3. ℛ�𝑏𝑏𝑟𝑟,𝑡𝑡
∗ = 1

𝑥𝑥𝑏𝑏𝑟𝑟,𝑡𝑡
∗
∑ ℛ𝑏𝑏𝑟𝑟,𝑗𝑗

∗
𝑥𝑥𝑏𝑏𝑟𝑟,𝑡𝑡

∗

𝑗𝑗=1  

END For 

5.1.1 Proposed ϵ-greedy based mmWave concurrent BF 
ϵ-greedy is the simplest MAB algorithm in dealing with exploitation-exploration trade- 
off. At each time t in the time horizon T, the algorithm selects with a probability 1 − 𝜖𝜖 
the best arm having the highest average reward up to (but excluding) time t, and it 
explores random arm from the available arm space with a probability 𝜖𝜖, where 𝜖𝜖 is a 
design parameter. Algorithm 1 gives the proposed ϵ-greedy based concurrent BF MAB 
algorithm implemented in each WiGig AP, where the inputs to the algorithm are the 
beam space 𝜙𝜙𝑑𝑑 and the value of 𝜖𝜖. At each time t, the beam ID for AP m is selected based 
on the following criteria: 

𝑏𝑏𝑚𝑚,𝑡𝑡
∗ = �

arg max
1≤𝑏𝑏𝑟𝑟≤|𝜙𝜙𝑑𝑑|

�ℛ�𝑏𝑏𝑟𝑟,𝑡𝑡−1�     with probability 1 − 𝜖𝜖

𝒰𝒰(1, |𝜙𝜙𝑑𝑑|)                    with probability  𝜖𝜖
   

                                             (11) 

where with a probability 1 − 𝜖𝜖, beam ID 𝑏𝑏𝑚𝑚,𝑡𝑡
∗  is set to that giving the maximum average 

spectrum efficiency up to (but excluding) time t or it is dropped randomly from uniform 
distribution 𝒰𝒰(1, |𝜙𝜙𝑑𝑑|), otherwise. After selecting 𝑏𝑏𝑚𝑚,𝑡𝑡

∗  for constructing the concurrent 
link, its corresponding spectral efficiency ℛ𝑏𝑏𝑟𝑟,𝑡𝑡

∗  is observed. Then, its number of 
selections 𝑥𝑥𝑏𝑏𝑟𝑟,𝑡𝑡

∗  as well as its average achievable spectrum efficiency ℛ�𝑏𝑏𝑟𝑟,𝑡𝑡
∗  are updated 

for the next round of selection, as given in Steps 2 and 3 in Algorithm 1. 

5.1.2 Proposed UCB based mmWave concurrent BF  
UCB can efficiently address the exploitation-exploration trade-off by increasing the 
confidence of the selected arm [Wilhemi, Cano, Neu et al. (2019b)]. It compromises 
between the arms having the best average rewards and that less being explored when 
taking an arm choice decision. Algorithm 2 gives the proposed UCB based mmWave 
concurrent BF algorithm, where the input to the algorithm is the available beam space  
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Algorithm 2: UCB based mmWave concurrent BF 
Inputs: 𝜙𝜙𝑑𝑑   
Initialize: each 𝑏𝑏𝑚𝑚, 1 ≤ 𝑏𝑏𝑚𝑚 ≤ |𝜙𝜙𝑑𝑑|, will be selected once, and 

its corresponding ℛ𝑏𝑏𝑟𝑟,𝑡𝑡  is evaluated, 1 ≤ 𝑡𝑡 ≤ |𝜙𝜙𝑑𝑑|.  
For 𝑡𝑡 = |𝜙𝜙𝑑𝑑| + 1:𝑇𝑇 

1. Draw a beam ID and obtain the reward:   

• 𝑏𝑏𝑚𝑚,𝑡𝑡
∗ = arg max

1≤𝑏𝑏𝑟𝑟≤|𝜙𝜙𝑑𝑑|
�ℛ�𝑏𝑏𝑟𝑟,𝑡𝑡−1 + �

2 ln (𝑡𝑡)
𝑥𝑥𝑏𝑏𝑟𝑟,𝑡𝑡−1

�
   

   

• Obtain ℛ𝑏𝑏𝑟𝑟,𝑡𝑡
∗  

2. 𝑥𝑥𝑏𝑏𝑟𝑟,𝑡𝑡
∗ = 𝑥𝑥𝑏𝑏𝑟𝑟,𝑡𝑡−1

∗ + 1 

3. ℛ�𝑏𝑏𝑟𝑟,𝑡𝑡
∗ = 1

𝑥𝑥𝑏𝑏𝑟𝑟,𝑡𝑡
∗
∑ ℛ𝑏𝑏𝑟𝑟,𝑗𝑗

∗
𝑥𝑥𝑏𝑏𝑟𝑟,𝑡𝑡

∗

𝑗𝑗=1  

END For 

𝜙𝜙𝑑𝑑 . For initialization, every beam ID is selected once, and its corresponding ℛ𝑏𝑏𝑟𝑟,𝑡𝑡  is 
observed where 1 ≤ 𝑡𝑡 ≤ |𝜙𝜙𝑑𝑑|. After initialization, the beam ID maximizing the following 
equation is selected by WiGig AP m at each time t: 

𝑏𝑏𝑚𝑚,𝑡𝑡
∗ = arg max

1≤𝑏𝑏𝑟𝑟≤|𝜙𝜙𝑑𝑑|
�ℛ�𝑏𝑏𝑟𝑟,𝑡𝑡−1 + �

2ln (𝑡𝑡)
𝑥𝑥𝑏𝑏𝑟𝑟,𝑡𝑡−1

�
   

, |𝜙𝜙𝑑𝑑| + 1 ≤ 𝑡𝑡 ≤ 𝑇𝑇,                                    (12) 

where ℛ�𝑏𝑏𝑟𝑟,𝑡𝑡−1 is the average spectrum efficiency resulted from using beam ID 𝑏𝑏𝑚𝑚 up to 
(but excluding) time t, which represents the exploitation term in the UCB equation. Yet, 

the term �
2ln (𝑡𝑡)
𝑥𝑥𝑏𝑏𝑟𝑟,𝑡𝑡−1

 indicates the exploration term in the UCB hypothesis, where 𝑥𝑥𝑏𝑏𝑟𝑟,𝑡𝑡−1 

indicates the number of time beam ID 𝑏𝑏𝑚𝑚  was selected. The idea behind UCB is to 
compromise between selecting the beam ID having maximum average spectrum 
efficiency or exploring new less investigated ones. After selecting beam ID 𝑏𝑏𝑚𝑚,𝑡𝑡

∗  to be 
played at time t, its corresponding number of selections 𝑥𝑥𝑏𝑏𝑟𝑟,𝑡𝑡

∗  and average spectral 
efficiency ℛ�𝑏𝑏𝑟𝑟,𝑡𝑡

∗  are updated accordingly for the next round of selection, see Steps 2 and 
3 in Algorithm 2.  

5.1.3 Proposed TS based mmWave concurrent BF 
TS is a Bayesian algorithm, where posterior distributions are constructed for the gained 
rewards based on a predefined probabilistic model. TS achieves good empirical 
performance with guarantees even better than those warranted by UCB, especially when 
the said model highly matches the actual distribution of the rewards. At the beginning of 
the TS algorithm, prior distributions are constructed for rewards based on parameter 
initialization of the said model. Then, the TS policy keeps track of the posterior 
distributions of the rewards based on the collected data during the learning process, 
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which is achieved by updating the parameters of the probabilistic models. Algorithm 3 
provides the proposed TS based mmWave concurrent BF, where gaussian distribution is 
 

Algorithm 3: TS based mmWave concurrent BF 
Inputs: 𝜙𝜙𝑑𝑑   
Initialize: 𝑡𝑡 = 0,  ℛ�𝑏𝑏𝑟𝑟,𝑡𝑡 = 0, 𝑥𝑥𝑏𝑏𝑟𝑟,𝑡𝑡 = 0, 𝜎𝜎𝑏𝑏𝑟𝑟,𝑡𝑡

2 = 1.  

For 𝑡𝑡 = 1:𝑇𝑇 
Sample Δ𝑏𝑏𝑟𝑟,𝑡𝑡−1 , 1 ≤ 𝑏𝑏𝑚𝑚 ≤ |𝜙𝜙𝑑𝑑|, from normal distributions 

𝒩𝒩�ℛ�𝑏𝑏𝑟𝑟,𝑡𝑡−1 ,𝜎𝜎𝑏𝑏𝑟𝑟,𝑡𝑡−1
2 � 

4 Draw a beam ID and obtain the reward:   
• 𝑏𝑏𝑚𝑚,𝑡𝑡

∗ = arg max
1≤𝑏𝑏𝑟𝑟≤|𝜙𝜙𝑑𝑑|

�Δ𝑏𝑏𝑟𝑟,𝑡𝑡−1�
   

   

• Obtain ℛ𝑏𝑏𝑟𝑟,𝑡𝑡
∗  

5 𝑥𝑥𝑏𝑏𝑟𝑟,𝑡𝑡
∗ = 𝑥𝑥𝑏𝑏𝑟𝑟,𝑡𝑡−1

∗ + 1 

6 ℛ�𝑏𝑏𝑟𝑟,𝑡𝑡
∗ = 1

𝑥𝑥𝑏𝑏𝑟𝑟,𝑡𝑡
∗
∑ ℛ𝑏𝑏𝑟𝑟,𝑗𝑗

∗
𝑥𝑥𝑏𝑏𝑟𝑟,𝑡𝑡

∗

𝑗𝑗=1  

7 𝜎𝜎𝑏𝑏𝑟𝑟,𝑡𝑡
∗
2 = 1

𝑥𝑥𝑏𝑏𝑟𝑟,𝑡𝑡
∗ +1

 

END For 
 
assumed for the spectrum efficiency, i.e., reward, obtained by each beam ID, i.e., 
𝒩𝒩�ℛ�𝑏𝑏𝑟𝑟,𝑡𝑡 ,𝜎𝜎𝑏𝑏𝑟𝑟,𝑡𝑡

2 � , where ℛ�𝑏𝑏𝑟𝑟,𝑡𝑡  and 𝜎𝜎𝑏𝑏𝑟𝑟,𝑡𝑡
2  are the mean and variance of the gaussian 

distribution. Based on the assumptions given by the authors in Wilhemi et al. [Wilhemi, 
Cano, Neu et al. (2019c)], ℛ�𝑏𝑏𝑟𝑟,𝑡𝑡 is set to 1

𝑥𝑥𝑏𝑏𝑟𝑟,𝑡𝑡
∑ ℛ𝑏𝑏𝑟𝑟,𝑡𝑡

𝑥𝑥𝑏𝑏𝑟𝑟,𝑡𝑡
𝑗𝑗=1  and 𝜎𝜎𝑏𝑏𝑟𝑟,𝑡𝑡

2  is equal to 1
𝑥𝑥𝑏𝑏𝑟𝑟,𝑡𝑡+1

. 

Gaussian distribution is a reasonable assumption for modeling the distribution of spectral 
efficiency because usually, the received power has a normal distribution due to the effect 
of the additive wight Gaussian noise (AWGN) and the added random interference. A 
prior distribution is initialized for the rewards by initializing the values of ℛ�𝑏𝑏𝑟𝑟,𝑡𝑡  and 𝜎𝜎𝑏𝑏𝑟𝑟,𝑡𝑡

2  
as given in Algorithm 3. Then, samples Δ𝑏𝑏𝑟𝑟,𝑡𝑡−1 are taken from these distributions, and the 
beam ID having the maximum sample value is chosen to be played, as follows: 
𝑏𝑏𝑚𝑚,𝑡𝑡
∗ = arg max

1≤𝑏𝑏𝑟𝑟≤|𝜙𝜙𝑑𝑑|
�Δ𝑏𝑏𝑟𝑟,𝑡𝑡−1�

   

                                                                                        (13) 

The spectral efficiency corresponding to 𝑏𝑏𝑚𝑚,𝑡𝑡
∗  is then observed and the values of 𝑥𝑥𝑏𝑏𝑟𝑟,𝑡𝑡

∗ , 
 ℛ�𝑏𝑏𝑟𝑟,𝑡𝑡

∗  and 𝜎𝜎𝑏𝑏𝑟𝑟,𝑡𝑡
∗
2  are updated as given in Steps 5-7 in Algorithm 3. Based on the updated 

values, the posterior distributions of the rewards are enhanced during the learning process 
contributing in better beam ID selections over the time horizon.    
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5.1.4 Proposed EXP3 based mmWave concurrent BF 
EXP3 is a weighted MAB algorithm, where higher weights are given to the best actions 
as the learning process proceeds. Weights’ probabilities are calculated, and actions are 
randomly taken based on these probabilities. Algorithm 4 demonstrates the proposed  

Algorithm 4: EXP3 based mmWave concurrent BF 
Inputs: 𝜙𝜙𝑑𝑑, 𝜒𝜒  
Initialization: 𝑡𝑡 = 0, 𝛿𝛿(𝑡𝑡) = 𝛿𝛿0,𝑤𝑤𝑏𝑏𝑟𝑟,𝑡𝑡 = 1 for ∀𝑏𝑏𝑚𝑚 

For 𝑡𝑡 = 1:𝑇𝑇 

1. Ω𝑏𝑏𝑟𝑟,𝑡𝑡 ← (1 − 𝜒𝜒)
𝑤𝑤𝑏𝑏𝑟𝑟,𝑡𝑡

∑ 𝑤𝑤𝑏𝑏𝑟𝑟,𝑡𝑡
�𝜙𝜙𝑑𝑑�
𝑏𝑏𝑟𝑟=1

+ 𝜒𝜒
|𝜙𝜙𝑑𝑑| 

2. Draw a gateway UAV and obtain the reward:   
• 𝑏𝑏𝑚𝑚,𝑡𝑡

∗ ~Ω𝑏𝑏𝑟𝑟,𝑡𝑡 = �Ω1,𝑡𝑡,Ω2,𝑡𝑡, … ,Ω|𝜙𝜙𝑑𝑑|,𝑡𝑡� 

• Obtain ℛ𝑏𝑏𝑟𝑟,𝑡𝑡
∗  

3. ℛ�𝑏𝑏𝑟𝑟,𝑡𝑡
∗ =

ℛ𝑏𝑏𝑟𝑟,𝑡𝑡
∗

Ω𝑏𝑏𝑟𝑟,𝑡𝑡
∗

 

4. 𝛿𝛿(𝑡𝑡) = 𝛿𝛿0
√𝑡𝑡

 

5. 𝑤𝑤𝑏𝑏𝑟𝑟,𝑡𝑡+1
∗ = �𝑤𝑤𝑏𝑏𝑟𝑟,𝑡𝑡

∗ �
𝛿𝛿(𝑡𝑡)

𝛿𝛿(𝑡𝑡−1) exp �𝛿𝛿(𝑡𝑡)ℛ�𝑏𝑏𝑟𝑟,𝑡𝑡
∗ � 

6. 𝑤𝑤𝑏𝑏𝑟𝑟,𝑡𝑡+1 = �𝑤𝑤𝑏𝑏𝑟𝑟,𝑡𝑡�
𝛿𝛿(𝑡𝑡)

𝛿𝛿(𝑡𝑡−1),   ∀𝑏𝑏𝑚𝑚 ≠ 𝑏𝑏𝑚𝑚∗   
END For 

 
EXP3 mmWave concurrent BF algorithm, where the inputs to the algorithm are the beam 
space 𝜙𝜙𝑑𝑑  and exploration parameter 𝜒𝜒 ∈ (0,1] . For initialization, the weights of all 
available beam IDs are set to 1, and the learning rate of the algorithm is also initialized, 
i.e., 𝛿𝛿(𝑡𝑡) = 𝛿𝛿0 . At every time t, a probability is given to each beam ID based on its 
allocated weight and the assigned exploration value 𝜒𝜒  as follows: 

Ω𝑏𝑏𝑟𝑟,𝑡𝑡 ← (1 − 𝜒𝜒)
𝑤𝑤𝑏𝑏𝑟𝑟,𝑡𝑡

∑ 𝑤𝑤𝑏𝑏𝑟𝑟,𝑡𝑡
�𝜙𝜙𝑑𝑑�
𝑏𝑏𝑟𝑟=1

+ 𝜒𝜒
|𝜙𝜙𝑑𝑑|,                                                                                      (14) 

Then, a beam ID is picked randomly based on these probabilities: 
𝑏𝑏𝑚𝑚,𝑡𝑡
∗  ~ Ω𝑏𝑏𝑟𝑟,𝑡𝑡 = �Ω1,𝑡𝑡,Ω2,𝑡𝑡, … ,Ω|𝜙𝜙𝑑𝑑|,𝑡𝑡�,                                                                               (15) 

After obtaining the spectrum efficiency ℛ𝑏𝑏𝑟𝑟,𝑡𝑡
∗ corresponding to the selected beam ID 𝑏𝑏𝑚𝑚,𝑡𝑡

∗ , 

its weighted estimated value ℛ�𝑏𝑏𝑟𝑟,𝑡𝑡
∗  is evaluated as ℛ�𝑏𝑏𝑟𝑟,𝑡𝑡

∗ =
ℛ𝑏𝑏𝑟𝑟,𝑡𝑡

∗

Ω𝑏𝑏𝑟𝑟,𝑡𝑡
∗

  where dividing the actual 

reward by its probability value when calculating ℛ�𝑏𝑏𝑟𝑟,𝑡𝑡
∗  compensates the beam IDs that 

unlikely to be chosen. Following the same methodology given in Wilhemi et al. [Wilhemi, 
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Cano, Neu et al. (2019d)], the weights of both the selected beam ID and the other beam IDs 
are updated as given in Steps 5 and 6 in Algorithm 4. Also, a time-dependent learning rate 
of 𝛿𝛿(𝑡𝑡) = 𝛿𝛿0

√𝑡𝑡
 is utilized to enhance the learning process, where large values of 𝛿𝛿 results in 

more confident update while small values lead to conservative behavior. 
 

 
Figure 2: Ray tracing WiGig WLAN study area 

Table 1: Simulation parameters 

Parameter Value 
Number of APs/UEs 8 
UE antenna height 0.75 m  

𝑃𝑃𝑡𝑡 10 dBm  
L 10  
𝑑𝑑𝐵𝐵 2.16 GHz  
𝑁𝑁0 −174 + 10log10(𝑑𝑑𝐵𝐵) + 10  
𝜀𝜀 0.1  
𝛿𝛿0 0.4  
𝜒𝜒 0.05 

6 Numerical analysis 
In this section, extensive numerical simulations are conducted to compare the 
performances of the proposed multiplayer MAB based WiGig concurrent BF algorithms. 
Also, the optimal performance results from exhaustively searching all available 
concurrent beams combinations are provided as a benchmark performance. 

6.1 Simulation parameters 
In the simulation scenario, an indoor WLAN area of size 30 × 15 × 4 m3 is studied 
where eight WiGig APs are attached to the ceiling, as shown in Fig. 2. Ray tracing using 
wireless InSite software is used to generate the 60 GHz channels between WiGig APs 
and their associated UEs. Each UE is associated with one AP based on maximum 
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received power. Thus, only M WiGig links exist for concurrent transmissions, where M is 
the total number of used APs. Other simulation parameters are given in Tab. 1 unless 
otherwise stated. 

6.2 Performance metrics 
The following metrics are used for performance comparisons: 
• Average total sum rate of the concurrent links, which is equal to  

ℝ𝑡𝑡 = 𝑑𝑑𝐵𝐵
𝑇𝑇

 ∑ ∑ ℛ𝑏𝑏𝑟𝑟,𝑡𝑡 ,       
𝑀𝑀
𝑚𝑚=1

𝑇𝑇
𝑡𝑡=1                                                                                       (16) 

• Spatial reuse factor 𝜌𝜌, which is defined as: 

𝜌𝜌 = Total sum rate of the concurrent links
Average rate of the isolated links

,                                                                              (17)  

Stronger mutual interference results in smaller values of 𝜌𝜌 and vice versa. Ideally, for 
eight coexisting links, 𝜌𝜌 should be equal to 8.  

6.3 Simulation results 
Fig. 3 shows the average total sum rate of the compared schemes against the number of 
concurrent links which are uniformly distributed inside the WLAN area, where LoS 
blockage probability of 0 and -3 dB beamwidths of 50°, i.e., 7 beam IDs, are used. As 
shown in this figure, as the number of concurrent links increases, the average total sum 
rate increases as well. However, the curves tend to saturate after using 7 concurrent links 
due to the increase in mutual interference. The proposed multiplayer MAB based 
concurrent BF algorithms show comparable performances to the optimal one, where TS 
and UCB provide the best performance while ϵ-greedy gives the worst one. This comes 
from the Bayesian strategy and the confidential policy of TS and UCB, respectively. Yet, 
the worst performance of ϵ-greedy comes from its intuitive online learning process based 
on allocating a fixed probability for both exploitation and exploration. When the number 
of concurrent links is equal to 8, about 91.7%, 91%, 87%, and 83.33% of the optimal 
performance are obtained using the proposed TS, UCB, EXP3, and ϵ-greedy, respectively. 
This is done while the optimal performance needs to search over 5,764,801 concurrent 
beam combinations, but the proposed MAB schemes need to test only eight beams at a 
time. Fig. 4 demonstrates the spatial reuse factor of the compared schemes against the 
number of concurrent links with the same simulation setting used in Fig. 3. It is 
interesting to note that a near-optimal spatial reuse performance is obtained using the TS 
algorithm at all tested values of concurrent links. Also, UCB and EXP3 show a good 
spatial reuse performance compared to the optimal one. However, ϵ-greedy shows weak 
performance due to the aforementioned reason, especially when increasing the number of 
concurrent links. Using two concurrent links, about 98%, 95%, 95%, and 93.16% of the 
optimal spatial reuse factor are obtained using TS, UCB, EXP3, and ϵ-greedy, 
respectively. These values become 97%, 94.3%, 93.3%, and 90.8% when using 8 
concurrent links. 
Fig. 5 demonstrates the average total system rate of the compared schemes against the 
LoS blockage probability using 4 concurrent links by operating APs numbers 3, 4, 5 and 
6, and -3dB beamwidth of 50°, i.e., using 7 beam IDs. Generally speaking, the average 
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total sum rate of all compared schemes are decreasing as the LoS blockage probability is 
increasing. This is because lower power is received from the NLoS paths compared to the 
LoS ones. Likewise, the proposed MAB based schemes show comparable performances 
to the optimal one at all tested values of LoS blockage probability. TS and UCB give the 
best performances among the MAB schemes, while ϵ-greedy shows the worst one. At 
LoS blockage probability of 0, bout 92.8%, 92.2%, 88%, and 83% of the optimal 
performance are obtained using the proposed TS, UCB, EXP3, and ϵ-greedy, respectively. 
These values become 95.5%, 92%, 76%, and 67% at LoS blockage probability of 0.9. 
This confirms the superior performance of the proposed MAB based schemes, especially 
TS and UCB, even in a harsh blockage environment. 

 
Figure 3: Average total system rate against the number of concurrent links using LoS 
blockage probability of 0 and -3dB beamwidth of 50° 

 
Figure 4: Spatial reuse factor against the number of concurrent links using LoS blockage 
probability of 0 and -3dB beamwidth of 50° 
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Figure 5: Average total system rate against the LoS blockage probability using 4 
concurrent links and -3 dB beamwidth of 50° 

Fig. 6 shows the average total sum rate performances of the compared schemes against 
the -3 dB beamwidth, i.e., using a different number of beam IDs ranging from 61 beams 
when -3 dB beamwidth is set to 20° to 7 beams when the -3 dB beamwidth is set to 60°. 
In this simulation, LoS blockage probability of 0 and 4 concurrent links by operating APs 
number 3, 4, 5, and 6 are used. As shown in Fig. 6, as the -3 dB beamwidth is increasing, 
i.e., using wider beams, the average total sum rates of all compared schemes are 
decreasing accordingly. This is due to the low BF gain resulting from using wide beams, 
which reduces the received power in addition to increasing the mutual interference. The 
opposite happens when using narrow beams. Again, the proposed MAB based schemes 
show comparable performances to the optimal one, even in high interfering environment 
when using wide beams. Also, TS and UCB show the best performances, while ϵ-greedy 
gives the worst one. At -3 dB beamwidth of 20°, i.e., using 61 beams, about 90.5%, 
88.3%,80%, and 76% of the optimal performance are obtained using the proposed TS, 
UCB, EXP3, and ϵ-greedy, respectively. This is done while the optimal performance 
requires to exhaustively search over 614  different combinations of concurrent beams 
while the proposed MAB schemes need to only test 4 concurrent beams at a time. Even in 
a high interfering environment when the -3 dB beamwidth is equal to 60°, these values 
become 93%, 90.4%, 85%, and 83%. This means that WiGig APs learn to select 
concurrent beam IDs that enhance the overall system performance even in high 
interfering environment by only exploiting their own observations while selfishly 
interacting with the environment. 
Fig. 7 illustrates the average total sum rate performances of the compared schemes against 
user density in user/m2 using 8 concurrent links, LoS blockage probability of 0, and -3 dB 
beamwidth of 50°. To simulate the different user densities given in Fig. 7, we shrink the 
area within which the 8 UEs are distributed around the room center. For example, to obtain 
a user density of 0.02 user/m2, the 8 users are distributed in the whole area of 30 × 15 m2. 
However, to obtain a user density of 0.8 user/m2, the 8 users are distributed in the area of 
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5 × 2  m2 around the room center, and so on. Low user density means low mutual 
interference, while high user density indicates high mutual interference. As shown in Fig. 7, 
as the user density increases, the average total sum rates of all compared schemes are 
decreased due to the increase in mutual interference. Yet, the proposed MAB schemes 
show comparable performances to the optimal one even in harsh interfering environment, 
and TS is still showing the best performance. At low user density of 0.02 user/m2, about 
94.8%, 94.1%, 86.6%, and 86.2% of the optimal performance are obtained using TS, UCB, 
EXP3, and ϵ-greedy, respectively. However, at suffered interfering environment of 0.8 
user/m2, these values become 80.14%, 76.12%, 71%, and 68%, respectively. Although the 
performances of the MAB schemes are decreased in high user density, they still show 
comparable performances to the optimal one considering the huge difference in the 
concurrent BF complexity and the strong interfering environment. Compared to the scheme 
proposed in Qiao et al. [Qiao, Shen, Mark et al. (2015d)], about 95% of the optimal 
performance is obtained using their proposed iterative search algorithm when using 8 
concurrent links. This comes at the expense of about 45% of the normalized setup time 
consumed by the optimum exhaustive search approach. This high overhead is due to the 
several management frames needed for organizing the operation among the distributed 
concurrent links. This is highly relaxed using the proposed MAB approach, as every 
WiGig AP is operating autonomously without the need for any global management 
among the WiGig concurrent links. Simultaneously, comparable performances to the 
optimal one are obtained.  

 
Figure 6: Average total system rate against the -3dB beamwidth using 4 concurrent links 
and LoS blockage probability of 0 
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Figure 7: Average total system rate against user density using 4 concurrent, LoS 
blockage probability of 0 and -3 dB beamwidth of 50° 

7 Conclusion 
In this work, we investigated mmWave concurrent BF and formulated it as an 
optimization problem. An online learning approach based on multiplayer MAB is 
proposed to address the topic. In this formulation, WiGig APs are acting as the players, 
the beam space as the arms of the bandits, and the achievable data rates as the rewards. 
Due to the fully decentralized setting of the problem, WiGig APs play the game selfishly 
without any knowledge about other APs actions and or observations. During the learning 
process, a WiGig AP selects its beam ID only based on its successive interaction with the 
environment and its own reward observations. In this paper, four MAB algorithms are 
adopted by each WiGig AP to interact with the environment and select their beam IDs, 
namely, ϵ-greedy, UCB, TS, and EXP3, and their performances are compared. Despite 
the selfish behavior of the WiGig APs, they learn to take actions that enhance the overall 
performance of the WiGig WLAN. This is done by selecting beam IDs that avoid mutual 
interference with the other concurrent links during the learning process. Extensive 
numerical analysis proved the potency of the proposed MAB based schemes compared to 
the optimal performance coming from exhaustively searching all available concurrent 
beams combinations in terms of average total sum rate and spatial reuse factor. The 
obtained results of this study open the doors for more applications to MAB algorithms to 
address several mmWave challenges.   
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