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Abstract: It is well known that the nonparametric estimation of the regression function is 
highly sensitive to the presence of even a small proportion of outliers in the data. To solve 
the problem of typical observations when the covariates of the nonparametric component 
are functional, the robust estimates for the regression parameter and regression operator 
are introduced. The main propose of the paper is to consider data-driven methods of 
selecting the number of neighbors in order to make the proposed processes fully automatic. 
We use the 𝑘𝑘 Nearest Neighbors procedure (kNN) to construct the kernel estimator of the 
proposed robust model. Under some regularity conditions, we state consistency results for 
kNN functional estimators, which are uniform in the number of neighbors (UINN). 
Furthermore, a simulation study and an empirical application to a real data analysis of 
octane gasoline predictions are carried out to illustrate the higher predictive performances 
and the usefulness of the kNN approach. 
 
Keywords: Functional data analysis, quantile regression, 𝑘𝑘NN method, uniform nearest 
neighbor (UNN) consistency, functional nonparametric statistics, almost complete 
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1 Introduction 
Let us introduce 𝑛𝑛 pairs of random variables (𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖), for 𝑖𝑖 = 1, … , 𝑛𝑛, that we assume drawn 
from the pair (𝑋𝑋,𝑌𝑌), which is valued in ℱ × ℝ, where ℱ is a semi-metric space equipped 
with a semi-metric 𝑑𝑑. Our purpose is to evaluate the impact of the functional variable 𝑋𝑋 on 
the real variable 𝑌𝑌 using the robust estimation of the regression function. Recall that, the 
relationship between 𝑋𝑋 and 𝑌𝑌 is usually modeled by the classical regression which is given 
by 𝑌𝑌 = 𝑟𝑟(𝑋𝑋) + 𝜖𝜖,  where 𝜖𝜖  represents an independent random variable of 𝑋𝑋  with a 
symmetric distribution. However, in the alternative case, when the distribution is not 
symmetric, the classical regression is not adequate. In this case, robust regression is more 
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appropriate. Moreover, this last is more often used than the classical regression because it is 
insensitive to outliers presented in a given data and resisting heteroscedasticity phenomena. 
Historically, the robust method was introduced by Maronna et al. [Maronna, Douglas 
Martin, Yohai et al.  (2019)] and defined, for any loss function 𝜌𝜌(. , . ) on IR, as the unique 
minimizer with respect to (w.r.t.) the component 𝑡𝑡 in the model   𝛤𝛤𝑥𝑥(𝑡𝑡) = 𝔼𝔼[𝜌𝜌(𝑌𝑌, 𝑡𝑡)|𝑋𝑋 = 𝑥𝑥]. 
The theoretical estimator of this model is defined by 
𝜃𝜃𝑥𝑥 = argmin

𝑡𝑡∈ℝ
 𝛤𝛤𝑥𝑥(𝑡𝑡).                                                                                                                   (1) 

Furthermore, the statistical model, 𝛤𝛤𝑥𝑥(𝑡𝑡), deals with a large class of M-regression models 
based on the types of 𝜌𝜌(𝑦𝑦, 𝑡𝑡) . For examples, 𝜌𝜌(𝑦𝑦, 𝑡𝑡) = (𝑦𝑦 − 𝑡𝑡)2  yields the classical 
regression, 𝜌𝜌(𝑦𝑦, 𝑡𝑡) = |𝑦𝑦 − 𝑡𝑡| gives the conditional median function 𝑚𝑚(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑑𝑑(𝑌𝑌|𝑋𝑋 =
𝑥𝑥) , and 𝜌𝜌(𝑦𝑦, 𝑡𝑡) = |𝑦𝑦 − 𝑡𝑡| + (2𝛼𝛼 − 1)(𝑦𝑦 − 𝑡𝑡)  leads to the 𝛼𝛼𝑡𝑡ℎ -conditional quantile; for 
further examples of the function 𝜌𝜌[Stone (2000)]. 
According to Eq. (1), the best approximation of Y given X is based on the estimation of 𝜃𝜃𝑥𝑥 
denoted by 𝜃𝜃�̂�𝑥, given by 𝜃𝜃�̂�𝑥 = argmin

𝑡𝑡∈ℝ
�̂�𝛤𝑥𝑥 (𝑡𝑡) where 

�̂�𝛤𝑥𝑥 (𝑡𝑡) =
∑ 𝐾𝐾𝑛𝑛
𝑖𝑖=1 �ℎ𝑘𝑘

−1𝑑𝑑(𝑥𝑥,𝑋𝑋𝑖𝑖)�𝜌𝜌(𝑌𝑌𝑖𝑖,𝑡𝑡)

∑ 𝐾𝐾𝑛𝑛
𝑖𝑖=1 �ℎ𝑘𝑘

−1𝑑𝑑(𝑥𝑥,𝑋𝑋𝑖𝑖)�
,                                                                                       (2) 

with 𝐾𝐾 is a kernel function and ℎ𝑘𝑘 = min�ℎ ∈ ℝ+ 𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 ∑ 𝟙𝟙𝐵𝐵(𝑥𝑥,ℎ)
𝑛𝑛
𝑖𝑖=1 (𝑋𝑋𝑖𝑖) = 𝑘𝑘� with 

𝑘𝑘 is given as a sequence of integers. 
It should be noted that, in recent years, the field of functional statistical analysis has become an 
essential topic of research. This field of statistics concerns the modeling of the random variable 
takes values in a functional space. Data with functional structure arises in many applied 
sciences fields such as soil science, economics, epidemiology, and others. Key references in 
this topic are Bosq [Bosq (2000)] and Belarbi et al. [Belarbi, Chemikh and Laksaci (2018)] in 
the parametric model and the monograph of Ferraty et al. [Ferraty and Vieu (2006)] in the 
nonparametric case. The main purpose of this contribution is to construct an estimator of a 
regression model using the 𝑘𝑘 Nearest Neighbors procedure (kNN). Unlike the standard kernel 
method, the kNN smoothing allows estimating the M-regression, 𝜃𝜃𝑥𝑥, with varied bandwidth 
parameter strongly depends on the data. Precisely, the bandwidth parameter is priory defined 
according to the distance between the functional random variable. Such consideration allows 
for exploring the topological as well as the specter component of the data.  
The nonparametric robust regression estimation was firstly introduced by Azzedine et al. 
[Azzedine, Laksaci and Ould Said (2008)]. They obtained the almost complete 
convergence with rates in the independent and identically distributed (i.i.d.) case. The 
asymptotic normality of their model has been established by Attouch et al. [Attouch, 
Laksaci and Ould Said (2010, 2012)] in both dependent and independent cases. However, 
all these results are obtained in the complete data. In the incomplete data cases, we can 
refer to Derrar et al. [Derrar, Laksaci and Ould Said (2020)] and the references therein. 
Pushed by its attractive features, the functional 𝑘𝑘NN smoothing approach has received a 
growing consideration in the last years. The first study in this topic was obtained by Burba 
et al. [Burba, Ferraty and Vieu (2009)]. They proved the almost complete consistency of 
the 𝑘𝑘NN estimator of the regression operator of functional regressors. Some recent 
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advances in the functional 𝑘𝑘NN method can be found in Almanjahie et al. [Almanjahie, 
Chikr, Laksaci et al. (2018); Kara-Zaitri, Laksaci, Rachdi et al. (2017); Almanjahie, Chikr 
and Laksaci (2020)].   
We aim to construct a new estimator of the regression function. Our estimator is built by 
combining the robust method estimation with (weighted by) the kernel nearest-neighbor 
(kNN) procedure uniformly on the number of neighbors. This is motivated by the fact that 
the robust regression estimator has several advantages over the classical kernel regression 
estimator. The main profit in using a robust regression is that it allows reducing the effect 
of outlier data. 
Note that, such a study has a great impact on practice. On the one hand, the robust regression 
is an essential alternative regression model that allows overcoming many drawbacks of the 
classical regression, such as the sensitivity to the outliers or the heteroscedasticity phenomena. 
Furthermore, it is well known that the kNN method is better than the classical kernel method. 
However, the difficulty in the kNN smoothing is the fact that the bandwidth parameter is a 
random variable, unlike the classical regression in which the smoothing parameter is a 
deterministic scalar. So, the study of the asymptotic properties of our proposed estimator is 
complicated, and it requires some additional tools and techniques. 
On the other hand, the UNN consistency ensures the convergence of the estimator even if the 
number of neighbors is variable. Of course, this case incorporates the cross-validation 
criterion, which provides a varied random bandwidth parameter. So, the UNN consistency 
offers mathematical support for this kind of data-driven procedure. For other studies related 
to nonparametric estimates of the robust regression, we refer to Attouch et al. [Attouch, Kaid 
and Louhab (2019); Attouch, Laksaci and Ould Said (2010, 2012); Azzedine, Laksaci and 
Ould Said (2008); Gheriballah, Laksaci and Sekkal (2013); Gheriballah, Laksaci and Rouane 
(2010); Belarbi, Chemikh and Laksaci (2018)].  
The main objective of this paper is to generalize, to the k nearest neighbor case, the results 
obtained by Azzedine et al. [Azzedine, Laksaci and Ould Said (2008)] in the i.i.d case. 
More precisely, we establish the almost complete convergence uniformly on the number 
of neighbors with rates of an estimator constructed by combining the ideas of robustness 
with those of smoothed regression. We point out that the main feature of our approach is 
to develop an alternative prediction model to the classical regression that is not sensitive 
to outliers or heteroscedastic data, taking into account the local data structure. 
The paper is organized as follows. Section 2 is dedicated to fixing notations and conditions, 
and to establishing the development of our main results. Also, we present simulation 
studies and real data applications to investigate the efficiency of the proposed robust 
estimator. The conclusion is presented in Section 3. 

2 Main results 
To establish the almost complete convergence of 𝜃𝜃�̂�𝑥 uniformly in the numbers of neighbors 
𝑘𝑘 ∈ (𝑘𝑘1,𝑛𝑛,𝑘𝑘2,𝑛𝑛), we need the following conditions and notations: 
(A1) For all 𝑟𝑟 > 0, ℙ(𝑋𝑋 ∈ 𝐵𝐵(𝑥𝑥, 𝑟𝑟)) = 𝜙𝜙𝑥𝑥(𝑟𝑟) > 0 such that, for all 𝑠𝑠 ∈ (0,1), 
lim
𝑟𝑟→0

𝜙𝜙𝑥𝑥(𝑠𝑠𝑟𝑟)
𝜙𝜙𝑥𝑥(𝑟𝑟)

= 𝜏𝜏𝑥𝑥(𝑠𝑠) < ∞. 
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(A2) The function 𝛤𝛤 is such that: 
(i) The function 𝛤𝛤𝑥𝑥(⋅) is of class 𝒞𝒞2 on [𝜃𝜃𝑥𝑥 − 𝛿𝛿,𝜃𝜃𝑥𝑥 + 𝛿𝛿], 𝛿𝛿 > 0. 
(ii) ∀𝑡𝑡 ∈ [𝜃𝜃𝑥𝑥 − 𝛿𝛿,𝜃𝜃𝑥𝑥 + 𝛿𝛿], ∀(𝑥𝑥1,𝑥𝑥2) ∈ 𝒩𝒩𝑥𝑥 × 𝒩𝒩𝑥𝑥,  |𝛤𝛤𝑥𝑥1(𝑡𝑡) − 𝛤𝛤𝑥𝑥2(𝑡𝑡)| ≤

𝐶𝐶𝑑𝑑𝑏𝑏(𝑥𝑥1, 𝑥𝑥2), where 𝒩𝒩𝑥𝑥 is a fixed neighborhood of 𝑥𝑥. 
(iii) For each fixed 𝑡𝑡 ∈ [𝜃𝜃𝑥𝑥 − 𝛿𝛿,𝜃𝜃𝑥𝑥 + 𝛿𝛿], the function 𝛤𝛤⋅(𝑡𝑡) is continuous at 𝑥𝑥. 

(A3) The function 𝜌𝜌 is a strictly convex, continuous and differentiable w.r.t. the variable 𝑡𝑡, 
and its derivative, 𝜓𝜓(𝑦𝑦, 𝑡𝑡) = 𝜕𝜕𝜌𝜌(𝑦𝑦,𝑡𝑡)

𝜕𝜕𝑡𝑡
, fulfills 𝔼𝔼[|𝜓𝜓(𝑌𝑌, 𝑡𝑡)|2|𝑋𝑋] < 𝐶𝐶 <

∞ and 𝔼𝔼[|𝜓𝜓(𝑌𝑌, 𝑡𝑡)|𝑝𝑝] < 𝐶𝐶 < ∞,𝑝𝑝 > 1. 
(A4) The kernel function 𝐾𝐾 is supported within (0,1/2) and the derivative function of 𝐾𝐾 
is continuous on (0,1/2) such that 

0 < 𝐶𝐶𝟙𝟙
�0,1
2 �

(⋅) ≤ 𝐾𝐾(⋅) ≤ 𝐶𝐶
′𝟙𝟙
�0,1
2 �(⋅) and 𝐾𝐾(1/2)−� 𝐾𝐾

1
2

0
′(𝑠𝑠)𝜏𝜏𝑥𝑥(𝑠𝑠)𝑑𝑑𝑠𝑠 > 0, 

where  𝟙𝟙𝐴𝐴 denotes the indicator function of the set 𝐴𝐴. 
(A5) Let define the class 𝒦𝒦 of functions by 𝒦𝒦 = {⋅↦ 𝐾𝐾(𝛾𝛾−1𝑑𝑑(𝑥𝑥,⋅)),  𝛾𝛾 > 0} which is a 
pointwise measurable class 4  such that sup

𝑄𝑄
∫ �1 + log𝒩𝒩(𝜖𝜖 ∥ 𝐹𝐹 ∥𝑄𝑄,2,𝒦𝒦,𝑑𝑑𝑄𝑄)1
0 𝑑𝑑𝜖𝜖 < ∞ , 

where the supremum is taken over all probability measures 𝑄𝑄  on the space ℱ  with 
𝑄𝑄(𝐹𝐹2) < ∞ and ℱ is the envelope function5 of the set 𝒦𝒦. Here, 𝑑𝑑𝑄𝑄  is the 𝐿𝐿2(𝑄𝑄)-metric 
and 𝒩𝒩(𝜖𝜖,𝒦𝒦,𝑑𝑑𝑄𝑄) is the minimal number of open balls (for the 𝐿𝐿2(𝑄𝑄)-metric) with radius 𝜖𝜖 
which are needed to cover the function class 𝒦𝒦. We will denote by ∥⋅∥𝑄𝑄,2 the 𝐿𝐿2(𝑄𝑄)-norm. 
(A6) The sequence of numbers (𝑘𝑘1,𝑛𝑛) verifies 

𝜙𝜙𝑥𝑥−1 �
𝑘𝑘2,𝑛𝑛

𝑛𝑛
� → 0  𝑎𝑎𝑛𝑛𝑑𝑑 

log𝑛𝑛

min(𝑛𝑛𝜙𝜙𝑥𝑥−1 �
𝑘𝑘1,𝑛𝑛
𝑛𝑛 � ,𝑘𝑘1,𝑛𝑛)

→ 0. 

𝐶𝐶 or/and 𝐶𝐶′ denotes a generic positive constant.  
In the following theorem, we present the consistency result.  
Theorem: Assume that conditions (A1) -(A6) are satisfied, then 𝜃𝜃�̂�𝑥 exists and is unique 
almost surely for all larger value of 𝑛𝑛 . Furthermore, if   Γx"  (𝜃𝜃x) ≠  0, we have 

         sup
𝑘𝑘1,𝑛𝑛≤𝑘𝑘≤𝑘𝑘2,𝑛𝑛

�𝜃𝜃�̂�𝑥 − 𝜃𝜃𝑥𝑥� = 𝑂𝑂 �𝜙𝜙𝑥𝑥−1 �
𝑘𝑘2,𝑛𝑛
𝑛𝑛
�
min(𝑘𝑘1,𝑘𝑘2)

�+ 𝑂𝑂𝑎𝑎.𝑐𝑐𝑐𝑐. ��
log(𝑛𝑛)
𝑘𝑘1,𝑛𝑛

�.                                 (3) 

Proof of the Theorem  

 
4A class 𝒞𝒞 of functions is called a pointwise measurable class, if ∃𝒞𝒞0 a countable subclass, such that, ∀𝑔𝑔 ∈ 𝒞𝒞 
there exists a sequence of functions (𝑔𝑔𝑚𝑚)𝑚𝑚∈ℕ ∈ 𝒞𝒞0 satisfying |𝑔𝑔𝑚𝑚(𝑧𝑧) − 𝑔𝑔(𝑧𝑧)| = 𝑜𝑜(1). 
5An envelope function 𝐺𝐺 for a class of functions 𝒞𝒞 is any measurable function such that: sup𝑔𝑔∈𝒞𝒞|𝑔𝑔(𝑧𝑧)| ≤
𝐺𝐺(𝑧𝑧), for all𝑧𝑧. 
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To prove the above theorem, we use the strict convexity of 𝜌𝜌, which implies that the 
function 𝜓𝜓 is strictly monotone concerning the variable 𝑡𝑡. Note that, for the shortness of 
the prove, we determine the result for the increasing case, and the decreasing case can be 
obtained by −𝜓𝜓(𝑌𝑌,⋅). Then, in the increasing case of 𝜓𝜓(𝑌𝑌,⋅), we can get 

∀𝜖𝜖 > 0 , 𝛤𝛤𝑥𝑥′(𝜃𝜃𝑥𝑥 − 𝜖𝜖) ≤ 𝛤𝛤𝑥𝑥′(𝜃𝜃𝑥𝑥) = 0 ≤ 𝛤𝛤𝑥𝑥′(𝜃𝜃𝑥𝑥 + 𝜖𝜖)  and �̂�𝛤𝑥𝑥
′

(𝜃𝜃�̂�𝑥 − 𝜖𝜖) ≤ �̂�𝛤𝑥𝑥
′

(𝜃𝜃�̂�𝑥) = 0 ≤
�̂�𝛤𝑥𝑥
′

(𝜃𝜃�̂�𝑥 + 𝜖𝜖).  
So, by a simple analytical argument, we prove that, for all 𝜖𝜖 > 0, 

ℙ� sup
𝑘𝑘1,𝑛𝑛≤𝑘𝑘≤𝑘𝑘2,𝑛𝑛

|𝜃𝜃�̂�𝑥 − 𝜃𝜃𝑥𝑥| ≥ 𝜖𝜖�

≤ ℙ� sup
𝑘𝑘1,𝑛𝑛≤𝑘𝑘≤𝑘𝑘2,𝑛𝑛

| �̂�𝛤𝑥𝑥
′

(𝜃𝜃𝑥𝑥 + 𝜖𝜖) − 𝛤𝛤𝑥𝑥′(𝜃𝜃𝑥𝑥 + 𝜖𝜖)| ≥ 𝛤𝛤𝑥𝑥′(𝜃𝜃𝑥𝑥 + 𝜖𝜖)� 

+ℙ� sup
𝑘𝑘1,𝑛𝑛≤𝑘𝑘≤𝑘𝑘2,𝑛𝑛

| �̂�𝛤𝑥𝑥
′

(𝜃𝜃𝑥𝑥 − 𝜖𝜖) − 𝛤𝛤𝑥𝑥′(𝜃𝜃𝑥𝑥 − 𝜖𝜖)| ≥ −𝛤𝛤𝑥𝑥′(𝜃𝜃𝑥𝑥 − 𝜖𝜖)�. 

Furthermore, by ((A2) (i)), we write  

𝜃𝜃�̂�𝑥 − 𝜃𝜃𝑥𝑥 =
𝛤𝛤𝑥𝑥′�𝜃𝜃�̂�𝑥� − �̂�𝛤𝑥𝑥

′
�𝜃𝜃�̂�𝑥�

𝛤𝛤𝑥𝑥′′(𝜉𝜉𝑛𝑛) , 

where 𝜉𝜉𝑛𝑛 is between 𝜃𝜃�̂�𝑥 and 𝜃𝜃𝑥𝑥. This result allows us to demonstrate that 

∃𝜏𝜏 > 0, ∑ ℙ∞
𝑛𝑛=1 � inf

𝑘𝑘1,𝑛𝑛≤𝑘𝑘≤𝑘𝑘2,𝑛𝑛
𝛤𝛤𝑥𝑥′′(𝜉𝜉𝑛𝑛) < 𝜏𝜏�  <  ∞.                                                               (4) 

We would have 

sup
𝑘𝑘1,𝑛𝑛≤𝑘𝑘≤𝑘𝑘2,𝑛𝑛

�𝜃𝜃�̂�𝑥 − 𝜃𝜃𝑥𝑥� = 𝑂𝑂𝑎𝑎.𝑐𝑐𝑐𝑐. � sup
𝑡𝑡∈[𝜃𝜃𝑥𝑥−𝛿𝛿, 𝜃𝜃𝑥𝑥+𝛿𝛿]

sup
𝑘𝑘1,𝑛𝑛≤𝑘𝑘≤𝑘𝑘2,𝑛𝑛

|𝛤𝛤𝑥𝑥′(𝑡𝑡) − �̂�𝛤𝑥𝑥
′

(𝑡𝑡)|�. 

Therefore, we still have to prove that 

sup
𝑡𝑡∈[𝜃𝜃𝑥𝑥−𝛿𝛿, 𝜃𝜃𝑥𝑥+𝛿𝛿]

sup
𝑘𝑘1,𝑛𝑛≤𝑘𝑘≤𝑘𝑘2,𝑛𝑛

�𝛤𝛤𝑥𝑥′(𝑡𝑡)− �̂�𝛤𝑥𝑥
′ (𝑡𝑡)�,           

and for this sequence, we use the decomposition 

𝛤𝛤𝑥𝑥′(𝑡𝑡) − �̂�𝛤𝑥𝑥
′

(𝑡𝑡) = �̃�𝐵𝑥𝑥 (𝑡𝑡) +
�̃�𝐷𝑥𝑥 (𝑡𝑡)
�̂�𝛹𝐷𝐷 (𝑥𝑥)

+
�̃�𝑄𝑥𝑥 (𝑡𝑡)
�̂�𝛹𝐷𝐷 (𝑥𝑥)

, 

where 
�̃�𝑄𝑥𝑥 (𝑡𝑡) = (�̂�𝛹𝑁𝑁 (𝑥𝑥, 𝑡𝑡) − 𝔼𝔼[�̂�𝛹𝑁𝑁 (𝑥𝑥, 𝑡𝑡)]) − 𝛤𝛤𝑥𝑥′(𝑡𝑡)(�̂�𝛹𝐷𝐷 (𝑥𝑥) − 𝔼𝔼[�̂�𝛹𝐷𝐷 (𝑥𝑥)), 

�̃�𝐵𝑥𝑥 (𝑡𝑡) =
𝔼𝔼[�̂�𝛹𝑁𝑁 (𝑥𝑥, 𝑡𝑡)]
𝔼𝔼[�̂�𝛹𝐷𝐷 (𝑥𝑥)

− 𝛤𝛤𝑥𝑥′(𝑡𝑡) 

and 
�̃�𝐷𝑥𝑥 (𝑡𝑡) = − �̃�𝐵𝑥𝑥 (𝑡𝑡)(�̂�𝛹𝐷𝐷 (𝑥𝑥) − 𝔼𝔼[�̂�𝛹𝐷𝐷 (𝑥𝑥)), 
with 
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�̂�𝛹𝑁𝑁 (𝑥𝑥, 𝑡𝑡) = 1/(𝑛𝑛𝔼𝔼[𝐾𝐾(ℎ−1𝑑𝑑(𝑥𝑥,𝑋𝑋1))])�𝐾𝐾
𝑛𝑛

𝑖𝑖=1

(ℎ−1𝑑𝑑(𝑥𝑥,𝑋𝑋𝑖𝑖))𝜓𝜓(𝑌𝑌𝑖𝑖 , 𝑡𝑡), 

�̂�𝛹𝐷𝐷 (𝑥𝑥) = 1/(𝑛𝑛𝔼𝔼[𝐾𝐾(ℎ−1𝑑𝑑(𝑥𝑥,𝑋𝑋1))])�𝐾𝐾
𝑛𝑛

𝑖𝑖=1

(ℎ−1𝑑𝑑(𝑥𝑥,𝑋𝑋𝑖𝑖)). 

Hence, the theorem is obtained by the following Lemmas.  
Lemma 1: Under the conditions (A1) and (A3)–(A6), we can obtain that 

sup
𝑎𝑎𝑛𝑛≤ℎ≤𝑏𝑏𝑛𝑛

��̂�𝛹𝐷𝐷 (𝑥𝑥) − 𝔼𝔼[�̂�𝛹𝐷𝐷 (𝑥𝑥)]� = 𝑂𝑂𝑎𝑎.𝑐𝑐𝑐𝑐. ��
log𝑛𝑛

𝑛𝑛𝜙𝜙𝑥𝑥(𝑎𝑎𝑛𝑛)
�. 

Furthermore, ∃𝐶𝐶 > 0 a real number, such that 

�ℙ
∞

𝑛𝑛=1

� inf
𝑎𝑎𝑛𝑛≤ℎ≤𝑏𝑏𝑛𝑛

�̂�𝛹𝐷𝐷 (𝑥𝑥) < 𝐶𝐶� < ∞,  

where 𝑎𝑎𝑛𝑛 = 𝜙𝜙𝑥𝑥−1 �
𝛼𝛼𝑘𝑘1,𝑛𝑛
𝑛𝑛
� and 𝑏𝑏𝑛𝑛 = 𝜙𝜙𝑥𝑥−1 �

𝑘𝑘2,𝑛𝑛
𝑛𝑛𝛼𝛼
�. 

Lemma 2: Under the conditions (A1) -(A6), we have 

sup
𝑎𝑎𝑛𝑛≤ℎ≤𝑏𝑏𝑛𝑛

sup
𝑡𝑡∈[𝑡𝑡𝑝𝑝(𝑥𝑥)−𝛿𝛿, 𝑡𝑡𝑝𝑝(𝑥𝑥)+𝛿𝛿]

��̂�𝛹𝑁𝑁 (𝑥𝑥, 𝑡𝑡) − 𝔼𝔼[�̂�𝛹𝑁𝑁 (𝑥𝑥, 𝑡𝑡)]� = 𝑂𝑂𝑎𝑎.𝑐𝑐𝑐𝑐. ��
log(𝑛𝑛)
𝑛𝑛𝜙𝜙𝑥𝑥(𝑎𝑎𝑛𝑛)

�. 

Lemma 3:  Under the conditions (A2), (A3) and (A4), we have 

sup
𝑎𝑎𝑛𝑛≤ℎ≤𝑏𝑏𝑛𝑛

sup
𝑡𝑡∈[𝑡𝑡𝑝𝑝(𝑥𝑥)−𝛿𝛿, 𝑡𝑡𝑝𝑝(𝑥𝑥)+𝛿𝛿]

��̃�𝐵 (𝑥𝑥, 𝑡𝑡)� = 𝑂𝑂(𝑏𝑏𝑛𝑛
min(𝑘𝑘1,𝑘𝑘2)). 

Lemma 4: Under the same conditions of the previous theorem, the estimator 𝜃𝜃�̂�𝑥 exists and 
unique a.s. for all large 𝑛𝑛 and there exists 𝜁𝜁1 > 0, such that 

�ℙ
𝑛𝑛≥1

� inf
𝑘𝑘1,𝑛𝑛≤𝑘𝑘≤𝑘𝑘2,𝑛𝑛

𝛤𝛤𝑥𝑥′′(𝜉𝜉𝑛𝑛) < 𝜁𝜁1� < ∞. 

For the sake of shortness, the proof of the intermediate results is given in brevity. The 
proofs of Lemmas 1, 3 and 4 are omitted. It can be obtained by combing the ideas of Lemma 
2 to those of [Attouch, Kaid and Louhab (2019)].  So, the proof of Lemma 2 is sufficient 
to prove the claimed result. 
Proof of Lemma 2: 
By the compactness of [𝜃𝜃𝑥𝑥 − 𝛿𝛿, 𝜃𝜃𝑥𝑥 + 𝛿𝛿], we have 

[𝜃𝜃𝑥𝑥 − 𝛿𝛿, 𝜃𝜃𝑥𝑥 + 𝛿𝛿] ⊂��𝑦𝑦𝑗𝑗 − 𝑙𝑙𝑛𝑛,𝑦𝑦𝑗𝑗 + 𝑙𝑙𝑛𝑛�
𝑑𝑑𝑛𝑛

𝑗𝑗=1

 

with 𝑙𝑙𝑛𝑛 = 𝑛𝑛−1/2 and 𝑑𝑑𝑛𝑛 = 𝑂𝑂�𝑛𝑛1/2�. Then the monotony of 𝔼𝔼[�̂�𝛹𝑁𝑁 (𝑥𝑥,⋅)] and �̂�𝛹𝑁𝑁 (𝑥𝑥,⋅) 
gives, for 1 ≤ 𝑗𝑗 ≤ 𝑑𝑑𝑛𝑛, that 
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𝔼𝔼��̂�𝛹𝑁𝑁 (𝑥𝑥,𝑦𝑦𝑗𝑗 − 𝑙𝑙𝑛𝑛)� ≤ sup
𝑡𝑡∈(𝑦𝑦𝑗𝑗−𝑙𝑙𝑛𝑛,𝑦𝑦𝑗𝑗+𝑙𝑙𝑛𝑛)

𝔼𝔼��̂�𝛹𝑁𝑁 (𝑥𝑥, 𝑡𝑡)� ≤ 𝔼𝔼��̂�𝛹𝑁𝑁 (𝑥𝑥,𝑦𝑦𝑗𝑗 + 𝑙𝑙𝑛𝑛)� 

�̂�𝛹𝑁𝑁 (𝑥𝑥,𝑦𝑦𝑗𝑗 − 𝑙𝑙𝑛𝑛) ≤ sup
𝑡𝑡∈(𝑦𝑦𝑗𝑗−𝑙𝑙𝑛𝑛,𝑦𝑦𝑗𝑗+𝑙𝑙𝑛𝑛)

�̂�𝛹𝑁𝑁 (𝑥𝑥, 𝑡𝑡) ≤ �̂�𝛹𝑁𝑁 (𝑥𝑥,𝑦𝑦𝑗𝑗 + 𝑙𝑙𝑛𝑛). 

Now, from the condition (A2), we obtain, for any 𝑦𝑦1, 𝑦𝑦2 ∈ [𝜃𝜃𝑥𝑥 − 𝛿𝛿,𝜃𝜃𝑥𝑥 + 𝛿𝛿], that 
�𝔼𝔼��̂�𝛹𝑁𝑁 (𝑥𝑥,𝑦𝑦1)� − 𝔼𝔼��̂�𝛹𝑁𝑁 (𝑥𝑥,𝑦𝑦2)�� ≤ 𝐶𝐶|𝑦𝑦1 − 𝑦𝑦2|. 
It follows that 

sup
𝑡𝑡∈[𝜃𝜃𝑥𝑥−𝛿𝛿, 𝜃𝜃𝑥𝑥+𝛿𝛿]

��̂�𝛹𝑁𝑁 (𝑥𝑥, 𝑡𝑡) − 𝔼𝔼��̂�𝛹𝑁𝑁 (𝑥𝑥, 𝑡𝑡)��

≤ max
1≤𝑗𝑗≤𝑑𝑑𝑛𝑛

max
𝑧𝑧∈{𝑦𝑦𝑗𝑗−𝑙𝑙𝑛𝑛,𝑦𝑦𝑗𝑗+𝑙𝑙𝑛𝑛}

��̂�𝛹𝑁𝑁 (𝑥𝑥, 𝑧𝑧) − 𝔼𝔼��̂�𝛹𝑁𝑁 (𝑥𝑥, 𝑧𝑧)�� + 2𝐶𝐶𝑙𝑙𝑛𝑛. 

Evidently, 

𝑙𝑙𝑛𝑛 = 𝑜𝑜 ��
log𝑛𝑛

𝑛𝑛𝜙𝜙𝑥𝑥(𝑎𝑎𝑛𝑛)
�. 

So, all it remains to prove is that 

sup
𝑎𝑎𝑛𝑛≤ℎ≤𝑏𝑏𝑛𝑛

max
1≤𝑗𝑗≤𝑑𝑑𝑛𝑛

max
𝑦𝑦∈{𝑡𝑡𝑗𝑗−𝑙𝑙𝑛𝑛,𝑡𝑡𝑗𝑗+𝑙𝑙𝑛𝑛}

��̂�𝛹𝑁𝑁 (𝑥𝑥,𝑦𝑦) − 𝔼𝔼��̂�𝛹𝑁𝑁 (𝑥𝑥,𝑦𝑦)�� = 𝑂𝑂 ��
log(𝑛𝑛)

𝑛𝑛 𝜙𝜙𝑥𝑥(𝑎𝑎𝑛𝑛)
�
1/2

� ,𝑎𝑎. 𝑠𝑠𝑜𝑜. 

ℙ� sup
𝑎𝑎𝑛𝑛≤ℎ≤𝑏𝑏𝑛𝑛

max
1≤𝑗𝑗≤𝑑𝑑𝑛𝑛

max
𝑧𝑧∈{𝑡𝑡𝑗𝑗−𝑙𝑙𝑛𝑛,𝑡𝑡𝑗𝑗+𝑙𝑙𝑛𝑛}

��̂�𝛹𝑁𝑁 (𝑥𝑥, 𝑧𝑧) − 𝔼𝔼��̂�𝛹𝑁𝑁 (𝑥𝑥, 𝑧𝑧)�� > 𝜂𝜂�
log𝑛𝑛

𝑛𝑛𝜙𝜙𝑥𝑥(𝑎𝑎𝑛𝑛)
� 

 ≤  2𝑑𝑑𝑛𝑛 max
1≤𝑗𝑗≤𝑑𝑑𝑛𝑛

max
𝑧𝑧∈{𝑡𝑡𝑗𝑗−𝑙𝑙𝑛𝑛,𝑡𝑡𝑗𝑗+𝑙𝑙𝑛𝑛}

ℙ� sup
𝑎𝑎𝑛𝑛≤ℎ≤𝑏𝑏𝑛𝑛

��̂�𝛹𝑁𝑁 (𝑥𝑥, 𝑧𝑧) − 𝔼𝔼[�̂�𝛹𝑁𝑁 (𝑥𝑥, 𝑧𝑧)]� > 𝜂𝜂�
log𝑛𝑛

𝑛𝑛𝜙𝜙𝑥𝑥(𝑎𝑎𝑛𝑛)
�. 

Now, we look at the quantity 

ℙ� sup
𝑎𝑎𝑛𝑛≤ℎ≤𝑏𝑏𝑛𝑛

��̂�𝛹𝑁𝑁 (𝑥𝑥, 𝑧𝑧) − 𝔼𝔼[�̂�𝛹𝑁𝑁 (𝑥𝑥, 𝑧𝑧)]� > 𝜂𝜂�
log𝑛𝑛

𝑛𝑛𝜙𝜙𝑥𝑥(𝑎𝑎𝑛𝑛)
� ,  

for all 𝑧𝑧 = 𝑡𝑡𝑗𝑗 ∓ 𝑙𝑙𝑛𝑛, 1 ≤ 𝑗𝑗 ≤ 𝑑𝑑𝑛𝑛.  The proof of the above inequality is based on the 
Bernstein’s inequality for empirical processes, i.e., 

𝛼𝛼𝑛𝑛(𝐾𝐾) =
1
√𝑛𝑛

�(𝐾𝐾𝑖𝑖𝜓𝜓(𝑌𝑌𝑖𝑖, 𝑡𝑡) − 𝔼𝔼[𝐾𝐾𝑖𝑖𝜓𝜓(𝑌𝑌𝑖𝑖, 𝑡𝑡)])
𝑛𝑛

𝑖𝑖=1

,  

where 𝐾𝐾𝑖𝑖 = 𝐾𝐾(ℎ−1𝑑𝑑(𝑥𝑥,𝑋𝑋𝑖𝑖)). Then, we get, for all 𝑧𝑧 = 𝑡𝑡𝑗𝑗 ∓ 𝑙𝑙𝑛𝑛, 1 ≤ 𝑗𝑗 ≤ 𝑑𝑑𝑛𝑛, that 

ℙ� sup
𝑎𝑎𝑛𝑛≤ℎ≤𝑏𝑏0

�𝑛𝑛𝜙𝜙𝑥𝑥(ℎ)
log𝑛𝑛

��̂�𝛹𝑁𝑁 (𝑥𝑥, 𝑧𝑧) − 𝔼𝔼[�̂�𝛹𝑁𝑁 (𝑥𝑥, 𝑧𝑧)]� ≥ 𝜂𝜂0′� ≤ log(𝑛𝑛)𝑛𝑛−𝐶𝐶′𝜂𝜂0
2

.                        (5) 

Consequently, a good choice of 𝜂𝜂0 allows deducing the inequality in Eq. (5). 
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2.1 Simulation part 
The main propose of this part is to evaluate the behavior of our kNN estimator given in Eq. 
(2) for 𝛼𝛼-mixing data sample against the NW kernel estimator defined in Ferraty et al. 
[Ferraty and Vieu (2006)]. Let use the following nonparametric functional relation: 
𝑌𝑌𝑖𝑖 = 𝑚𝑚(𝑋𝑋𝑖𝑖) + 𝜀𝜀𝑖𝑖 , 𝑖𝑖 = 1, … ,200  

where 𝑚𝑚(𝑋𝑋𝑖𝑖) = �∫ 𝑋𝑋𝑖𝑖′
𝜋𝜋/3
0 (𝑡𝑡)𝑑𝑑𝑡𝑡�

2
,𝑋𝑋𝑖𝑖′(𝑡𝑡)  is the first derivative of 𝑋𝑋𝑖𝑖(𝑡𝑡) , (𝜀𝜀𝑖𝑖)𝑖𝑖=1200  are 

Gaussian random variables 𝒩𝒩(0, 0.05). The functional samples 𝑋𝑋𝑖𝑖(𝑡𝑡) (displayed in Fig. 1) 
are calculated by 

𝑋𝑋𝑖𝑖(𝑡𝑡) = 𝑎𝑎𝑖𝑖𝑡𝑡2 + sin�𝑏𝑏𝑖𝑖 �𝑡𝑡 −
𝜋𝜋
3
�� , 𝑖𝑖 = 1,2, … ,200, 𝑡𝑡 ∈ �0,

𝜋𝜋
3�

, 

where (𝑎𝑎𝑖𝑖)𝑖𝑖=1200  are independent identically distributed random variables and drown by 
𝒰𝒰(0,𝜋𝜋/9), 𝑏𝑏𝑖𝑖 = 1/4𝑏𝑏𝑖𝑖−1 + 𝜉𝜉𝑖𝑖, (𝜉𝜉𝑖𝑖)𝑖𝑖=1200 are i.i.d. according to 𝒩𝒩(0,1) and independent to 
(𝑎𝑎𝑖𝑖)𝑖𝑖=1200 and (𝑏𝑏𝑖𝑖)𝑖𝑖=1200 respectively, where 𝑏𝑏0 is centered and reduced Gaussian r.v.  

 
Figure 1: The functional samples 𝑋𝑋𝑖𝑖(𝑡𝑡), 𝑡𝑡 ∈ [0,𝜋𝜋/3] for 𝑖𝑖 = 1, … ,200 

We need to choose an appropriate semi-metric 𝑑𝑑(. , . ), a kernel 𝐾𝐾(. ) and the smoothing 
parameter 𝑘𝑘𝑐𝑐𝑝𝑝𝑡𝑡 for the kNN functional estimator, and ℎ𝑐𝑐𝑝𝑝𝑡𝑡 for the NW kernel estimator. 
For that, we opted for the asymmetric quadratic kernel defined as 𝐾𝐾(𝑠𝑠) = 3

4
�12
11
−

𝑠𝑠2� 𝟙𝟙[0,1](𝑠𝑠). Thus, because of the smoothness of curves 𝑋𝑋𝑖𝑖(𝑡𝑡), we opt for the semi-metric 
based on the first derivative: 

𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖𝑑𝑑�𝑋𝑋𝑖𝑖,𝑋𝑋𝑗𝑗� = �� �𝑋𝑋𝑖𝑖′(𝑡𝑡) − 𝑋𝑋𝑗𝑗′(𝑡𝑡)�
2𝜋𝜋/3

0
d𝑡𝑡, ∀𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗 ∈ ℱ 

The prediction procedure is as follows. Our sample is divided into two parts, the first 
(𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖)𝑖𝑖=1150 which is used for modeling; the rest of the sample will be used to the verification 
of the quality of prediction. Thus, from the generated functional samples, we can calculate 
the optimal parameter 𝑘𝑘𝑐𝑐𝑝𝑝𝑡𝑡 for the classical kNN kernel, the robust kNN and the optimal 
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parameter ℎ𝑐𝑐𝑝𝑝𝑡𝑡 for the NW robust estimator by cross-validation procedures. To proceed, 
the 𝑘𝑘𝑐𝑐𝑝𝑝𝑡𝑡 for the kNN kernel is defined by 

 𝑘𝑘𝑐𝑐𝑝𝑝𝑡𝑡 = argmin𝑘𝑘𝐶𝐶𝑉𝑉1(𝑘𝑘), where 𝐶𝐶𝑉𝑉1(𝑘𝑘) = ∑ �𝑌𝑌𝑖𝑖 − �̂�𝑚(−𝑖𝑖)
𝑘𝑘𝑁𝑁𝑁𝑁 (𝜒𝜒)�

2𝑛𝑛
𝑖𝑖=1  and 

�̂�𝑚(−𝑖𝑖)
𝑘𝑘𝑁𝑁𝑁𝑁 (𝑋𝑋) =

∑ 𝑌𝑌𝑗𝑗𝑛𝑛
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 𝐾𝐾 �

𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖𝑑𝑑�𝑋𝑋𝑗𝑗,𝑋𝑋�
𝐻𝐻𝑛𝑛,𝑘𝑘(𝑋𝑋) �

∑ 𝐾𝐾𝑛𝑛
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 �

𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖𝑑𝑑(𝑋𝑋𝑗𝑗;𝑋𝑋)
𝐻𝐻𝑛𝑛,𝑘𝑘(𝑋𝑋) �

. 

For the robust kNN, we define  𝑘𝑘𝑐𝑐𝑝𝑝𝑡𝑡 = argmin𝑘𝑘𝐶𝐶𝑉𝑉2(𝑘𝑘), where 𝐶𝐶𝑉𝑉2(𝑘𝑘) =
∑ �𝑌𝑌𝑖𝑖 − �̂�𝑟(−𝑖𝑖)

𝑘𝑘𝑁𝑁𝑁𝑁 (𝑋𝑋)�
2𝑛𝑛

𝑖𝑖=1  and 

�̂�𝑟(−𝑖𝑖)
𝑘𝑘𝑁𝑁𝑁𝑁 (𝑋𝑋) = argmin

𝑡𝑡

∑ 𝜌𝜌𝑛𝑛
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 (𝑌𝑌𝑗𝑗, 𝑡𝑡)𝐾𝐾 �

𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖𝑑𝑑�𝑋𝑋𝑗𝑗,𝑋𝑋�
𝐻𝐻𝑛𝑛,𝑘𝑘(𝑋𝑋) �

∑ 𝐾𝐾𝑛𝑛
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 �

𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖𝑑𝑑(𝑋𝑋𝑗𝑗,𝑋𝑋)
𝐻𝐻𝑛𝑛,𝑘𝑘(𝑋𝑋) �

. 

For the NW robust method, we can define ℎ𝑐𝑐𝑝𝑝𝑡𝑡 = argminℎ𝐶𝐶𝑉𝑉3(ℎ) where 

𝐶𝐶𝑉𝑉3(ℎ) = ��𝑌𝑌𝑖𝑖 − �̂�𝑟(−𝑖𝑖)
𝑘𝑘𝑑𝑑𝑟𝑟𝑛𝑛𝑑𝑑𝑙𝑙 (𝜒𝜒)�

2
 

𝑛𝑛

𝑖𝑖=1

 

and 

�̂�𝑟(−𝑖𝑖)
𝑘𝑘𝑑𝑑𝑟𝑟𝑛𝑛𝑑𝑑𝑙𝑙 (𝑋𝑋) = argmin

𝑡𝑡

∑ 𝜌𝜌𝑛𝑛
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 (𝑌𝑌𝑗𝑗 , 𝑡𝑡)𝐾𝐾 �

𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖𝑑𝑑�𝑋𝑋𝑗𝑗,𝑋𝑋�
ℎ �

∑ 𝐾𝐾𝑛𝑛
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 �

𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖𝑑𝑑(𝑋𝑋𝑗𝑗,𝜒𝜒)
ℎ �

. 

The theoretical results of these methods for selecting the smoothing parameter are obtained 
by H�̈�𝑎rdle et al. [H�̈�𝑎rdle and Vieu (1992)] when the data are dependent and by Rachdi et 
al. [Rachdi and Vieu (2007)] when the data are functional. 
Using the prediction samples, we calculate the prediction values of the response variables 
noted as (𝑌𝑌𝑖𝑖)𝑖𝑖=151200 . Thus, the mean square error (MSE) of the predicted responses for each 
method is illustrated in Fig. 2, where we can notice that the prediction of the kNN estimator 
is more precise than that of the NW kernel estimator under 𝛼𝛼-mixing dependency. 
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Figure 2: The prediction of the kNN classical method, NW robust method, and kNN 
robust method 

The similar results are also showed when the sample sizes are n=300 and n=500. To further 
explore the performances of the two approaches, we carry out M=100 independent 
replications of the experiment for 𝑘𝑘NN estimator and NW kernel estimator when the 
sample sizes are 𝑛𝑛 = 200, 𝑛𝑛 = 300 and 𝑛𝑛 = 500 respectively. In each case, let the testing 
sample sizes be 50. Figs. 3 and 4 show the bean-plots of the MSE of the prediction values 
by the three methods for the different sample sizes with and without outliers. One can see 
that, for each method, the MSE of the prediction values decreases as the sample sizes 𝑛𝑛 
increase. Furthermore, let evaluate the average of MSE of kNN estimator and kernel 
estimator. The obtained results are given in Tab. 1. We observe in Tab. 1 that in the 
presence of typical values, the kNN robust regression gives better results than the kNN 
regression and robust regression. Indeed, the MSE values of both methods increase 
significantly compared to the number of disturbing points. However, the MSE remains very 
low for the kNN robust method. 
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Figure 3:  The bean-plots of the MSE of the prediction values by the three methods for the 
different sample sizes without outliers 

 
Figure 4: The bean-plots of the MSE of the prediction values with different sample sizes 
in the presence of outliers for the three methods estimation 

Table 1: The comparison of different methods when artificial outliers taint data 

Number of perturbations 0 value 5 values 15 values  
MSE kNN reg. 0.004335144 4.399523 14.09368  

MSE Robust reg. 0.01468679 0.0173451 0.1109583  
MSE kNN Robust reg. 0.004128343 0.00998825 0.05887536  
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2.2 Real data application 
This short section presents an example of using the kNN robust regression to predict the 
octane in gasoline spectrometric curves. To clarify that, let consider a sample of 60 
gasoline samples; the used data is available in the R-package PLS. For any wavelength 𝑡𝑡 
((𝑡𝑡1, … , 𝑡𝑡401) obtained by a light beam for the near-infrared range 900 − 1700nm ), and 
for each gasoline sample 𝑖𝑖, denote by  𝑋𝑋𝑖𝑖(𝑡𝑡) the measured absorption of radiation. Fig. 5 
displays the 60 spectrometric curves obtained by the discretized data curves 
𝑋𝑋𝑖𝑖(𝑡𝑡1), … ,𝑋𝑋𝑖𝑖(𝑡𝑡401). 

 
Figure 5: 60 spectra curves at 401 equally spaced wavelengths 

We suppose that for each gasoline sample, the quantity of octane is known. Our goal is to 
predict the octane number given a new spectrometric curve. For that, we suppose that we 
have 𝑛𝑛  pairs (𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖)𝑖𝑖=1,…,𝑛𝑛  where 𝑋𝑋𝑖𝑖  (resp. 𝑌𝑌𝑖𝑖 ) is the 𝑖𝑖 -th spectrometric curve (resp. 
response). Thus, we can formulate this prediction problem by the following model 
𝑌𝑌𝑖𝑖 = 𝑟𝑟(𝑋𝑋𝑖𝑖) + 𝜖𝜖𝑖𝑖 for 𝑖𝑖 = 1, … ,𝑛𝑛. 
Then, we split our observations (𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖)𝑖𝑖=1,…,60  into two samples, the training sample 
contains (𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖)𝑖𝑖=1,…,30 for modeling, and the rest of the sample �𝑋𝑋𝑗𝑗,𝑌𝑌𝑗𝑗�𝑗𝑗=31,…,60

 is the 
testing sample used to determine the quality of the prediction. To calculate the estimator 
for both methods, we take the quadratic kernel function 𝐾𝐾(𝑠𝑠) = 3

4
�12
11
− 𝑠𝑠2� 𝟙𝟙[0,1](𝑠𝑠), and 

the semi-metric 𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖𝑑𝑑(. , . ). Similar to the CV-procedures in the simulation study we select 
the parameters 𝑘𝑘𝑐𝑐𝑝𝑝𝑡𝑡  (for the kNN) and ℎ𝑐𝑐𝑝𝑝𝑡𝑡  (for the kernel). Finally, we predict the 
�𝑌𝑌𝑗𝑗�𝑗𝑗=31,…,60

 for the above two methods and calculate the MSE of the predicted values; the 
results are given in Figs. 6 and 7. Note that we can see in these figures that the calculated 
MSE with the robust kNN method is smaller than the one obtained with the robust kernel, 
and the predicted plot by kNN method estimation is very close to the real case than that 
given by the kernel method estimation. Hence, we can deduce that the robust kNN method 
gives better results than the kernel method because the first one takes into account the 
proximity of the curves. 
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Figure 6: Prediction for both methods 

 

Figure 7: The bean-plots of the MSE for both methods 

3 Conclusion 
The uniform kNN consistency method is an alternative smoothing approach that permits to 
obtain an adaptive estimator for many statistical problems, such as the bandwidth selection. 
However, unlike to the multivariate case, the uniform consistency is not a simple extension 
of the pointwise method because this latter requires some additional tools and techniques. 
Notice that the difficulty of this issue lies in the fact that the bandwidth parameter in 
the kNN method is a random variable. 
The main novelty of this contribution is to estimate the regression function by combining 
two important statistical tools: the robust method and the kNN procedures. This 
combination permits to build a new estimator which inherits the advantages for both 
approaches. Moreover, in the application part, we have shown that kNN robust estimator 
is easy to implement and more robust and performant than it's classical one such as the kNN 
regression estimator or the robust regression estimator. More precisely, we have carried 
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out two numerical studies. The first one examines the behavior of the kNN robust 
regression estimator in the presence of outliers in data. While the other deals with real data 
application and illustrates the importance of this combined method estimation to the 
prediction problem.  
As a smoothing method, the preference of the local linear approach is closely linked to the 
bandwidths parameters choice; linked, here, by the number of neighbor k. The adaptation 
of all these ideas to the local linear estimate of the robust regression is an important 
prospect to investigate in the future. 
Another open question, we can consider the more general case when the scale parameter is 
unknown, and data come from a functional time series (dependency, ergodicity). Precisely, 
we can obtain the uniform almost complete convergence of the same constructed estimator 
under standard conditions allowing us to explore different structural axes of the topic. We 
emphasize that, contrary to the usual case when the scale parameter is fixed, it must be 
estimated, which makes it more difficult to establish the uniform almost complete 
convergence of the estimator. 
In conclusion, we can say that the constructed estimator's behavior is not affected by the 
number of outliers in the data set. The combination of the kNN algorithm and the robust 
method permits the reduction of the effect of outliers in data compared to the classical 
kernel approach. 
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