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Abstract: With the rapid development of computer technology, millions of images are 
produced everyday by different sources. How to efficiently process these images and 
accurately discern the scene in them becomes an important but tough task. In this paper, 
we propose a novel supervised learning framework based on proposed adaptive binary 
coding for scene classification. Specifically, we first extract some high-level features of 
images under consideration based on available models trained on public datasets. Then, 
we further design a binary encoding method called one-hot encoding to make the feature 
representation more efficient. Benefiting from the proposed adaptive binary coding, our 
method is free of time to train or fine-tune the deep network and can effectively handle 
different applications. Experimental results on three public datasets, i.e., UIUC sports 
event dataset, MIT Indoor dataset, and UC Merced dataset in terms of three different 
classifiers, demonstrate that our method is superior to the state-of-the-art methods with 
large margins.  
 

Keywords: Scene classification, convolutional neural network, one-hot encoding, 
supervised feature training. 

1 Introduction 
Scene classification is an important and challenging research topic in the field of 
computer vision. This technology, involving various cross-cutting areas such as pattern 
recognition, computer vision systems, signal processing, human-computer interaction, 
and privacy preserving [Luo, Qin, Xiang et al. (2020)], is essential for solving the 
problems of image retrieval [Xia, Lu, Qiu et al. (2019)] and image recognition [Sun and 
Ponce (2016); Zheng, Jiang and Xue (2012); Liu, Cong, Fan et al. (2017)]. For a given 
image, scene classification is to recognize the content and information this image 
contains to determine the scene to which it belongs [Yang and Newsam (2011); Lazebnik, 
Schmid and Ponce (2006); Zuo, Wang, Shuai et al. (2014)]. In recent years, with the 
emergence of new scene classification challenges, various scene classification techniques 
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have emerged. The existing scene classification techniques [Fan, Bo and Zhao (2015)] 
have gone through three stages in the process of development.  
Early scene classification algorithms are mainly based on raw features [Singh, Girish and 
Ralescu (2017)]. Raw features can not only describe the texture of the image, but also reflect 
the deep structure information of the image if used properly. Therefore, many studies have 
been working on the researches on various image features for many years. SIFT 
(Scale-Invariant Feature Transform) [Tareen and Saleem (2018)] was proposed to describe 
the local features of an image. This feature is usually utilized for outdoor scene 
classification. GIST feature [Li, Cheng and Yu (2015)] was proposed to roughly extract the 
context information of images. This feature stimulates the human’s vision and is easy to use. 
HOG (Histogram Oriented Gradients) [Cai, Zhu, Zeng et al. (2018)] was proposed to 
represent outline and edge information, which is suitable for globally stable scenes. The 
HOG-based models have the problems of feature point redundancy and low computational 
efficiency. Wu et al. [Wu and Rehg (2011)] proposed GENTRIST to solve these drawbacks. 
These raw features mentioned above are widely used for scene classification.  
Raw features have good performance in simple scene classification [Cheriyadat (2014); 
Gong, Wang, Guo et al. (2014)]. However, these features usually have little semantic 
information, making them not perform well under the complex scene classification tasks. 
Thus, the focus of researches shifted to the understanding of the high-level semantics of 
the scenes. Li et al. [Li, Su and Li (2010)] proposed OB (Object Bank) features based on 
high-level semantics, identifying the image’s label by multiple target detectors. Sadeghi 
et al. [Sadeghi and Tappen (2012)] proposed a simple and effective representation of 
images called LPR (Latent Pyramidal Regions), which has a good performance on all 
scene classification data sets. Junja et al. [Junja, Vdaldi, Jawahar et al. (2013)] proposed 
BOP (bag of parts) features, this method filters out the similar information contained in 
an image and retains the region with significant differences. It not only collects common 
targets in the scene but also captures the abstract features. 
With the development of technology, the computing performance of computers continues 
to grow. Scene classification also has reached a new stage. LeCun et al. [LeCun, Bengio 
and Hinton (2015)] proposed a new concept called deep learning, the appearance of 
which made the automatic extraction and integration of features in the scene possible. A 
variety of learning frameworks of deep learning have been proposed and utilized, such as 
Caffe [Jia, Shelhamer, Donahue et al. (2014)], Theano [Bergstra, Breuleux, Bastien et al. 
(2010)], TensorFlow [Abadi, Agarwal, Barham et al. (2016)]; Doersch and Efros (2013); 
Wang, Wang, Bai et al. (2013)] so on. Due to the complexity of scene classification, the 
normal machine learning methods do not perform well on large data sets like ImageNet 
[Deng, Dong, Socher et al. (2009)] and require prior knowledge to process the data. 
While CNN (Convolutional Neural Networks) [Razavian, Azizpour, Sullivan et al. 
(2014); Zeng, Dai, Li et al. (2019)] can automatically optimize features based on the 
target dataset, making it a proper method for scene classification. 
Although the existing methods have succeeded in the scene classification field, they still 
have certain disadvantages. Raw feature based algorithms require to manually design 
features, which is time-consuming and requires expertise [Zhang, Jin, Sun et al. (2020)]. 
Deep learning-based methods require retraining of the model, and the extracted deep 
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features are difficult to process. To solve these problems, we propose a simple solution 
by employing the binary encoding method to simplify the representation of the extracted 
deep features. 
The rest of our paper is organized as follows. In Section 2, we present our algorithm; In 
Section 3, we do several experiments to verify the performance of the proposed method; 
Finally, in Section 4, we draw a brief conclusion. 

2 Proposed algorithm 
In this section, we give the details about our proposed algorithm for scene classification. 
First, we outline the overall architecture of the proposed method, as shown in Fig. 1, it is 
consists of three stages: Feature extraction, Binary encoding and Classifier training; then 
we introduce the Resnet that we employ for feature extraction; Next, we explain the 
proposed one-hot encoding representation; Finally, we summarize the process of image 
classification using the proposed feature representation. 

Training 
images

ResNet
-50

Feature 
Maps

Binary Coding Vector

One-hot 
encoding Classifiers

Classifier 
training

Feature extraction Binary Encoding Classifier training
 

Figure 1: The framework of our proposed method, which consists of three stages: A) 
Feature extraction B) Binary encoding and C) Classifier training 

2.1 Overall architecture 
The first part of the algorithm is feature extraction as is shown in Fig. 2. In this step, the 
convolutional network ResNet is employed. Please note that any CNN-like architecture 
can be used here. In our implementation, Resnet-50 is used due to its excellent 
performance in image classification. For each training image in the database under 
consideration, we utilize the model trained on ImageNet to extract the deep features for 
further use. 
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Input: Image dataset 𝑰𝑰 corresponding to intensity images, ResNet-50 
model 𝑴𝑴 trained on ImageNet, layer index 𝐿𝐿 

Output: Deep Feature map 𝑭𝑭 
1) Initialize deep feature set 𝑭𝑭 = [] 
2) for 𝐼𝐼𝑖𝑖 ∈ 𝑰𝑰: 
3)   Input 𝐼𝐼𝑖𝑖 to 𝑴𝑴 
4)   Output the feature maps 𝐹𝐹𝑖𝑖 ∈ 𝑹𝑹𝑤𝑤×ℎ×𝑛𝑛 in layer 𝐿𝐿 
5)   Reshape 𝐹𝐹𝑖𝑖 ∈ 𝑹𝑹𝑤𝑤×ℎ×𝑛𝑛 to 𝐹𝐹𝑖𝑖 ∈ 𝑹𝑹1×𝑤𝑤ℎ×𝑛𝑛 
6)   Update 𝑭𝑭 = [𝑭𝑭;  𝐹𝐹𝑖𝑖] 
7) end for 

Figure 2: The pipeline of the feature extraction 

Input: Deep Feature map 𝑭𝑭, layer index 𝐿𝐿, number of clusters K 
Output: Binary Feature map 𝑩𝑩 

1) Initialize binary coding feature set 𝑩𝑩 = [] 
2) for 𝑛𝑛 = 1, …, 𝑁𝑁 (𝑁𝑁 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝐿𝐿): 

3)   Initialize binary coding feature set for channel 𝑛𝑛 as 𝐵𝐵𝑛𝑛 = [] 
4)   Cluster 𝐹𝐹:,:,𝑛𝑛 into K classes 

5)   for 𝐼𝐼𝑖𝑖 ∈ 𝑰𝑰: 
6) Encode 𝐹𝐹𝑖𝑖,:,𝑛𝑛 use one-hot binary coding vector 𝐵𝐵𝑛𝑛𝑛𝑛 based on the index of 

the nearest clustering center to 𝐹𝐹𝑖𝑖,:,𝑛𝑛 

7)     Update 𝐵𝐵𝑛𝑛 = [𝐵𝐵𝑛𝑛;𝐵𝐵𝑛𝑛𝑛𝑛] 
8)   end for 
9)   Update B = [B Bn] 
10)  end for  

Figure 3: The pipeline of binary encoding 

The second stage is binary encoding. The pseudo-code is shown in Fig. 3 below. In this 
part, we utilize one-hot binary encoding to turn the deep feature map into a binary feature 
map, making it possible to express the complex deep features with simple binary features 
which are suitable for classifier training. 
The final step is the training part. The feature map then will be fed into the classifier 
along with the semantic labels of images to train the classifier. After training, the 
classifiers show good performance in terms of classification accuracy, which will be 
discussed in detail in the next section. 
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2.2 ResNet 
ResNet is a convolutional neural network proposed by He et al. [He, Zhang, Ren et al. 
(2016)]. Deep convolutional networks naturally integrate the features of different levels, 
and deeper features can be extracted by deepening the hierarchy of the network. Thus, 
when building a convolutional network, the higher the number of layers is, the more 
features can be extracted via this network. However, when using deeper networks, 
gradient disappearance and explosion problems occur. This problem is largely solved by 
standard initialization and regularization layers, which ensure that networks with dozens 
of layers can converge, but with the increase in the number of layers, the gradient 
disappearance or the explosion problem still exists. Another problem is that network 
degradation. Suppose the designed structure of a network is deeper than the optimized 
structure of it, the redundant layers will cause network degradation. 
The idea of ResNet is to assume that we design a network structure and there is an 
optimal network layer. Usually, the deep network we design has many redundant layers. 
Then we hope that these redundant layers can complete the identity mapping, ensuring 
that the input and output through the identity layer are identical. Which of the specific 
layers are the identity layers will be judged via the network training, ResNet changed the 
layers of the original network into a residual block. The concrete structure of the residual 
block is shown in Fig. 4. 

 
Figure 4: The residual block of ResNet [He, Zhang, Ren et al. (2016)] 

ResNet avoids learning the parameters of the layer’s identity map, using the structure 
shown above, let ℎ(𝑥𝑥) = 𝐹𝐹(𝑥𝑥) + 𝑥𝑥; where 𝐹𝐹(𝑥𝑥) is called the residual term, we only 
need to learn 𝐹𝐹(𝑥𝑥) = 0 to make this redundant layer map identically. Learning 𝐹𝐹(𝑥𝑥) =
0 is easier than learning ℎ(𝑥𝑥) = 𝑥𝑥, because the parameter initialization in each layer of 
the network is generally biased towards 0. 
ResNets have different types with different structures. In this paper, we employ the 50-layered 
ResNet-50, which is trained on the ImageNet Database, to extract the deep features of the 
images for classifier training. When extracting features, assuming the output of the model in 
layer L is a 𝑤𝑤 × ℎ × 𝑛𝑛 sized feature vector, we reshape its size to 1 × 𝑤𝑤ℎ × 𝑛𝑛, in order to 
put this vector into a feature map along with feature vectors extracted from other training 
images in the database. After this step, we will get a 𝑔𝑔 ×𝑤𝑤ℎ × 𝑛𝑛 sized feature map, where 
𝑔𝑔 represents the total amount of the training images. 
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2.3 One-hot encoding 
In many machine learning tasks, features are not always continuous values, they may be 
categorical values. Thus, in the data preprocessing stage, non-numeric types are often 
quantized into numeric types to facilitate the input of the model. One-hot encoding is one 
of the methods to process the coding of the discrete data. 
For each feature, if it has 𝑚𝑚 possible values, after one-hot encoding the possible values 
will become 𝑚𝑚 binary features. Moreover, these features are mutually exclusive, with 
only one activated at a time. Therefore, the data becomes sparse. For example, there are 3 
features to describe a person, which are gender, nationality, and stature. Each feature has 
different values as is shown in Fig. 5 below. 

Object: Person 
Attribute: Gender, Nationality and Stature 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = {𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓} 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = {𝐶𝐶ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾} 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑓𝑓𝑓𝑓𝑓𝑓} 

Figure 5: The illustration of a person’s attributes 

If we want to describe a slim American woman, the binary feature after one-hot encoding 
is 010010100. More specifically, the feature can be divided into 3 parts: The first part is 
01, taking up 2 bits which means 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓. The second part is 0010, taking up 4 bits, 
which means 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴; The last part is 100 meaning 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, taking up the bits left.   
The one-hot encoding solves the problem that the classifier is not good at processing 
attribute data, Besides, it also helps expand features to a certain extent. 
In our framework, for each channel of the feature map, we firstly use K-means to cluster 
the entire feature map into 𝐾𝐾 classes. Then we encode the feature vectors of each image 
obtained in the feature extraction part into binary vectors based on the nearest clustering 
center. With the one-hot encoding method, we can turn the deep features extracted from 
the convolutional network into binary features to make the training process more 
effective and more efficient.  

2.4 Image classification 
The core of image classification is the task of assigning a label to an image from a given set 
of categories. In fact, this means that our task is to analyze an input image and return a label 
that categorizes the image, and those tags always come from a predefined set of possible 
categories. According to the different training conditions, the training method can be 
divided into supervised learning, unsupervised learning, and semi-supervised learning. 
The neural network model and the encoding method mentioned above is a data 
pre-processing stage. To classify the image, we need to apply the pre-processed features 
to train the classifier.  
To summarize, in this paper, we utilize a supervised learning method to train the 
classifiers. Given the database, feature vectors are extracted with the help of ResNet-50. 
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And we encode the vectors with the binary coding method to construct the feature maps. 
Due to the characteristics of the one-hot encoding, the binary coding method is adaptive. 
Therefore, we employ 3 different classifiers, which are: random forest, ensembles for 
boosting, and SVM. After training, we do the same procedure of feature extraction to the 
images to be classified and put them into the classifier. In other words, given the feature 
maps along with the semantic labels of the database, we use the 3 classifiers mentioned 
above to produce the classification results, which will be shown in the following section. 

3 Experimental results 
As we introduced in the previous part of this paper, the ResNet-50 is employed to extract 
the original deep features from the images. When doing the experiments, the ResNet-50 
model we use is a pre-trained network downloaded from the internet. This model was 
trained on ImageNet. For each training image, we extract 2 feature vectors of different 
sizes. The first feature vector extracted is the output of the layer named ‘res5c’, which is 
a convolution layer of ResNet-50. The size of this feature vector is 7 × 7 × 2048. The 
second feature vector extracted is the output of the layer named ‘pool5’, which is a 
pooling layer of ResNet-50. The size of this feature vector is 1 × 1 × 2048. We use 3 
image datasets in total and train 3 different classifiers for every dataset. 

Table 1: Results on the UIUC dataset under different K 
 

Value of K 
Name of the classifier 

Random Forest Ensembles for Boosting SVM 
K=5 95.87 ± 0.70 95.23 ± 0.45 94.21 ± 0.55 

K=10 94.95 ± 0.60 95.46 ± 0.49 93.29 ± 0.56 
K=15 94.75 ± 0.49 94.63 ± 0.67 94.20 ± 0.59 
K=20 93.93 ± 0.05 94.58 ± 0.50 93.10 ± 0.10 

3.1 UIUC sports event dataset 
UIUC sports event dataset contains 8 categories of sports: rowing (250 images), 
badminton (200 images), polo (182 images), bocce (137 images), snowboarding (190 
images), croquet (236 images), sailing (190 images), and rock climbing (194 images). 
First, we do some experiments to test the parameter K (K is the number of clusters we use 
at the encoding phase) to see if K has an influence on the performance of the proposed 
method. We choose different values of K (K=5, K=10, K=15, and K=20) to train the 
classifier with the UIUC dataset. For every K we do three times of tests. For every test, 
we choose 560 images in random from the dataset as the training set and 1014 images as 
the test set. The results are shown in Tab. 1. 
We could see from Tab. 1 that with the increase of the parameter K, the accuracy of the 
proposed method only has minor changes in value. That means that K has little effect on 
the performance of the algorithm. However, with the increase of K, the size of the binary 
feature map extracted from the dataset grows in multiples, which makes the computing 
resources occupied by the algorithm also multiply. Besides, the algorithm already has a 
competitive performance when K=5 compared with another similar algorithm, which is 
shown in Tab. 2. The bold value in the table indicates the best results in the same column. 
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From Tab. 2, we could see that our method outperforms all the compared methods. 
Therefore, the experiments on the other 2 datasets are all tested under conditions of K=5. 

Table 2: Comparison with other scene classification algorithms on the UIUC dataset 
State-of-the-art Algorithms Our method using different classifiers 
Methods Accuracy Methods Accuracy 
Hybrid-parts  
[Zheng, Jiang, and Xue (2012)] 

84.5 Ours with Random Forest 𝟗𝟗𝟗𝟗.𝟖𝟖𝟖𝟖± 𝟎𝟎.𝟕𝟕𝟕𝟕 

Hybrid-parts+GIST+SPM  
[Zheng, Jiang, and Xue (2012)] 

86.3 Ours with Ensembles for Boosting 95.23 ± 0.45 

MIDL 
[Wang, Wang, Bai et al. (2013)] 

88.5 ± 2.3 Ours with SVM 94.21 ± 0.55 

DeCAF 
[Donahue, Jia, Vinyals et al. (2014)] 

𝟗𝟗𝟗𝟗.𝟗𝟗   

DSFL 
[Zuo, Wang, Shuai et al. (2014)] 

86.5   

Discriminative Part Detect 
[Sun and Ponce (2016)] 

86.8 ± 1.0   

3.2 MIT indoor dataset  
This database contains 67 indoor categories with a total of 15620 images. The number of 
images varies across categories, but there are at least 100 images per category. When 
testing this database, we use 5460 images as the training set and 1340 images as the test 
set. The comparison with our algorithm in terms of accuracy is shown in Tab. 3 and the 
confusion matrices of 3 classifiers are also shown below as Fig. 6. In Fig. 6(a) represents 
the classification performance with Random Forest; (b) represents the classification 
performance with Ensembles for Boosting; (c) represents the classification performance 
with SVM. The vertical color bar indicates the proportions of samples over the actual 
class total. There are in total of 67 labels representing 67 indoor scenes in each matrix. 
The method with SVM produces the best classification performance.   
From Tab. 3, we can see the proposed method also outperforms most of the state-of-the-art 
classification algorithms on the indoor scene recognition tasks. However, compared to 
DeepFeats_Mp [Gong, Wang, Guo et al. (2014)], which is the best among the compared 
algorithms, our best results are slightly lower. In the next experiment we test whether the 
algorithm is adaptive for remote sensing images with the help of another dataset. 

Table 3: Comparison with other scene classification algorithms on the MIT Indoor dataset 
State-of-the-art Algorithms Our method using different classifiers 
Methods Accuracy Methods Accuracy 
Hybrid-parts 
[Zheng, Jiang and Xue (2012)] 

39.8 Ours with Random Forest 57.69±1.04 

Mode Seeking 
[Doersch and Efros (2013)] 

64.0 Ours with Ensembles for Boosting 57.61±1.38 

MIDL 
[Wang, Wang, Bai et al. (2013)] 

50.2 Ours with SVM 66.39±𝟎𝟎.𝟑𝟑𝟑𝟑 
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DeCAF 
[Donahue, Jia, Vinyals et al. (2014)] 

58.5   

DeepFeats_MP 
[Gong, Wang, Guo et al. (2014)] 

𝟔𝟔𝟔𝟔.𝟗𝟗   

 
Figure 6: The confusion matrices of 3 classifiers on MIT indoor dataset 

3.3 UC Merced land use dataset 
The UC Merced dataset contains 21 categories of remote sensing satellite images 
manually extracted from large images of the USGS National Map Urban Area Imagery 
collection for various urban areas around the country. There are 100 images for each class. 
When testing this dataset, we randomly choose 1680 images as the training set and 420 
images as the test set. The experiment is repeated for 3 times. And the comparison with 
our algorithm is shown in Tab. 4 together with the confusion matrices of 3 classifiers in 
Fig. 7. In Fig. 7(a) represents the classification performance with Random Forest; (b) 
represents the classification performance with Ensembles for Boosting; (c) represents the 
classification performance with SVM. The vertical color bar indicates the proportions of 
samples over the actual class total. There are in total of 21 labels representing 21 land 
scenes in each matrix. 
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Figure 7: The confusion matrices of 3 classifiers on UC Merced dataset 

In general, the experimental results prove that our method makes the training of the 
classifiers more effectively and is adaptive for various data sets. That is to say, our 
method can be applied to any convolutional networks. In addition, for a specific data set, 
employing our method with the help of suitable classifiers has a positive influence on the 
performance of classification in terms of accuracy. 

Table 4: Comparison with other scene classification algorithms on the UC Merced dataset 
State-of-the-art Algorithms Our method using different classifiers 
Methods Accuracy Methods Accuracy 
SPMK 
[Lazebnik, Schmid and Ponce (2006)] 

74.0 Ours with Random Forest 90.95 ± 1.08 

SPCK++ 
[Yang and Newsam (2011)] 

76.05 Ours with Ensembles for Boosting 𝟗𝟗𝟗𝟗.𝟑𝟑𝟑𝟑 ± 𝟏𝟏.𝟎𝟎𝟎𝟎 

SIFT+SC 
[Cheriyadat (2014)] 

81.67 Ours with SVM 88.33 ± 1.73 

Saliency-guided 
[Fan, Bo and Zhao (2015)]   

𝟖𝟖𝟖𝟖.𝟕𝟕𝟕𝟕 ± 𝟏𝟏.𝟏𝟏𝟏𝟏   

4 Conclusion 
Compared to the traditional image classification methods based on convolutional 
networks, the proposed method takes an additional step of encoding the features before 
training the classifiers, making the training process more effective and more efficient. 
Unlike the previous studies focusing mostly on optimizing the structure of the neural 
networks, we propose a relatively uncomplicated way to improve the performance of the 
trained classifiers in this paper. After the feature extraction of training images with the 
help of ResNet-50, we encode these deep features into binary features first instead of 
directly using them for classifier training. By employing one-hot encoding, the original 
features, which are difficult to be understood by the classifiers because they are usually 
deep and complex, are turned into binary features, which are more suitable for classifier 
training. The experiments show the following: 
1) By utilizing the framework proposed in this paper, even a basic classifier can be 

trained with the deep features extracted from the convolutional networks and obtain a 
relatively good performance. 



 

 

Adaptive Binary Coding Based on Convolutional Networks                    2075 

2) The proposed algorithm can be utilized for training on different types of image 
datasets. Besides, the method is adaptive for various classifiers. 
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