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Abstract: Quantum correlation shows a fascinating nature of quantum mechanics and 
plays an important role in some physics topics, especially in the field of quantum 
information. Quantum correlations of the composite system can be quantified by 
resorting to geometric or entropy methods, and all these quantification methods exhibit 
the peculiar freezing phenomenon. The challenge is to find the characteristics of the 
quantum states that generate the freezing phenomenon, rather than only study the 
conditions which generate this phenomenon under a certain quantum system. In essence, 
this is a classification problem. Machine learning has become an effective method for 
researchers to study classification and feature generation. In this work, we prove that the 
machine learning can solve the problem of X form quantum states, which is a problem of 
physical significance. Subsequently, we apply the density-based spatial clustering of 
applications with noise (DBSCAN) algorithm and the decision tree to divide quantum 
states into two different groups. Our goal is to classify the quantum correlations of 
quantum states into two classes: one is the quantum correlation with freezing 
phenomenon for both Rènyi discord (𝛼𝛼 = 2) and the geometric discord (Bures distance), 
the other is the quantum correlation of non-freezing phenomenon. The results 
demonstrate that the machine learning method has reasonable performance in quantum 
correlation research. 
 
Keywords: Machine learning, quantum correlation, freezing phenomenon, Rènyi discord, 
geometric discord. 

1 Introduction 
As the basic theories of quantum mechanics, the superposition principle and the tensorial 
structure of the Hilbert space have been widely applied to describe the composite 
quantum systems and the concept of entanglement [Einstein, Podolsky and Rosen (1935)], 

 
1 School of Information and Software Engineering, University of Electronic Science and Technology of China, 

Chengdu, 610054, China. 
2 School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China. 
3 Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, 84322, USA. 
* Corresponding Author: Qinsheng Zhu. Email: zhuqinsheng@gmail.com. 
Received: 02 April 2020; Accepted: 28 June 2020. 



 
 

 
2144                                          CMC, vol.65, no.3, pp.2143-2151, 2020 

which are kinds of special superposition states involved that have triggered the great 
interest, especially in the field of quantum information [Nielsen and Chuang (2007)]. In 
the earlier studies, entanglement has always been considered equivalent to the quantum 
correlation. Until a few decades ago, the concept of “quantum discord”, which was 
introduced by Ollivier et al. [Ollivier and Zurek (2001); Henderson and Vedral (2001)] 
shows a universal consensus “entanglement entirely captures quantum correlation only 
for a global pure state” [Cianciaruso, Bromley, Roga et al. (2015)]. In other words, 
entanglement does not account for all nonclassical correlations, for example, the states 
with zero entanglements still contain quantum correlations [Modi, Brodutch, Cable et al. 
(2012)]. Therefore, in the past few years, many works have been presented on the subject 
matter [Franco, Bellomo, Maniscalco et al. (2013); Xu, Xu, Li et al. (2010); Breuer, 
Laine, Piilo et al. (2016); Aolita and De Melo (2015); Zhu, Ding, Wu et al. (2016)]. 
As a unique behavior, the freezing phenomenon of quantum correlation originates from 
the discovery of Maziero et al. [Maziero, Celeri, Serra et al. (2009)]. They found about 
the frozen behavior of the classical correlations for phase-flip, bit-flip, and bit-phase flip 
channels. Later, Mazzola et al. [Mazzola, Piilo and Maniscalco (2009)] demonstrated a 
similar behavior of quantum correlations under the non-dissipative independent 
Markovian reservoirs for special choices of the initial state. In the same year, Lang et al. 
[Lang and Caves (2010)] provided a complete geometric pictorial interpretation for 
Bell-diagonal states condition. After that, many researchers have devoted to studying the 
conditions of the frozen-discord for some Non-Markovian processes and initial states 
[Cianciaruso, Bromley, Roga et al. (2015); Zhu, Ding, Wu et al. (2016); Ding, Zhu, Wu 
et al. (2017); Li, Zhu, Zhu et al. (2019)], such as Bell-diagonal states, X states and SCI 
states. In general, the freezing discord shows a robust feature of a family with two-qubit 
models affected by non-dissipative decoherence. 
Although the freezing phenomenon is shown from several quantification methods 
[Cianciaruso, Bromley, Roga et al. (2015); Zhu, Ding, Wu et al. (2016); Ding, Zhu, Wu 
et al. (2017); Li, Zhu, Zhu et al. (2019)], the different methods have led to different 
conditions. What conditions lead to freezing phenomenon is an open question, which is 
still the current research hotspot. 
In this work, we calculate the value of two different discords for the X form initial states, 
then use the DBSCAN algorithm and the decision tree method to classify quantum states 
into two groups. One is the quantum correlation with freezing phenomenon for both 
Rènyi discord (𝛼𝛼 = 2) and the geometric discord (Bures distance), the other is without. 

2 The geometric and Rènyi discord 
Cianciaruso et al. [Cianciaruso, Bromley, Roga et al. (2015)] have discussed the 
geometric measure of quantum correlation based on the Bures distance (𝐷𝐷𝐵𝐵𝐵𝐵), which is 
defined as Eq. (1),  

𝐷𝐷𝐵𝐵𝐵𝐵 ≡ 𝑖𝑖𝑖𝑖𝑖𝑖
𝜒𝜒′

𝑑𝑑𝐵𝐵𝐵𝐵2 (𝜌𝜌,𝜒𝜒′) = 𝑖𝑖𝑖𝑖𝑖𝑖
𝜒𝜒′

2�1− 𝑇𝑇𝑇𝑇 ���𝜒𝜒′𝜌𝜌�𝜒𝜒′�
1/2
��                      (1)  

where the set of classical-quantum states is 𝜒𝜒′ = ∑ 𝑝𝑝𝑖𝑖|𝑖𝑖 >< 𝑖𝑖|𝐴𝐴𝑖𝑖 ⊗ 𝜔𝜔𝑖𝑖
𝐵𝐵 , 𝑝𝑝𝑖𝑖  is a 

probability distribution, {|𝑖𝑖 >𝐴𝐴} denotes an orthogonal basis for subsystem A, 𝜔𝜔𝑖𝑖
𝐵𝐵 is an 
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arbitrary ensemble of states for subsystem B, and 𝑑𝑑𝐵𝐵𝐵𝐵(𝜌𝜌,𝜒𝜒′) is the Bures distance. Since 
it is difficult to obtain a mathematically analytic form for general models, some 
numerical calculation methods have been proposed in the paper [Girolami, Souza, 
Giovannetti et al. (2014)], which are also adopted in this work based on the relation 
between quantum Fisher information and the Bures distance. Therefore, the Bures 
distance can be rewritten as Eq. (2),  

𝒫𝒫𝒜𝒜(𝜌𝜌𝐴𝐴𝐵𝐵|𝛤𝛤) = 1
4
𝑚𝑚𝑖𝑖𝑖𝑖𝐻𝐻𝐴𝐴𝛤𝛤𝐹𝐹(𝜌𝜌𝐴𝐴𝐵𝐵;𝐻𝐻𝐴𝐴𝛤𝛤)                                        (2) 

where 𝐹𝐹 denotes the quantum Fisher information, 

𝐹𝐹(𝜌𝜌𝐴𝐴𝐵𝐵;𝐻𝐻𝐴𝐴𝛤𝛤) = 4∑ (𝑞𝑞𝑖𝑖+𝑞𝑞𝑘𝑘)2

𝑞𝑞𝑖𝑖+𝑞𝑞𝑘𝑘
��𝜓𝜓𝑖𝑖�(𝐻𝐻𝐴𝐴𝛤𝛤 ⊗ 𝐼𝐼𝐵𝐵)�𝜓𝜓𝑘𝑘��

2
𝑖𝑖<𝑘𝑘:𝑞𝑞𝑖𝑖+𝑞𝑞𝑘𝑘≠0                     (3) 

which 𝑞𝑞𝑖𝑖 and |𝜓𝜓𝑖𝑖⟩} denote the eigenvalues and eigenvectors of 𝜌𝜌𝐴𝐴𝐵𝐵, respectively. The 
minimum is taken over the set of all local Hamiltonians 𝐻𝐻𝐴𝐴𝛤𝛤. 
The Rènyi quantum discord of 𝜌𝜌𝐴𝐴𝐵𝐵 is an extension of quantum discord, which is defined 
for 𝛼𝛼 ∈ (0,1) ∪ (1,2] as Eq. (4) [Mario, Kaushik and Mark (2015); Seshadreesan, Berta, 
and Wilde (2015)],  
𝐷𝐷𝛼𝛼(𝜌𝜌𝐴𝐴𝐵𝐵) = 𝑖𝑖𝑖𝑖𝑖𝑖𝛱𝛱𝑘𝑘𝐴𝐴𝐼𝐼𝛼𝛼(𝐸𝐸;𝐵𝐵 ∣ 𝑋𝑋 )𝜏𝜏𝑋𝑋𝑋𝑋𝑋𝑋                                         (4) 

where the Rènyi conditional mutual information 𝐼𝐼𝛼𝛼(𝐸𝐸;𝐵𝐵 ∣ 𝑋𝑋 )𝜏𝜏𝑋𝑋𝑋𝑋𝑋𝑋  satisfies Eq. (5): 

𝐼𝐼𝛼𝛼(𝐸𝐸;𝐵𝐵 ∣ 𝑋𝑋 )𝜏𝜏𝑋𝑋𝑋𝑋𝑋𝑋 = 𝛼𝛼
𝛼𝛼−1

𝑙𝑙𝑙𝑙𝑙𝑙 𝑇𝑇 𝑇𝑇 �𝜌𝜌𝑋𝑋
𝛼𝛼−1
2 𝑇𝑇𝑇𝑇𝐸𝐸(𝜌𝜌𝐸𝐸𝑋𝑋

1−𝛼𝛼
2 𝜌𝜌𝐸𝐸𝐵𝐵𝑋𝑋𝛼𝛼 𝜌𝜌𝐸𝐸𝑋𝑋

1−𝛼𝛼
2 )𝜌𝜌𝑋𝑋

𝛼𝛼−1
2 �

1
𝛼𝛼
                (5) 

where the classical output 𝑋𝑋 denotes the measurement acting on system 𝐴𝐴, 𝐸𝐸 is an 
environment for the measurement map. In this paper, we choose the von Neumann 
measurement {𝛱𝛱𝑖𝑖′ = |𝑖𝑖′⟩⟨𝑖𝑖′|(𝑖𝑖 = 0,1)}with two angular parameters 𝜃𝜃  and 𝜙𝜙:  |0′⟩ =
𝑐𝑐𝑙𝑙𝑐𝑐 (𝜃𝜃/2)|0⟩ + 𝑒𝑒𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖 (𝜃𝜃/2)|1⟩ and |1′⟩ =  𝑐𝑐𝑖𝑖𝑖𝑖 (𝜃𝜃/2)|0⟩ − 𝑒𝑒𝑖𝑖𝑖𝑖𝑐𝑐𝑙𝑙𝑐𝑐 (𝜃𝜃/2)|1⟩(0 ≤ 𝜃𝜃 ≤
𝜋𝜋/2; 0 ≤ 𝜙𝜙 ≤ 𝜋𝜋). The properties of the Rènyi quantum discord are shown in Tab. 2 of 
paper [Seshadreesan, Berta and Wilde (2015)]. 

3 Classification of the quantum states with freezing phenomenon 
From the computer science perspective, the above freezing phenomenon, which is caused 
by features that allow these states to generate freezing phenomenon using different 
quantification methods, can be transformed into an equivalent classification problem, i.e., 
“the classification of quantum states”. As part of both artificial intelligence and statistics, 
machine learning originated from the field of computer science in which the goal is to learn 
potential patterns from data sets previously given, and make the decision or prediction for 
unknown future situations using learned patterns. Nejad et al. [Nejad and Shiri (2019)] 
proposed a new learning approach based on the salp swarm algorithm that was 
implemented and evaluated on learning algorithm Decision Tree, K-Nearest Neighbors and 
Naive Bayes. Hossain et al. [Hossain, Morooka, Okuno et al. (2019)] proposed two 
prediction methods along with their sub-classes and evaluated by a leave-one-out 
cross-validation procedure. Recently, this tool has been used to study some quantum 
problems such as, quantum state tomography [Torlai, Mazzola, Carrasquilla et al. (2018)], 
quantum many-body problem [Carleo and Troyer (2017)] and quantum correlation problem 
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[Li, Zhu, Zhu et al. (2019); Su, Sheng, Xie et al. (2019)]. Similarly, we apply two machine 
learning methods including DBSCAN and the decision tree in the classification of quantum 
states of freezing phenomenon on the two open quantum systems. 

3.1 System 1 
Here, we consider the anisotropic coupling two-qubits system, which is coupled by two 
correlated Fermi-spin environments. The Hamiltonian of the total system has the 
following form [Li, Zhu, Meng et al. (2019)] as Eq. (6), 
𝐻𝐻 = 𝐻𝐻𝑠𝑠 + ∑ �𝐻𝐻𝐸𝐸𝑖𝑖 + 𝐻𝐻𝑠𝑠𝐸𝐸𝑖𝑖�𝑖𝑖=1,2 + 𝑞𝑞𝑆𝑆1𝑧𝑧𝑆𝑆2𝑧𝑧                                     (6) 

𝐻𝐻𝑠𝑠 = 𝐽𝐽1�𝜎𝜎1𝑥𝑥𝜎𝜎2𝑥𝑥 + 𝜎𝜎1
𝑦𝑦𝜎𝜎2

𝑦𝑦� + 𝐽𝐽2𝜎𝜎1𝑧𝑧𝜎𝜎2𝑧𝑧 + ∑ 𝜔𝜔𝑖𝑖𝜎𝜎𝑖𝑖𝑧𝑧𝑖𝑖=1,2 ;𝐻𝐻𝐸𝐸𝑡𝑡 = 𝛼𝛼𝑖𝑖𝑆𝑆𝑖𝑖𝑧𝑧;𝐻𝐻𝑠𝑠𝐸𝐸𝑡𝑡 = 𝛾𝛾𝑖𝑖𝜎𝜎𝑖𝑖𝑧𝑧𝑆𝑆𝑖𝑖𝑧𝑧     (7) 
where 𝐽𝐽1 and 𝐽𝐽2 are the anisotropic coupling parameters between two spin particles; 𝜔𝜔𝑖𝑖 
and 𝛼𝛼𝑖𝑖 are the frequencies of spin particle and environmental spin particle, respectively; 

𝑞𝑞 describes an Ising-type correlation between the environments. 𝑆𝑆𝑖𝑖𝑧𝑧 = ∑ 𝜎𝜎𝑧𝑧
𝑘𝑘,𝑖𝑖

2
𝑁𝑁𝑖𝑖
𝑘𝑘=1  is the 

collective spin operator; 𝜎𝜎𝑧𝑧
𝑘𝑘,𝑖𝑖 is the Pauli matrix; the environment 𝐸𝐸𝑖𝑖 is consisted of 𝑁𝑁𝑖𝑖 

particle with spin 1 2⁄ . 
For the initial state 𝜌𝜌(0) = 𝜌𝜌𝑠𝑠(0) ⊗𝜌𝜌𝐸𝐸(0), the reduced density matrix 𝜌𝜌𝑠𝑠(𝑡𝑡) of the 
system can be calculated as Eq. (8). 

𝜌𝜌𝑑𝑑(𝑡𝑡) = 1
𝑍𝑍
∑ ∑ ∑ ∑ 𝜈𝜈(𝑁𝑁1,𝑗𝑗1)𝜈𝜈(𝑁𝑁2,𝑗𝑗2)

𝑒𝑒𝛽𝛽𝛽𝛽𝑚𝑚1𝑚𝑚2𝑒𝑒𝛽𝛽𝛼𝛼1𝑚𝑚1𝑒𝑒𝛽𝛽𝛼𝛼2𝑚𝑚2
𝑉𝑉†𝑗𝑗2

𝑚𝑚2=−𝑗𝑗2 𝑈𝑈†(𝑡𝑡)𝜌𝜌𝑠𝑠(0)𝑈𝑈(𝑡𝑡)𝑉𝑉𝑁𝑁2/2
𝑗𝑗2=0

𝑗𝑗1
𝑚𝑚1=−𝑗𝑗1

𝑁𝑁1/2
𝑗𝑗1=0  (8) 

3.2 System 2  
Considering the system with two independent spin particles’ (1 and 3) under each with 
spin 1 2⁄ , which forms a two-qubits system that each spin particle interacts with one 
Fermi-environment 1 and 3 under spin 1/2 for each particle. Simultaneously, these two 
Fermi-environments interact with the third Fermi-environment 2 with spin 1/2 for each 
particle, where time-independent interaction parameters have been denoted by 𝑞𝑞12 and 
𝑞𝑞23, respectively. The Hamiltonian of this open systems is given as Eq. (9) under (ℏ = 1) 
[Ding, Zhu, Wu et al. (2017)], 
𝐻𝐻 = ∑ (𝜔𝜔𝑎𝑎𝑐𝑐𝑎𝑎𝑧𝑧 + 𝑏𝑏𝑎𝑎𝑐𝑐𝑎𝑎 ⋅ 𝑆𝑆𝑎𝑎)𝑎𝑎=1,3 + ∑ 𝛼𝛼𝑑𝑑𝑆𝑆𝑑𝑑𝑧𝑧𝑑𝑑=1,2,3 + 𝑞𝑞12𝑆𝑆1𝑧𝑧𝑆𝑆2𝑧𝑧 + 𝑞𝑞23𝑆𝑆2𝑧𝑧𝑆𝑆3𝑧𝑧         (9) 
where 𝜔𝜔𝑎𝑎(𝑎𝑎 = 1,3) and 𝛼𝛼𝑑𝑑(𝑑𝑑 = 1,2,3) are the frequencies of the qubit (characterized 
by spin operators 𝑐𝑐𝑖𝑖 ) and the environments, respectively; 𝑞𝑞12  and 𝑞𝑞23  are the 
time-independent coupling parameters between the environment 1(2) and the 
environment 2(3); Each environment is consisted of the 𝑁𝑁𝑑𝑑 particles; The interaction 
intensity between the spin particle 1(3) and the environment 1(3) is 𝑏𝑏1(𝑏𝑏3); 𝑆𝑆𝑑𝑑𝑧𝑧 =

∑ 𝜎𝜎𝑘𝑘,𝑑𝑑
𝑧𝑧

2
𝑁𝑁𝑑𝑑
𝑘𝑘=1 , 𝑆𝑆𝑑𝑑𝑥𝑥 = ∑ 𝜎𝜎𝑘𝑘,𝑑𝑑

𝑥𝑥

2
𝑁𝑁𝑑𝑑
𝑘𝑘=1  and 𝑆𝑆𝑑𝑑

𝑦𝑦 = ∑
𝜎𝜎𝑘𝑘,𝑑𝑑
𝑦𝑦

2
𝑁𝑁𝑑𝑑
𝑘𝑘=1  are the collective spin operators of the 

environment; 𝜎𝜎𝑘𝑘,𝑑𝑑
𝑧𝑧 , 𝜎𝜎𝑘𝑘,𝑑𝑑

𝑦𝑦 ,  and 𝜎𝜎𝑘𝑘,𝑑𝑑
𝑥𝑥  are the Pauli matrices. 

When we integrate the degree of freedom in environment 2 under the initial state 𝜌𝜌0 =
𝜌𝜌𝑠𝑠(0) ⊗𝜌𝜌𝐸𝐸(0), the reduced density operator 𝜌𝜌𝑠𝑠(𝑡𝑡) of the system can be obtained as 
Eq. (10), 
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𝜌𝜌𝑠𝑠(𝑡𝑡)  =  �
1
𝑍𝑍𝑑𝑑

3

𝑑𝑑=1

𝑒𝑒−𝛽𝛽𝑑𝑑𝛼𝛼𝑑𝑑𝑚𝑚𝑑𝑑𝑇𝑇𝑇𝑇𝐸𝐸′ �𝑒𝑒
−𝑖𝑖 ∫ 𝐻𝐻′𝑑𝑑𝑡𝑡

0 𝑡𝑡′�𝐴𝐴†�𝜌𝜌𝑠𝑠(0)(𝐴𝐴) 

× |𝑗𝑗1,𝑚𝑚1 >< 𝑚𝑚1, 𝑗𝑗1||𝑗𝑗3,𝑚𝑚3 >< 𝑚𝑚3, 𝑗𝑗3|𝑒𝑒𝑖𝑖 ∫ 𝐻𝐻′𝑑𝑑𝑡𝑡
0 𝑡𝑡′�            (10) 

where |𝑗𝑗𝑑𝑑 ,𝑚𝑚𝑑𝑑⟩  denotes the orthogonal basis states of environments; 𝐴𝐴† = �𝜙𝜙 >

��1
2
�
1
�1
2
�
3

, �1
2
�
1
�−1
2
�
3

, �−1
2
�
1
�1
2
�
3

, �−1
2
�
1
�−1
2
�
3
�,�± 1

2
�
𝑎𝑎

(𝑎𝑎 = 1,3) denotes the spin of particle 

𝑎𝑎; 𝛽𝛽𝑑𝑑 = 1
𝑘𝑘𝑋𝑋𝑇𝑇𝑑𝑑

;𝑍𝑍𝑑𝑑 is the partition function. Finally, according to the algebraic dynamical 
method [Wang and Cen (1998); Zhu, Kuang and Tan (2005)], we obtain the analytical 
solution Eq. (3) in the paper [Ding, Zhu, Wu et al. (2017)]. 
Notice, when the initial density matrix 𝜌𝜌𝑠𝑠(0) has X form [Franco, Bellomo, Maniscalco 
et al. (2013); Xu, Xu, Li et al. (2010)], the Eq. (11) can be satisfied by 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 ≥ 0,𝑎𝑎 +
𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 = 1, �|𝛿𝛿|�2 ≤ 𝑎𝑎𝑑𝑑 and �|𝛽𝛽|�2 ≤ 𝑏𝑏𝑐𝑐. It is easy to check that the matrix form of 
𝜌𝜌𝑠𝑠(𝑡𝑡) is the X form for the above systems. 

𝜌𝜌𝑠𝑠(0) = �

𝑎𝑎 0 0 𝛿𝛿
0 𝑏𝑏 𝛽𝛽 0
0 𝛽𝛽∗ 𝑐𝑐 0
𝛿𝛿∗ 0 0 𝑑𝑑

�                                              (11) 

3.3 The DBSCAN algorithm  
This is a clustering algorithm based on the density [Ester, Kriegel, Sander et al. (1996)]. 
Assuming that there is a group of point clusters in the data space, we first set the 
maximum distance 𝜀𝜀 between the data points belonging to the same clusters, determine 
the reachable points within the radius 𝜀𝜀 of each point, and take the points surrounded by 
at least m points in the radius 𝜀𝜀 as the core points. If a point with sufficient points 
surrounded, then its 𝜀𝜀 neighborhood belongs to the same clusters, otherwise set the point 
as noise. The process continues until all the clusters are found. Here, we use the 
DBSCAN to select the states having the same Br and RED (α=2) values (i.e., for two 
state A and B, A’s Br equals to B’s Br and A’s RED equals to B’s RED) which can 
generate the freezing phenomenon. The freezing phenomenon means that the values of 
quantum correlation of the quantum states do not change at the certain time interval, that 
is, these quantum states have the same values of quantum correlation. The different 
quantification methods might show different behaviors of the quantum correlation. 
Firstly, we calculate the Br and RED values of the same states (total 197640). 
Considering the numerical computing errors, when the distance between two points is 
less than 0.0004, we calculate the state having the same RED and Br value and ensure 
that the number of samples in each cluster is more than 30. In Fig.1, it shows the result of 
the DBSCAN, and each point in this figure represents a cluster with more than 30 
samples at the same value of Br and RED. By applying the DBSCAN, we find that the 
64407 samples can generate freezing phenomena.  
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Figure 1: The result of DBSCAN algorithm 

3.4 The decision tree method  
Here, we use another widely used machine learning techniques for classification 
problems, i.e., decision tree. The classification and regression tree (CART) is one of the 
decision tree algorithms. It can construct a tree-structured model from data which is 
suitable for both classification and regression. In Fig. 2, given a sample and a 
well-trained decision tree, it starts from the root node and selects different branches 
according to its characteristics (x, y, z). This ends at leaf node with its outcome. In this 
case, the outcome is their classes (A, B, C) [Qu, Wu, Liu et al. (2019)]. 
The purpose of the decision tree is to determine whether the quantum state will be frozen. 
In this case, we employ the eigenvalues of the density matrix and other characteristics of 
a quantum state as the features, and feed them into the decision tree. Meanwhile, we also 
use the Gini index as the measure to select the variable at each step to best segment the 
project set in the decision tree. For a set of items with J classes, it is denoted as Eq. (12),  
𝐼𝐼𝐺𝐺(𝑝𝑝) = ∑ 𝑝𝑝𝑖𝑖 ∑ 𝑝𝑝𝑘𝑘𝑘𝑘≠𝑖𝑖

𝐽𝐽
𝑖𝑖 = 1 − ∑ 𝑝𝑝𝑖𝑖2

𝐽𝐽
𝑖𝑖 , 𝑖𝑖 ∈ (1 … 𝐽𝐽), 𝑖𝑖 ∈ (1 … 𝐽𝐽)                     (12) 

where 𝑝𝑝𝑖𝑖 denotes the fraction of items labeled with class 𝑖𝑖 in the set, that is, ∑ 𝑝𝑝𝑘𝑘𝑘𝑘≠𝑖𝑖 =
1 − 𝑝𝑝𝑖𝑖. The reason why we select the Gini index as the metrics rather than information 
entropy is that it takes less time for calculating. 
In this case, we have 197640 data samples which are different X form of the quantum 
state, of which 64407 can generate freezing phenomenon under Br and RED (α=2). We 
divide them into the training set (129999) and the testing sets (67639). By training the 
model, we can successfully divide the X form states into freezing state and non-freezing 
state by their eigenvalues of 𝜌𝜌. The accuracy of the test data is 0.98, the recall rate is 
0.98, and the final score is 0.99. 
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Figure 2: The decision tree workflow 

In conclusion, the eigenvalues of the density matrix 𝜌𝜌 can be used as a feature to 
classify the freezing states and non-freezing states. 

4 Conclusion 
In this paper, we study the freezing phenomenon of quantum correlation for X form 
quantum states. It is shown that we can use the machine learning method to classify the 
quantum states into two groups by the eigenvalues of 𝜌𝜌 successfully. One is the quantum 
correlation with freezing phenomenon for both Rènyi discord (𝛼𝛼 = 2) and the geometric 
discord (Bures distance), the other is without. Finally, our results demonstrate that the 
machine learning method is a useful tool to resolve the quantum correlation problems. 
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