
Computers, Materials & Continua CMC, vol.65, no.3, pp.2277-2294, 2020

CMC. doi:10.32604/cmc.2020.011609 www.techscience.com/journal/cmc

Heterogeneous Hyperedge Convolutional Network

Yong Wu1, Binjun Wang1, * and Wei Li2

Abstract: Graph convolutional networks (GCNs) have been developed as a general and
powerful tool to handle various tasks related to graph data. However, current methods
mainly consider homogeneous networks and ignore the rich semantics and multiple types
of objects that are common in heterogeneous information networks (HINs). In this paper,
we present a Heterogeneous Hyperedge Convolutional Network (HHCN), a novel graph
convolutional network architecture that operates on HINs. Specifically, we extract the
rich semantics by different metastructures and adopt hyperedge to model the interactions
among metastructure-based neighbors. Due to the powerful information extraction
capabilities of metastructure and hyperedge, HHCN has the flexibility to model the
complex relationships in HINs by setting different combinations of metastructures and
hyperedges. Moreover, a metastructure attention layer is also designed to allow each node
to select the metastructures based on their importance and provide potential
interpretability for graph analysis. As a result, HHCN can encode node features,
metastructure-based semantics and hyperedge information simultaneously by aggregating
features from metastructure-based neighbors in a hierarchical manner. We evaluate
HHCN by applying it to the semi-supervised node classification task. Experimental
results show that HHCN outperforms state-of-the-art graph embedding models and
recently proposed graph convolutional network models.

Keywords: Graph convolutional networks, heterogeneous information networks,
metastructure.

1 Introduction
Convolutional neural networks (CNNs) have been widely used in Euclidean data (e.g.,
images [Luo, Qin, Xiang et al. (2020); Peng, Long, Lin et al. (2019)], text [Liu, Yang, Lv
et al. (2019); Zeng, Dai, Wang et al. (2019)] and video [Zhang, Jin, Sun et al. (2018);
Xiang, Shen, Qin et al. (2019)]). As an extension, graph convolutional networks (GCNs)
have attracted much attention for the purpose of designing CNNs on graphs in recent

1 School of Information Technology and Cyber Security, People’s Public Security University of China,

Beijing, 100038, China.
2 School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.
∗ Corresponding Author: Binjun Wang. Email: wangbinjun@ppsuc.edu.cn.
Received: 21 May 2020; Accepted: 03 July 2020.

2278 CMC, vol.65, no.3, pp.2277-2294, 2020

years. Because graphs can be irregular, the goal of graph convolution is to model a target
node by a layer-wise feature propagation based on its neighbors. Due to the ability to
capture both graph structure and node features, GCNs have shown superiority in many
machine learning tasks, such as semi-supervised node classification [Chiang, Liu, Si et al
(2019)], graph classification [Ma, Wang, Aggarwal et al. (2019)] and link prediction
[Nathani, Chauhan, Sharma et al. (2019)].

Figure 1: An example of HIN. (a) Three types of nodes: Author, Paper and Subject. (b) A
HIN modeled by these three types of nodes. (c) The schema of the HIN. (d) Three
metastructures with different semantics. (e) The neighbors of node P1 based on the first
metastructure. (f) Two hyperedges composed of the metastructure-based neighbors of P1

Previous GCNs mostly focused on homogeneous information graphs. However, in real-
world systems, graphs often contain multiple types of objects and links, which are called
heterogeneous information networks (HINs). Compared with homogeneous graphs, the
relationships between objects in a HIN are much more complex and have richer
semantics. So, it is inappropriate to simply extend previous homogeneous GCNs to HINs.
Fig. 1 shows a concrete HIN example containing three types of nodes (Author, Paper and
Subject) where the same type nodes are not connected with each other directly (e.g., a
paper link to another one through an author or a subject). To capture rich semantics, a
network schema of the HIN should be built first. For example, in Fig. 1(c), the network
schema is defined over the entity types: Author, Paper and Subject. Then, we can extract
semantics by the connections between nodes. A widely used method, metapath [Sun, Han,
Yan et al. (2011)], is defined as a sequence of entity types and can obtain semantics
effectively. As a common situation, some special semantics are beyond the ability of
meta-path. For example, in Fig. 1(d), the semantic of the last illustration is that two
papers have the same author and belong to a common subject that cannot be described by
the sequence of entity types. Therefore, we propose to use metastructure [Huang, Zheng,
Cheng et al. (2016)] to obtain more flexible semantics. The first and second illustrations
in Fig. 1(d) are two metastructures that can also be obtained by metapaths P-A-P and P-S-
P, while the last illustration in Fig. 1(d) can be described by metastructure but not
metapath. It is worth noting that the metastructure is similar to metagraph [Zhang, Yin,
Zhu et al. (2018)] conceptually, which has extended metapath to model more complex

Heterogeneous Hyperedge Convolutional Network 2279

semantics. Metagraph can obtain richer structural contexts during the processes of
random walks performed on HINs, while metastructures focus more on specific
connections among different node types.
Given a metastructure, the metastructure-based neighbors can be obtained which are
defined as the set of nodes that connect to a target node via the metastructure. For
example, the neighbors of P1 based on the first metastructure in Fig. 1(d) are {P1, P2, P3,
P4, P5}. Nevertheless, there is more information between a pair of nodes beyond the
semantic contained in a metastructure. For example, considering the neighbors captured
above, {P1, P2, P3, P4} are connected by node A1, while {P1, P5} are connected by
node A2. Because there are multiple object types, this information is important when
modeling a HIN. Therefore, it is necessary to model the high-order relations between
metastructure-based neighbors. We propose to adopt hyperedge to preserve these high-
order relations. For example, the relation of {P1, P2, P3, P4} can be described by a
hyperedge that is defined as the neighbors of node A1, and the relation of {P1, P5} can
be described as the neighbors of node A2. It is noted that different hyperedges need to be
constructed in different application scenarios.
In a HIN, a target node is influenced by multiple metastructures. Since different
metastructures have diverse semantics, how to assign the importance weights of
metastructures influences the performance of graph analysis tasks directly. As a result, it
is also necessary to assign proper importance to different metastructures. Based on the
above considerations, we propose a Heterogeneous Hyperedge Convolutional Network
(HHCN) model. We take node features as input and adopt the following two strategies.
On the one hand, after the metastructure-based neighbors are captured, we further
consider the information of hyperedges that reflect their inner relations and adopt an
adaptive renormalization trick during the propagation of node features. On the other hand,
to learn the importance of different metastructures on the target node, we introduce the
attention mechanism into our model. By assigning proper weights to metastructures, the
attention mechanism cannot only improve the quality but also propose the interpretability
of our model.
The contributions of this paper can be summarized as follows.
 We propose a novel Heterogeneous Hyperedge Convolutional Network (HHCN)

model that uses metastructures to capture semantics and uses hyperedges to capture
the high-order relations of the metastructure-based neighbors.

 We introduce an adaptive renormalization trick in the process of hyperedge
convolution and adopt an attention mechanism to differentiate the importance of
different metastructures on target nodes.

 We conduct experiments on real-world datasets to demonstrate the effectiveness of
our proposed HHCN framework.

2 Related work
In this section, we will review the related studies in two aspects: heterogeneous graph
embedding and graph convolutional networks.

2280 CMC, vol.65, no.3, pp.2277-2294, 2020

2.1 Heterogeneous graph embedding
Some previous works focus only on learning node vectors of homogeneous information
graphs. For instance, DeepWalk [Perozzi, Al-Rfou and Skiena (2014)] and node2vec
[Grover and Leskovec (2016)] conduct random walks and parameterized random walks
on a graph respectively to sample linear sequences consisting of nodes, then Skip-gram
[Mikolov, Sutskever, Chen et al. (2013)] is used to learn node representations by treating
node sequences as word sentences. LINE [Tang, Qu, Wang et al. (2015)] designs
objective functions to learn the representations of nodes by modeling the first- and
second-order proximities.
To combine the characteristics of heterogeneous graph and graph embedding, two
algorithms have been proposed recently for embedding learning in a HIN. To model the
different type edges of a HIN, HNE [Chang, Liu, Si et al. (2015)] and PTE [Tang, Qu and
Mei (2015)] divide a HIN into multiple bipartite graphs and learn node embeddings by
capturing neighborhood relationships between nodes. Considering that the typed edges
may not fully align with each other in a HIN, Aspem [Shi, Gui, Zhu et al. (2018)]
proposes the concept of aspect and decomposes a HIN into multiple aspects, then the
embeddings are derived from these aspects. HEER [Zhang, Lu, Zhou et al. (2016)]
embeds HINs via edge representations and combines different aspects into a joint
learning process. In Sun et al. [Sun, Han, Yan et al. (2011)], metapath is proposed to
acquire semantics in a HIN, based on which many heterogeneous graph embedding
methods are also proposed. Metapath2vec [Dong, Chawla and Swami (2017)] captures
graph contexts by performing random walks based on metapaths, and a heterogeneous
Skip-gram model is used to learn node embeddings. Because one metapath can describe
only one type of relationship, metagraph2vec [Zhang, Yin, Zhu et al. (2018)] tries to
build metagraphs that contain multiple paths between nodes. Then, metagraph2vec can
capture richer structural contexts and semantics between distant nodes. Given a set of
relationships specified in forms of metapaths in a HIN, HIN2vec [Fu, Lee and Lei (2017)]
converts the learning of embeddings of nodes and metapaths to a relationship prediction
task, through which the rich semantics of relationships and the details of the network
structure can be captured.
There are also studies that use hyperedges to represent the relations among objects.
HEBE [Gui, Liu, Tao et al. (2016)] models the proximities among participating objects in
a hyperedge and can preserve more contextual information in embedding learning. To
preserve local as well as global hyperedge structural information, DHNE [Tu, Cui, Wang
et al. (2018)] proposes a new deep model to realize a non-linear tuple-wise similarity
function. However, they regard the hyperedges in a HIN as events that are
indecomposable and much semantics is ignored. HGNN [Feng, You, Zhang et al. (2019)]
uses hyperedge to deal with more complex connections than pairwise relationships and
generalizes the convolution operation to the hyperedge learning process with hyperedge
Laplacian. Nevertheless, it does not consider the rich semantics between different nodes
and is only used in homogeneous graphs.

Heterogeneous Hyperedge Convolutional Network 2281

2.2 Graph convolutional network
Since deep learning has achieved great success on Euclidean data, there is an increasing
interest in utilizing neural networks to process the data represented in graph domains. In
Scarselli et al. [Scarselli, Gori, Tsoi et al. (2008)], the concept of graph neural network
(GNN) was first proposed that extended neural networks to graphs. With different
mechanisms being applied to GNN, the methods are divided into spectral-based and
spatial-based approaches.
The convolution operation of spectral approaches is formulated in the spectral domain of
the graph. Henaff et al. [Henaff, Bruna and LeCun (2015)] utilizes the graph Laplacian
eigenbasis to analogize the Fourier transform through which convolution can be
performed on general graphs. To simplify the calculation process, a Chebyshev
expansion of the graph Laplacian [Defferrard, Bresson and Vandergheynst (2016)] is
used to approximate the spectral filters in the spectral domain. Kipf et al. [Kipf and
Welling (2016)] approximate the Chebyshev polynomials by the localized first-order
neighbors, and a graph convolutional network is proposed.
The spatial-based graph convolution updates the features of the central node by
aggregating the features of its neighbors directly. GraphSAGE [Hamilton, Ying and
Leskovec (2017)] assumes that different aggregation functions over a fixed-size node
neighbor can be used in inductive graphs. In Veličković et al. [Veličković, Cucurull,
Casanova et al. (2017)], the attention mechanism is applied, and the influence of different
nodes on the target node can be described. To extend graph attention networks to HINs,
HAN [Wang, Ji, Shi et al. (2019)] used node- and semantic-level attention to aggregate
neighbor information based on metapaths. In contrast, our method utilizes metastructures
to obtain semantics and further models richer relations between metastructure-based
neighbors by hyperedges.

3 Preliminaries
Definition 1 Heterogeneous Information Networks (HINs). A HIN is defined as a
graph (, , , ,)G V E U ϕ φ= , in which V and E are the sets of nodes and edges, and U is a
set of object types and link types. Each node v V∈ and each edge e E∈ are associated
with their mapping functions () : Vv V Uϕ → and () : Ee E Uφ → respectively. If

2V EU U+ > , the graph G is a heterogeneous information network. Fig. 1(b) gives an
example of HIN which contains three types of objects (Author, Paper, and Subject).
Definition 2 Network Schema. A network schema (,)G V EU U U= is a directed graph defined
over object types which can be seen as a template for the heterogeneous information network
G . For example, Fig. 1(c) is the network schema of the HIN in Fig. 1(b).
Definition 3 Hyperedge. A hyperedge ε is a set of objects, representing the semantic
information of relationships among multiple objects. In Fig. 1(f), {P1, P2, P3, P4} is an
example of hyperedge, and the semantic presents that they all are neighbors of node A1.
Definition 4 Incident Matrix. An incident matrix VH ε× is a matrix that shows the
relationships between objects V and a hyperedge set ∆ in which each row represents an

2282 CMC, vol.65, no.3, pp.2277-2294, 2020

object and each column represents a hyperedge. If object v V∈ belongs to hyperedges
ε ∈∆ , (,) 1h v ε = ; otherwise (,) 0h v ε = .

4 Model
In this section, we describe our proposed Heterogeneous Hyperedge Convolutional
Network (HHCN) model. After generating the metastructure-based neighbors, our model
consists of three steps. The first step builds the incident matrix according to hyperedges
and exploits hyperedge convolution to preserve the hyperedge information. The second
step tries to combine the different node embeddings learned by hyperedge convolution
based on different metastructures and utilizes the attention mechanism to learn the
importance weights of each metastructure automatically. The final step involves the
application of a multilayer perceptron (MLP) to predict the output and the design of the
objective function.

4.1 Hyperedge convolutional network
For a graph with node set V and its corresponding adjacency matrix A , the normalized
graph Laplacian matrix [Spielman (2007)] of the graph that is real symmetric positive
semi-definite is defined as in Eq. (1).

1 1
2 2

nL I D AD
− −

= − (1)

where D is a diagonal degree matrix ii ij
j

D A= ∑ , and n is the number of nodes.

Then, the convolution on a graph [Shuman, Narang, Frossard et al. (2013)] is defined as
the multiplication of a signal x with a filter gθ , which is shown in Eq. (2):

Tg x Ug U xθ θ∗ = (2)

where U is the eigenvector matrix of the normalized graph Laplacian TL U U= Λ , TU x
is the graph Fourier transform of the input x , Λ is the diagonal matrix of eigenvalues of
L and gθ is a function of the eigenvalues of L . To avoid computationally expensive
operations, the spectral filter ()gθ Λ was approximated by thk order Chebyshev
polynomials [Defferrard, Bresson and Vandergheynst (2016)] and the spectral
convolution on the graph can be approximated as Eq. (3):

' '

0 0max max

2 2() ()
K K

T
k k n k k n

k k
g x U T I U T L I xθ θ θ

λ λ= =

∗ ≈ Λ − = −∑ ∑ (3)

where ()kT ⋅ denote the Chebyshev polynomial, and 'θ is the Chebyshev coefficients.
In GCN [Kipf and Welling (2016)], the model was further simplified by setting 1K = ,

max 2λ ≈ , ' '
0 1=θ θ θ= − . Then, Eq. (3) can be simplified as Eq. (4):

1 1
2 2

ng x I D AD xθ θ
− −

∗ ≈ +

 (4)

Heterogeneous Hyperedge Convolutional Network 2283

From the above analysis, it can be concluded that the key to graph convolution is to find the
normalized graph Laplacian matrix whose eigenvectors can be used to form Fourier basis.
Considering the situation, we want to utilize hyperedge information in the process of graph
convolution, and the normalized graph Laplacian matrix should be based on incident
matrix H instead of adjacency matrix A . Inspired by Feng et al. [Feng, You, Zhang et al.
(2019)], the normalized hyperedge graph Laplacian matrix is defined as Eq. (5):

1 1
12 2T

o n v e vL I D HWD H D
− −−= − (5)

where H is the incident matrix, W is a diagonal weight matrix comprising the weights
of hyperedges, which is initialized as an identity matrix, n is the number of nodes and

eD is the hyperedge degree diagonal matrix. () (),e iii
v V

D h v ε
∈

= ∑ for a hyperedge ie ε= , vD

is the node degree diagonal matrix and () () (),v jjj
e

D w e h v e
ε∈

= ⋅∑ for a node jv V= .

By virtue of the property of being real symmetric positive semidefinite of oL [Feng, You,
Zhang et al. (2019)], we can perform Fourier transform in an orthonormal space, which
is formed by the eigenvectors of oL . As a result, a convolution formula can be obtained
by taking similar steps to GCN, which is shown in Eq. (6):

1 1
12 2()T

n v e vg x I D HWD H D xθ θ
− −−∗ = + (6)

In GCN, a renormalization trick is also assumed to alleviate the problem of numerical
instabilities, which is shown in Eq. (7):

 (7)

where nA A I= + and ii ij
j

D A= ∑ .

In Eq. (7), the adjacency matrix is added to an identity matrix, which can be regarded as
increasing the interactions of the nodes themselves. However, because the interactions of
the nodes themselves have been involved in hyperedges, the strategy may not be suitable.
for hyperedge convolution. Here, we adopt an adaptive renormalization trick by setting a
learnable weight parameter α , and the hyperedge convolution is defined as Eq. (8):

 (8)

where nH H Iα= + ⋅ , and vD and eD are the corresponding diagonal hyperedge matrix
and diagonal node degree matrix. Then, the parameter α can be learned automatically.
Eventually, the hyperedge convolution layer can be expressed as Eq. (9):

 (9)

where ()σ ⋅ is the sigmoid activation function, and ()lθ is the parameter matrix of the thl
layer. ()lZ is the activation matrix in the thl layer, and ()0Z is the input feature matrix.

2284 CMC, vol.65, no.3, pp.2277-2294, 2020

For the convolution operation in Eq. (8), the difference between HHCN and GCN is the node
connection matrix, which is THH in HHCN and adjacency matrix A in GCN apart from the
normalized term. In practice, the hyperedge incident matrix H is sparse, and the node
connection matrix of HHCN can be computed efficiently. Then, hA can also be

sparse matrix where a nonzero item means that a pair of nodes have at least a common
hyperedge. Considering the input N Dx R ×∈ with N nodes and D dimensional feature vector
for every node features and a matrix of filter parameters D FRθ ×∈ with F filters, the
convolution operation of HHCN has complexity ()hE DF in comparison to GCN with

()E DF , where hE and E are the number of nonzero items in hA and A respectively.

4.2 Combining multiple metastructures
If we select a set of T network metastructures { }1,..., TM M , then the comprehensive node
embedding should be based on all these metastructure-based embeddings. Because different
metastructures reflect distinct semantic information, the specific importance of each
metastructure is expected. Here, a metastructure attention layer is leveraged to assign
different weights to different metastructures and fuse them together automatically. At first,
a trainable attention context vector τ is used to denote the preference. A higher attention
coefficient will be assigned to a metastructure if it is similar to the context vector.
There are two strategies for learning the attention coefficient of different metastructures
here. One strategy is to treat each node in the HIN as an independent individual and
assign different weights to the metastructures associated with the node. The other strategy
is to regard the nodes extracted from a metastructure as a whole and learn an overall
attention coefficient for each metastructure. To facilitate the display of the impacts of the
attention mechanism in the following experiments, we select the second strategy for our
model. The metastructure-based embedding first undergoes a linear transformation with
non-linear activation. Then the attention coefficient of a node is based on the similarity
between context vector τ and the transformed embedding. For a metastructure iM , its
attention coefficient iMw can be achieved by averaging the attention coefficients of the
nodes extracted from it, which is shown in Eq. (10):

1 tanh()i

i
i

MT
M j

j Mi

w W z b
M

τ
∈

= ⋅ ⋅ +∑ (10)

where W is the weight, b is the bias parameter of the linear transformation and iM is
the number of nodes extracted from iM .
In addition, the softmax function is used to normalize the importance of metastructure

iM , and the weight iMβ is obtained as Eq. (11):

1

exp()
max()

exp()

ii

i

i

MM
M T

M
k

w
soft w

w
β

=

= =

∑
 (11)

Heterogeneous Hyperedge Convolutional Network 2285

Lastly, the comprehensive node embedding can be obtained by weighted combining of all
the metastructure-based embeddings, which is shown in Eq. (12):

1

k

k

T
M

M
k

Z Zβ
=

= ⋅∑ (12)

4.3 Loss function
Given a HIN G with n nodes, a labeling function () :v V Lγ → can be used to map a node to
one of the labels in {1,..., }L .

When all or part of the nodes are labeled, a one-layer MLP is applied on the node
embeddings and predict the labels. The objective is to minimize the cross-entropy loss
between the ground truth and the predictions, which is shown in Eq. (13):

1
ln()

L

vl vl
v M l

J Y P
∈ =

= − ⋅∑∑ (13)

where M is the set of labeled nodes, vlY is a binary value indicating the true label of
node v (i.e., =1vlY if the true label of node v is l , zero otherwise) and vlP is a binary
value indicating the predicted label of node v . After computing the loss, the parameters
are updated by back-propagating the gradient.

5 Experiments
In this section, we compare our proposed model with state-of-the-art graph embedding
models and recently developed graph convolutional network models.

5.1 Datasets
We evaluate our models on two datasets, which are also used in Wang et al. [Wang, Ji,
Shi et al. (2019)].
• IMDB 3. This is a heterogeneous information network with movies 4430(M), 5627
actors (A), 2137 directors (D), 11,841relations (P-A) and 4430 relations (P-S). The
features of a movie consist of the elements of a bag-of-words represented by plots, and
the dimension is 1232. The label is the corresponding genre, which is divided into three
classes, and the labeling ratio is 66% in our experiments. We select the metastructure set
as M-A-M, M-D-M and M<A, D>M, in which the first two metastructures can also be
seen as metapath and used in the metapath-based models.
• ACM 4. This is a heterogeneous information network with 2835 papers (P), 3087
authors (A), 45 subjects (S), 8504 relations (P-A) and 2835 relations (P-S) from three
areas: Database, Wireless Communication and Data Mining. The feature of a paper
consists of the elements of a bag-of-words represented by keywords, and the dimension is
1830. The label is the corresponding conference that was held, and all the papers are

3 https://www.imdb.com/
4 http://dl.acm.org/

2286 CMC, vol.65, no.3, pp.2277-2294, 2020

labeled in our experiments. For a fair comparison, we select the metastructure set as P-A-
P, P-S-P and P<A, S>P, in which the first two metastructures can also be seen as
metapaths and used in the metapath-based models.

5.2 Baselines
Eight models are adopted to evaluate HHCN: DeepWalk [Perozzi, Al-Rfou and Skiena
(2014)], LINE [Tang, Qu, Wang, et al. (2015)], metapath2vec [Dong, Chawla and Swami
(2017)], HIN2vec [Fu, Lee and Lei (2017)], GCN [Kipf and Welling (2016)], HGNN
[Feng, You, Zhang et al. (2019)], GAT [Veličković, Cucurull, Casanova et al. (2017)]
and HAN [Wang, Ji, Shi et al. (2019)]. The first four models are methods based on
representation learning, and the other four are methods based on graph convolutional
networks. We also propose three variants of our model.
• HHCN-f. This variant does not perform the fusing operation. For the experiments, we
selected the metastructure that achieves the best performance.
• HHCN-a. This variant does not utilize the attention mechanism and regards all the
metastructures as equally important.
• HHCN-s. This variant uses the {M-A-M, M-D-M} and {P-A-P, P-S-P} as the
metastructure set, through which fair comparisons with metapath-based models can be
performed.

5.3 Setup
A percentage of the labeled nodes per class are selected for training. The selection ratio
ranged from 10% to 90% and the remaining labeled nodes were used for testing. A two-
layer HGNN was applied in our model, and accuracy was used as the evaluation metric.
The hyperedge set of each metastructure was defined as the neighbors of the middle node
combination in the metastructure. For nodes that had no neighbors based on M<A, D>M
in IMDB and P<A, S>P in ACM, we used neighbors based on M-D-M and P-A-P to fill
them. We initialized parameters randomly and optimized the model with Adam [Kingma
and Ba (2014)]. We set learning rate=0.001, regularization coefficient=0.0005 and
dropout rate=0.5. For the compared methods, we used the code provided by authors. For
unsupervised methods, we first learned embedding for each node, then used the training
set to train a logistic regression classifier and output the results through the testing set.
For the random walk-based method, we set the number of walks per node=40, the walk
length=100, window size=5 and the size of negative sampling=5. In the HGNN, the
hyperedge was set as the set of node neighbors that was used in the original paper. In
LINE, the learning rate of the starting value=0.025, the number of negative samples=5
and the total number of samples=100 million. In DeepWalk and LINE, the heterogeneous
graphs were regarded as homogeneous graphs. For all the methods, we set the vector
dimension=64, the dimension of context vector =100, the vector dimension of all the
methods=64 and the dimension of attention vector =100.

τ

Heterogeneous Hyperedge Convolutional Network 2287

5.4 Experimental results
For both datasets, the results are reported in Tab. 1, in which the highest value of each
row has been bolded. For metapath2vec, GCN, HGNN and GAT, we select the metapath
with the best classification performance and report the classification results. From Tab. 1,
we can see that:

Table 1: Results of node classification on two datasets

(1) Graph neural network-based methods that combine the structure and feature
information usually perform better than graph embedding methods. In particular, our
model HHCN achieved the best performance of all the compared algorithms.
 (2) GCN, HGNN, GAT and HHCN-f are graph convolutional network models that consider
a single metastructure. The performance of HGNN is similar to that of GCN, because
HGNN is used in homogeneous networks, and no additional and more complex information
is merged into the generated hypergraph structure. GAT, which learns weights for neighbors,
showed a slight improvement over GCN, while HHCN-f displayed the best performance.
This demonstrates that more meaningful relation information can be captured by the
hyperedges considered in our method for a HIN and better results can be achieved.
(3) Compared with HAN, which uses the attention mechanism on both of the nodes and
semantics, our model HHCN-s, which uses the same metapaths, achieves better
performance most of the time. This also suggests that it is necessary to preserve the
information of hyperedges in HINs.
(4) Our model also shows better performance than the variants HHCN-a and HHCN-s,
which indicates there are benefits to the attention mechanism and metastructure.
Compared with HHCN-a, it is reasonable for our model to consider the different

Datase
ts Train Deep

Walk LINE Hin2v
ec

metap
ath2ve

c
GCN HGN

N GAT HAN HHC
N-r

HHC
N-h

HHC
N-s

HHC
N

ACM

10% 0.7285 0.6545 0.7252 0.7513 0.8840 0.8844 0.8859 0.8931 0.9041 0.9012 0.9036 0.9045

20% 0.7653 0.6569 0.7459 0.7516 0.8968 0.8950 0.8908 0.9048 0.9120 0.9086 0.9129 0.9141

30% 0.7735 0.6603 0.7463 0.7518 0.8971 0.8982 0.8972 0.9092 0.9143 0.9197 0.9213 0.9219

40% 0.7742 0.6676 0.7473 0.7536 0.8997 0.8978 0.9019 0.9096 0.9163 0.9318 0.9312 0.9325

50% 0.7755 0.6688 0.7496 0.7543 0.9003 0.8990 0.9028 0.9103 0.9187 0.9329 0.9325 0.9340

60% 0.7772 0.6711 0.7560 0.7554 0.9008 0.9001 0.9032 0.9113 0.9193 0.9343 0.9348 0.9361

70% 0.7784 0.6763 0.7591 0.7560 0.9037 0.9007 0.9057 0.9222 0.9232 0.9353 0.9362 0.9370

80% 0.7786 0.6774 0.7594 0.7589 0.9139 0.9117 0.9125 0.9327 0.9354 0.9425 0.9430 0.9436

90% 0.7789 0.6783 0.7696 0.7696 0.9404 0.9437 0.9358 0.9552 0.9466 0.9485 0.9535 0.9544

IMDB

10% 0.3313 0.3511 0.3521 0.3639 0.3841 0.3900 0.3870 0.3989 0.3880 0.4194 0.4220 0.4231

20% 0.3404 0.3510 0.3626 0.3667 0.4486 0.4466 0.4473 0.4533 0.4503 0.4596 0.4686 0.4694

30% 0.3526 0.3521 0.3670 0.3669 0.4523 0.4592 0.4546 0.4653 0.4625 0.4817 0.4828 0.4852

40% 0.354 0.3538 0.3839 0.3751 0.4627 0.4698 0.4684 0.4760 0.4775 0.4992 0.5035 0.5048

50% 0.3694 0.3626 0.3983 0.3776 0.4685 0.4669 0.4746 0.4898 0.4832 0.5132 0.5154 0.5170

60% 0.3733 0.3713 0.3987 0.3786 0.4819 0.4806 0.4879 0.5168 0.5083 0.5208 0.5260 0.5286

70% 0.3756 0.3733 0.4005 0.3861 0.5160 0.5166 0.5196 0.5231 0.5259 0.5419 0.5444 0.5452

80% 0.3807 0.3843 0.4130 0.3960 0.5333 0.5360 0.5346 0.5520 0.5476 0.5583 0.5626 0.5644

90% 0.3858 0.3936 0.4234 0.4026 0.5504 0.5566 0.5565 0.5704 0.5595 0.5861 0.5957 0.5966

2288 CMC, vol.65, no.3, pp.2277-2294, 2020

influences of metastructures. Compared with HHCN-s, reasonable metastructure can
provide more meaningful semantic information.

5.5 Attention analysis
Because different weights for different metastructures can be obtained through the
attention mechanism, the analysis on attention was conducted here. We selected 50% of
the labeled nodes as the training set, and the remaining 50% as the testing set.
Tab. 2 lists the attention coefficients of the different metastructures and the performance
when taking into consideration a single metastructure. As we can see, metastructure with
higher accuracy has a larger attention coefficient, which shows they are correlated
positively in both datasets. Specifically, metastructure P-A-P is assigned a larger weight
than metastructure P-S-P, and P<A, S>P has the largest weight in ACM. This is
explained by the fact that papers with the same authors tend to have the same labels more
often than papers with a common subject, and papers with both aspects show a larger
trend to have the same labels. In IMDB, metastructure M-D-M has the larger weight,
meaning that having a common director determines the genre of a movie more than
having a common actor, and metastructure M<A, D>M has the largest weight for its
tighter restriction, which is also reasonable. To summarize, the learned attention
coefficients can properly identify the quality metastructures.

Table 2: Quality of single motifs and the corresponding attention coefficients
Dataset ACM IMDB
Meta

structure P-A-P P-S-P P<A, S>P M-A-M M-D-M M<A, D>M

Accuracy 0.9089 0.7568 0.9187 0.4429 0.4796 0.4832
Attention

coefficient 0.3432 0.1677 0.4891 0.2959 0.3325 0.3716

5.6 Adaptive renormalization trick
The renormalization trick used in our model is nH H Iα= + ⋅ . Here, we compare different
renormalization tricks, which are shown in Tab. 3. HHCN-1 uses the same trick as GCN
by adding an identity matrix, while HHCN-0 considers the first-order term only.

Table 3: Different renormalization tricks

HHCN

1 1
12 2()T

v e vD HD H D xθ
− −−

nH H Iα= + ⋅

HHCN-1

1 1
12 2()T

v e vD HD H D xθ
− −−

nH H I= +

HHCN-0
1 1

12 2()T
v e vD HWD H D xθ
− −−

Heterogeneous Hyperedge Convolutional Network 2289

Figure 2: Qualities of different renormalization tricks on ACM and IMDB

The comparison results are demonstrated in Fig. 2. We can see that
 HHCN-1 and HHCN-0 both consider the hyperedge information, but HHCN-1

performs worse than HHCN-0. These results show that using the trick employed in
GCN for direct hyperedge convolution is inappropriate.

 HHCN achieves the best performances, which demonstrates the necessity to assign
the proper proportion of incident matrix and identity matrix in the design of the
propagation model. For example, when the training ratio is set to 50%, the learned
coefficient α is 0.1346 on ACM and 0.0727 on IMDB. As a result, the
corresponding effects are improved significantly.

5.7 Parameter and efficiency analysis
The number of hyperedge convolution layers and the dimension of node embedding can
affect the results of node classification. We select 50% labeled nodes are selected as the
training set and the remaining half as the testing set. When analyzing the number of
hyperedge convolution layers, we set the node embedding dimension . When
analyzing the dimension of node embedding, we set the number of hyperedge
convolution layers as .

5.7.1 Hyperedge convolution layer
Fig. 3 shows that HHCN achieves the best performance when there are two hyperedge
convolution layers on both graphs. However, when more layers are added, the
performance drops sharply. This phenomenon can be explained by the fact that the layers
control the receptive field of a target node, and more information can be obtained when
layers are initially increased, but too many layers lead to oversmoothing.

10 20 30 40 50 60 70 80 90

percentage

0.87

0.9

0.93

0.96

ac
cu

ra
cy

HHCN

HHCN-0

HHCN-1

0.1346

10 20 30 40 50 60 70 80 90

percentage

0.37

0.42

0.47

0.52

0.57

0.6

ac
cu

ra
cy

HHCN

HHCN-0

HHCN-1

0.0727

64d =

2k =

2290 CMC, vol.65, no.3, pp.2277-2294, 2020

Figure 3: Results of HHCN with respect to hyperedge convolution layer

5.7.2 Node embedding dimension
As shown in Fig. 4, the performance improves with the embedding dimension increasing
at first, which demonstrates that a large dimension can capture more information.
Nevertheless, when the dimension increases from 64 to 128, the performance on dataset
ACM begins to decline and the performance on dataset IMDB increases slightly, which
indicates that the introduction of redundant information to node embedding is inevitable
when the dimension is too large and may lead to overfitting as well.

Figure 4: Results of HHCN with respect to dimension of node embedding

5.7.3 Computational efficiency
We compare the model training time per epoch of HHCN versus other graph neural
network-based methods on an Intel(R) Core (TM) i5-4200H CPU @2.80 GHz system
with 4 cores and 12 GB memory. For fair comparison, we choose GCN_h and GAT_h as
the compared methods and set the metastructures in ACM and IMDB as {P-A-P, P-S-P}

8 16 32 64 128

(a) d

0.82

0.85

0.88

0.91

0.94

ac
cu

ra
cy

ACM

8 16 32 64 128

(b) d

0.42

0.44

0.46

0.48

0.5

0.52

ac
cu

ra
cy

IMDB

1 2 3 4 5

(a) K

0.91

0.92

0.93

0.94

ac
cu

ra
cy

ACM

1 2 3 4 5

(b) K

0.47

0.48

0.49

0.5

0.51

0.52

ac
cu

ra
cy

IMDB

Heterogeneous Hyperedge Convolutional Network 2291

and {M-A-M, M-D-M}. Different from HHCN, GCN_h and GAT_h use GCN and GAT
to aggregate the features of meta structure-based neighbors respectively. As shown in Fig.
5, it is can be found that HHCN is quite efficient in practice and takes much less time per
epoch than GAT_h that needs to perform a large amount of time-consuming attention
mechanism operations on both datasets. What’s more, HHCN is reasonably close to
GCN_h owing to the sparseness of the hyperedge incident matrix.

Figure 5: Comparison of time per epoch

6 Conclusion and future work
In this paper, we introduce a novel Heterogeneous Hyperedge Convolutional Network
(HHCN) for HIN. Our HHCN model uses metastructures to extract semantics and
construct an incident matrix based on hyperedges. An attention mechanism is also
introduced to our model so that the importance of different metastructures may be taken
into consideration. Taking the node feature matrix as input, the proposed HHCN model
can encode node features, metastructure-based semantics and hyperedge information
simultaneously. In this setting, our model achieves better performance than several
recently proposed models. For our future work, we first plan to extend HHCN from a
spectral-based approach to a spatial-based one, which is more efficient in many scenarios.
Thereafter, more complex hyperedges will be considered in order to model a HIN better.
Finally, we plan to examine the effect of HHCN on larger and more complex attributed
heterogeneous graphs and adopt neighborhood sampling strategies to further enable our
method to scale to very large graphs.

Acknowledgement: The authors sincerely acknowledge the reviewers for their
suggestions which will help in improving the quality of the paper.
Availability of Data and Materials: The code and data involved in this paper are here:
https://github.com/timeflow-lab/HHCN.
Funding Statement: This research was funded by The Science and Technology
Strengthening Police Basic Program of Ministry of Public Security (2018GABJC03) and
The Technology Research Project Program of Ministry of Public Security (2018JSYJA02).

ACM IMDB

0

0.5

1

1.5
Ti

m
e

pe
r E

po
ch

(s
ec

es
)

HHCN

GCN_h

GAT_h

2292 CMC, vol.65, no.3, pp.2277-2294, 2020

Conflicts of Interest: The authors declare that they have no conflicts of interest to report
regarding the present study.

References
Chang, S.; Han, W.; Tang, J.; Qi, G. J.; Aggarwal, C. C. et al. (2015): Heterogeneous
network embedding via deep architectures. Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 119-128.
Chiang, W. L.; Liu, X.; Si, S.; Li, Y.; Bengio, S. et al. (2019): Cluster-GCN: an
efficient algorithm for training deep and large graph convolutional networks.
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 257-266.
Defferrard, M.; Bresson, X.; Vandergheynst, P. (2016): Convolutional neural
networks on graphs with fast localized spectral filtering. Proceedings of advances in
Neural Information Processing Systems, vol. 29, pp. 3844-3852.
Dong, Y.; Chawla, N. V.; Swami, A. (2017): metapath2vec: Scalable representation
learning for heterogeneous networks. Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 135-144.
Feng, Y.; You, H.; Zhang, Z.; Ji, R.; Gao, Y. (2019): Hypergraph neural networks.
Proceedings of the AAAI Conference on Artificial Intelligence, pp. 3558-3565.
Fu, T.; Lee, W. C.; Lei, Z. (2017): Hin2vec: Explore meta-paths in heterogeneous
information networks for representation learning. Proceedings of the ACM on Conference
on Information and Knowledge Management, pp. 1797-1806.
Grover, A.; Leskovec, J. (2016): node2vec: Scalable feature learning for networks.
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 855-864.
Gui, H.; Liu, J.; Tao, F.; Jiang, M.; Norick, B. et al. (2016): Large-scale embedding
learning in heterogeneous event data. Proceedings of the 16th IEEE International
Conference on Data Mining, pp. 907-912.
Hamilton, W.; Ying, Z.; Leskovec, J. (2017): Inductive representation learning on large
graphs. Proceedings of advances in Neural Information Processing Systems, pp. 1024-1034.
Henaff, M.; Bruna, J.; LeCun, Y. (2015): Deep convolutional networks on graph-
structured data. arXiv:1506.05163.
Huang, Z; Zheng, Y; Cheng, R; Sun, Y, Mamoulis, N. et al. (2016): Meta structure:
Computing relevance in large heterogeneous information networks. Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 1595-1604.
Kingma, D. P.; Ba, J. (2014): Adam: A method for stochastic optimization.
arXiv:1412.6980.
Kipf, T. N.; Welling, M. (2016): Semi-supervised classification with graph
convolutional networks. arXiv:1609.02907.

Heterogeneous Hyperedge Convolutional Network 2293

Liu, J.; Yang, Y. H.; Lv, S. Q.; Wang, J.; Chen, H. (2019): Attention-based BiGRU-
CNN for Chinese question classification. Journal of Ambient Intelligence and Humanized
Computing. https://doi.org/10.1007/s12652-019-01344-9.
Luo, Y. J.; Qin, J. H.; Xiang, X. Y.; Tan, Y.; Liu, Q. et al. (2020): Coverless real-time
image information hiding based on image block matching and dense convolutional
network. Journal of Real-Time Image Processing, vol. 17, no. 1, pp. 125-135.
Ma, Y.; Wang, S.; Aggarwal, C. C.; Tang, J. (2019): Graph convolutional networks
with eigenpooling. Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 723-731.
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; Dean, J. (2013): Distributed
representations of words and phrases and their compositionality. Proceedings of
advances in Neural Information Processing Systems, pp. 3111-3119.
Nathani, D.; Chauhan, J.; Sharma, C.; Kaul, M. (2019): Learning attention-based
embeddings for relation prediction in knowledge graphs. Proceedings of 57th Annual
Meeting of the Association for Computational Linguistics, pp. 4710-4723.
Peng, F.; Long, Q.; Lin, Z. X.; Long, M. (2019): A reversible watermarking for
authenticating 2D CAD engineering graphics based on iterative embedding and virtual
coordinates. Multimedia Tools and Applications, vol. 78, no. 19, pp. 26885-26905.
Perozzi, B.; Al-Rfou, R.; Skiena, S. (2014): Deepwalk: Online learning of social
representations. Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 701-710.
Scarselli, F.; Gori, M.; Tsoi, A. C.; Hagenbuchner, M.; Monfardini, G. (2008): The
graph neural network model. IEEE Transactions on Neural Networks, vol. 20 no. 1, pp.
61-80.
Shi, Y.; Gui, H.; Zhu, Q.; Kaplan, L.; Han, J. (2018): Aspem: Embedding learning by
aspects in heterogeneous information networks. Proceedings of the SIAM International
Conference on Data Mining, pp. 144-152.
Shuman, D. I.; Narang, S. K.; Frossard, P.; Ortega, A.; Vandergheynst, P. (2013):
The emerging field of signal processing on graphs: Extending high-dimensional data
analysis to networks and other irregular domains. IEEE Signal Processing Magazine, vol.
30 no. 3, pp. 83-98.
Spielman, D. A. (2007): Spectral graph theory and its applications. Proceedings of the
48th Annual IEEE Symposium on Foundations of Computer Science, pp. 29-38.
Sun, Y.; Han, J.; Yan, X.; Yu, P. S.; Wu, T. (2011): Pathsim: Meta path-based top-k
similarity search in heterogeneous information networks. Proceedings of the VLDB
Endowment, vol. 4 no. 11, pp. 992-1003.
Tang, J.; Qu, M.; Mei, Q. (2015): Pte: Predictive text embedding through large-scale
heterogeneous text networks. Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 1165-1174.
Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J. et al. (2015): Line: Large-scale
information network embedding. Proceedings of the 24th International Conference on
World Wide Web, pp. 1067-1077.

2294 CMC, vol.65, no.3, pp.2277-2294, 2020

Tu, K.; Cui, P.; Wang, X.; Wang, F.; Zhu, W. (2018): Structural deep embedding for
hyper-networks. Proceedings of the AAAI Conference on Artificial Intelligence, pp. 426-433.
Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P. et al. (2017): Graph
attention networks. arXiv: 1710.10903.
Wang, X.; Ji, H.; Shi, C.; Wang, B.; Ye, Y. et al. (2019): Heterogeneous graph
attention network. Proceedings of the 28th International Conference on World Wide Web,
pp. 2022-2032.
Wu, Y.; Liu, H.; Yang, Y. (2018): Graph convolutional matrix completion for bipartite
edge prediction. Proceedings of the 10th International Joint Conference on Knowledge
Discovery, Knowledge Engineering and Knowledge Management, pp. 49-58.
Xiang, L. Y.; Shen, X. B.; Qin, J. H.; Hao, W. (2019): Discrete multi-graph hashing for
large-scale visual search. Neural Processing Letters, vol. 49, no. 3, pp. 1055-1069.
Zeng, D. J.; Dai, Y.; Li, F.; Wang, J.; Sangaiah, A. K. (2019): Aspect based sentiment
analysis by a linguistically regularized CNN with gated mechanism. Journal of Intelligent
& Fuzzy Systems, vol. 36, no. 5, pp. 3971-3980.
Zhang, D.; Yin, J.; Zhu, X.; Zhang, C. (2018): Metagraph2vec: Complex semantic path
augmented heterogeneous network embedding. Proceedings of the Pacific-Asia
Conference on Knowledge Discovery and Data Mining, pp. 196-208.
Zhang, J. M.; Jin, X. K.; Sun, J.; Wang, J.; Sangaiah, A. K. (2018): Spatial and
semantic convolutional features for robust visual object tracking. Multimedia Tools and
Applications. https://doi.org/10.1007/s11042-018-6562-8.
Zhang, J.; Lu, C. T.; Zhou, M.; Xie, S.; Chang, Y. et al. (2016): Heer: Heterogeneous
graph embedding or emerging relation detection from news. Proceedings of the IEEE
International Conference on Big Data, pp. 803-812.

	Heterogeneous Hyperedge Convolutional Network
	Yong Wu0F , Binjun Wang1, * and Wei Li1F

	6 Conclusion and future work
	References

