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Abstract: Vehicle type recognition (VTR) is an important research topic due to its 
significance in intelligent transportation systems. However, recognizing vehicle type on 
the real-world images is challenging due to the illumination change, partial occlusion 
under real traffic environment. These difficulties limit the performance of current state-
of-art methods, which are typically based on single-stage classification without 
considering feature availability. To address such difficulties, this paper proposes a two-
stage vehicle type recognition method combining the most effective Gabor features. The 
first stage leverages edge features to classify vehicles by size into big or small via a 
similarity k-nearest neighbor classifier (SKNNC). Further the more specific vehicle type 
such as bus, truck, sedan or van is recognized by the second stage classification, which 
leverages the most effective Gabor features extracted by a set of Gabor wavelet kernels 
on the partitioned key patches via a kernel sparse representation-based classifier (KSRC). 
A verification and correction step based on minimum residual analysis is proposed to 
enhance the reliability of the VTR. To improve VTR efficiency, the most effective Gabor 
features are selected through gray relational analysis that leverages the correlation 
between Gabor feature image and the original image. Experimental results demonstrate 
that the proposed method not only improves the accuracy of VTR but also enhances the 
recognition robustness to illumination change and partial occlusion. 
 
Keywords: Vehicle type recognition, improved Canny algorithm, Gabor filter, k-nearest 
neighbor classification, grey relational analysis, kernel sparse representation, two-stage 
classification. 

1 Introduction 
Automatic recognition of vehicle type plays an important role in enabling vehicle specific 
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operations in intelligent transportation systems, including applications of traffic 
surveillance, electronic toll collection, and intelligent parking. Various studies conducted 
in the last decade sought to improve the performance of vehicle type recognition (VTR) 
[Soon, Khaw, Chuah et al. (2019); Liu, Wang, Gong et al. (2019)]. The major 
determinants of the performance of VTR relate to methods for extracting vehicle features 
and the design of vehicle type classifier, which are the focuses of research on VTR.  
For effective feature extraction, many methods have been applied to VTR based on the 
advancements in computer vision. For instance, edge-based methods [Lin, Chan, Fu et al. 
(2012); Fabrizia and Renata (2012)] can extract the global geometrical contour of an 
image accurately and quickly. Applying the edge features to VTR yields a fast VTR 
method due to the low computational complexity. However, these methods are sensitive 
to illumination and image background variations, which can significantly reduce the 
accuracy of VTR in a complex travel environment with low illumination. As a result, the 
extracted features are limited to preliminary recognition in VTR.  
Facing these challenges, several feature extraction methods apply mathematical 
transformation to enhance the adaptability of VTR in a complex travel environment. For 
example, the histogram of oriented gradients (HOG) descriptor [Wang and Cai (2016)] 
calculates the gradient and magnitude for every pixel in a vehicle image and combines 
these values into a histogram of oriented gradients according to their weights. Features 
extracted by the scale-invariant feature transform (SIFT) [Dong and Jia (2013); 
Ambardekar, Nicolescu and Bebis (2014)] and speeded up robust features (SURF) 
descriptors [Chen, Hsieh, Yan et al. (2015)] are adopted in VTR, due to their robustness to 
the changes of scale, translation, and rotation of vehicle images. The Gabor filter [Adi and 
Arnida (2015)] is another commonly adopted descriptor to extract local features of vehicle 
image. Compared to edge-based methods, the feature extraction method based on Gabor 
filter can extract structural details of vehicle image from multiple scales and orientations. 
More importantly, the Gabor filter is insensitive to illumination change or scale variation. 
The multi-resolution and multi-orientation properties, as well as the insensitivity to travel 
environment, make the Gabor filter a power solution for VTR to resist external disturbance 
such as illumination change, partial occlusion or scale variation.  
Although these methods based on mathematical transformation can extract structural 
details, they also generate a large amount of information irrelevant to vehicle 
classification, which increases computation burden and degrades the reliability of 
classifier. A potential solution is to select the most effective features to reduce the 
dimension and redundancy of the extracted local features. 
In addition to the feature extraction and selection, classifier design is the other 
determinant affecting the performance of VTR. Typical VTR classifiers in the literature 
apply the k-nearest neighbors (kNNs) [Fabrizia and Renata (2012); Gu and Lee (2012)], 
artificial neural network (ANN) [Chen, Gong, Xie et al. (2017)], support vector machine 
(SVM) [He, Sang, Gao et al. (2017); Kachach and Maria (2016); Fang, Zhou, Yu et al. 
(2017)], hidden Markov model (HMM) [Zhou, Deng and Lv (2011)], and sparse 
representation classifier (SRC) [Gao, Ma and Yuille (2017)].  
In classifier design, the kNNs classifier applies a simple classification principle and does 
not need training in advance. When the number of training samples increases, its 
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computational cost increases significantly. Therefore, the kNNs classifier is limited to 
preliminary classification based on simple features such as edge or color. The methods 
based on ANN or SVM can utilize global features or local features in VTR. However, 
training these classifiers requires a large number of samples with different types of 
vehicles; while the trained parameters are easy to fall into local optima that adversely affect 
the classification accuracy and performance of VTR. The HMM classifier has a good 
performance in VTR by training HMM mode and optimizing mode parameters. However, 
the additional computation for optimizing these mode parameters impairs its real-time 
performance. Compared to other classifiers, the SRC has been widely used in face 
recognition and classification due to its advantages in not involving complex parameter 
training and using original image samples as a dictionary without additional transformation. 
One challenge of the SRC is that some samples are linearly inseparable in the original 
feature space. The kernel sparse representation-based classifier (KSRC) [Gao, Ma and 
Yuille (2017); Li, Feng, Chen, et al. (2017); Li and Zhu (2018)] is a nonlinear extension of 
the SRC [Wang, Shen, Li et al. (2018); Li, Tang, Peeta et al. (2019)]. It can convert linearly 
inseparable samples in the original feature space to be linearly separable in the new feature 
space by multiplying a kernel function [Li, Liu, Wang et al. (2019)]. The linear separability 
improves the accuracy and reliability of the SRC. 
Although the aforementioned classifiers can be applied to recognize different types of 
vehicles, they do not factor the effectiveness of the extracted vehicle features, which can 
introduce unnecessary computations and reduce the efficiency and reliability of VTR in 
real-time applications. In addition, all these classifiers adopt a single-stage scheme that 
classifies vehicle type based on all types of vehicle samples. When the number of vehicle 
types to be recognized increases, the single-stage methods require a huge amount of 
training samples, which inevitably increase the difficulty of classifier design. 
To address the aforementioned limitations, we propose a VTR method that integrates the 
most effective Gabor features into a two-stage classification scheme, where the most 
effective Gabor features are selected as local features based on grey relation analysis 
(GRA). In the two-stage scheme, edge features are obtained by the improved Canny edge 
detection algorithm with discrete cosine transformation (DCT). Preliminary vehicle 
classification is implemented based on the edge features and similarity k-nearest neighbor 
classifier (SKNNC), and further precise classification is realized based on the most 
effective Gabor features and the KSRC. More specifically, the first stage applies the 
SKNNC with cosine similarity calculation to classify vehicles by size into large or small 
classes, leading to an accurate and reliable preliminary classification. Based on the most 
effective Gabor features, the second stage introduces the KRSC to classify large-size 
vehicles into bus or truck and small-size vehicles into sedan or van. The second stage also 
incorporates a verification and correction step using the minimum residual analysis to 
enhance the accuracy and robustness of VTR when the vehicle is partially occluded. 
In summary, the main contributions of this study are twofold. First, a GRA based method is 
proposed to select the most effective Gabor features, which reduces the dimension of the 
feature vector and eliminates potential data redundancy. Second, our proposed two-stage 
classification scheme leverages two types of features and classifiers to perform VTR, which 
simplifies the classifier design and enhances the accuracy and robustness of VTR.  
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The rest of this paper is organized as follows. The next section presents the global and 
local feature extraction methods as well as the feature selection of local features based on 
GRA. Section 3 describes the two-stage classification scheme for VTR. Experiments and 
analyses are shown in Section 4 to illustrate the efficacy of the proposed VTR method. 
The final section summarizes this study and potential future research directions. 

2 Feature extraction 
2.1 Extraction of edge features 
The edge of vehicle image usually contains rich contour information. In this paper, we 
extract the edge features in the preliminary VTR.  
Canny operator is the most widely used operator in edge detection. However, the 
captured vehicle images are easily corrupted by high-frequency noises such as salt and 
pepper noise, Rayleigh noise and Gaussian noise, in the real world traffic. The traditional 
Canny edge detection method based on Gaussian filtering function is limited for the 
images corrupted by Gaussian noise [Li, Tang, Peeta et al. (2019); Li, Chen, Peeta et al. 
(2020)]. When there exist other noises, the method may fail to detect some real edges. 
Therefore, we propose to replace the Gaussian filtering step in the traditional Canny 
algorithm with a new correction strategy of discrete cosine transform coefficient to 
accommodate other types of noises. The key steps are as follows. 
1) DCT transformation. Assume the size of the original vehicle image ( ),I x y   is 
M N×  , the DCT transformation can be expressed as: 

( ) ( ) ( ) ( ) ( ) ( )1 1

0 0

0.5 0.5
, , cos cos

M N

x y

x y
F u v c u c v I x y u v
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π π− −

= =
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= ⋅    

   
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                                                                                                    (3) 

where, , 0,1,2, , 1u x M= − ; , 0,1,2, , 1v y N= − . 
2) DCT coefficient correction. After the DCT based on Eq. (1), the low-frequency 
components contain useful information of vehicle image, while the high-frequency 
components contain noises. A correction strategy for the DCT coefficients is applied to 
remove high-frequency noises and remain useful information, as formulated by Eq. (4). 

( ) ( )
( )

3

2

,
,

,
F u v

F u v
F u v ζ

′ =
+

                                                                                                   (4) 

where ζ  is a correction coefficient. Because the DCT coefficient ( ),F u v  of noise is 

large, the revised DCT coefficient ( ),F u v′  becomes even larger. On the contrary, the 
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revised DCT coefficient ( ),F u v′  of the useful information becomes smaller when it has 

a small DCT coefficient ( ),F u v . Based on this observation, we can remove the noises 
by setting an appropriate threshold defined by Eq. (5): 

( )
( ) ( )

( )
, ,      if  ,

, =
0,                if  ,

C

C

F u v F u v T
F u v

F u v T

′ ′ ≤′′ 
′ >

                                                                        (5) 

In this paper, we let 60ζ = and CT  = 1150 to obtain a good denoising result. 
3) Inverse discrete cosine Transformation (IDCT). We implement the IDCT for the DCT 
coefficients to obtain a smoothed image ( ),I x y′ .   

( ) ( ) ( ) ( ) ( ) ( )1 1
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0.5 0.5
, , cos cos

M N

u v
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   
∑∑                    (6) 

Through the above three steps, we can get a smoothed gray image. Then, we can obtain a 
continuous and complete edge image by the same steps as the traditional Canny edge 
detection algorithm, such as the image gradient calculation, non-maxima suppression, 
and edge connection. Finally, we transform the edge image ( ),I x y′  into a one-
dimensional vector Ey  by concatenating its columns and define the Ey  as the edge 
feature of the vehicle. 

2.2 Extraction of gabor features 
The edge feature can be used to classify the vehicle into a big or small vehicle 
preliminarily. However, to have a more specific vehicle classification, such as sedan, van, 
bus, or truck, we need to extract other features to represent the local structural details. 

2.2.1 Image partition based on key parts 
Note that, not all elements of a vehicle face image are valuable for VTR. Only some key 
elements are available. Additionally, some elements of a vehicle are easily occluded by 
other vehicles. If we divide a vehicle image into several key patches, we can recognize 
the vehicle type through other key elements in other non-occluded patches, even when 
partial occlusion occurs. In this paper, we divide the vehicle image into four non-
overlapping patches shown in Fig. 1, where (a) is the original vehicle image, (b) is the 
vehicle roof patch, (c) is the windshield and rearview mirror patch, (d) is the hood patch, 
and (e) is the license plate patch. 

2.2.2 Extraction of gabor feature 
Gabor wavelets have strong characteristics of spatial locality and orientation. In this 
paper, the Gabor wavelet is introduced to extract local features in every partitioned patch, 
which can not only obtain better structural details with multiple scales and multiple 
orientations but also improve the robustness to illumination changes or partial occlusion 
[Kuang, Zhang, Jin et al. (2015)]. The Gabor wavelet kernels can be defined: 



 
 
 
2494                                                                       CMC, vol.65, no.3, pp.2489-2510, 2020 
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where u  and v  define the orientation and scale of the Gabor kernels, respectively, 
( , )z x y= ,   ⋅  denotes the norm operator, ( , )x y  represents the pixel coordinates, and 
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, with max / v
vk k f= , / 8u uϕ π= ⋅ , maxk  representing the 

maximum frequency, and f  denotes the spacing factor between kernels in the frequency 

domain. In particular, we let 2σ π= , max / 2k π= , 2f = .  
The Gabor features ( ),uM zν  of a vehicle image can be obtained by convolving the image 

( )I z  with a set of Gabor wavelet kernels defined by Eq. (7) at every pixel ( , )x y : 

, ,(z) ( ) ( )u uM I z zν νψ= ∗           (8)                                                                                                    

(a)  Original image

(b)  Vehicle roof

(c)  Windscreen and rear-view mirror

(d)  hood

(e)  License plate  

Figure 1: Vehicle image partition 

where ( )I z  expresses the gray image of the vehicle image. 
It is common to set the 40 Gabor wavelet kernels with five different scales: 

{0,1, ,4}v∈  , and eight orientations: u∈ {0,1,  ,7} . Therefore, we obtain total 40 
Gabor feature images based on the 40 Gabor wavelet kernels. 

2.2.3 Feature selection based on GRA 
These Gabor features of the vehicle extracted from five scales and eight orientations are 
not suitable for a real-world application due to the large number of dimensions. 
Additionally, these extracted Gabor features contain redundant information irrelevant to 
the original vehicle image besides some useful information. The critical question is how 
to choose the most effective Gabor features to enhance the accuracy and efficiency of 
VTR. The GRA method is effective in determining the critical elements that significantly 
influence certain defined objectives due to these advantages such as no restriction of 
functional form, no requirement for independence or normal distribution, and low 
computational load. Hence, it has been extensively used for relevance analysis in various 
disciplines. Here, the GRA is used to perform correlation analysis between the Gabor 
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feature image and the original image and to select most effective Gabor features. The 
following steps summarize the details of the algorithm: 
1) Assume that ( ),jI x y  represents the thj  local patch of vehicle. Calculate the 

amplitude ( ), ,j
uG x yν  as Gabor feature image according to Eq. (7) and Eq. (8). 

2) Transform the thj  local patch ( ),jI x y , [1,2,3,4]j∈  and the Gabor features 

( ), ,j
uG x yν  extracted from the thj  local patch ( ),jI x y  into a vector ( )0

jY k  and a vector 

( )j
lY k  by concatenating its columns, respectively. Here, ( )0

jY k  represents the original 
image vector of the thk  sample, 1,2,3, ,k r=  , r represents the number of image 
samples, ( )j

lY k  represents the thl  Gabor feature vector of the thj  local patch of the 
thk  sample, and l u v= × .  

3) Grey relation coefficient ( )0,l kλ  between ( )0
jY k  and ( )j

lY k  is calculated as: 

( ) ( ) ( )( )0,0, min max maxll k kλ ξ ξ= ∆ + ∆ ∆ + ∆                                                                     (9) 

where ( ) ( ) ( )
0, 0 1

=
l

j j
lYk Y k k∆ − , 

1
  ⋅  represents the 1-norm of vector, min∆ and max∆  

denote the minimum and maximum values among the ( )
0,l

k∆ , respectively, ξ  is 

resolution coefficient, and =0.5ξ  in this paper.
 4) The grey relational degree 0,lγ  between ( )0

jY k and ( )j
lY k is calculated as: 

( )0, 0,
1

1 r

l l
k

k
r

γ λ
=

= ∑                                                                                                 (10) 

5) Sort the grey relational degree 0,lγ  in and decreasing order to generate a sequence of 

gray relational degree ( )iγ , where ( ) ( ) ( ){ }1 2 , , 40γ γ γ> > . Then select the first 
M Gabor feature vectors corresponding with the largest M grey relational degree values 
and connect these Gabor feature vectors in series to generate the most effective Gabor 
feature G

jy  in the thj  local patch, where 40K < . Finally, generate the most effective 
Gabor feature Gy  of the whole vehicle image by connecting the most effective Gabor 
feature G

jy   of every local patch in series.  

3 Vehicle type recognition 
3.1 Two-stage classification scheme 
Unlike single-stage classification methods that require more training samples and 
computation time to train classifier parameters, we propose a two-stage classification 
scheme based on two different types of classifiers and features. In the first stage, the test 
vehicle is classified into either a big or small vehicle using SKNNC based on the 
extracted global features. Based on the first stage, the second stage classifies a big vehicle 
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into either bus or truck and a small vehicle into van or sedan by exploiting the KSRC 
based on the local features.  
Also, we propose to add a verification and correction step based on minimum residual 
analysis to enhance the reliability of VTR, where a threshold is set to judge whether the 
classification result in the second stage is reasonable. If the result is reasonable, directly 
output the classification result in the second stage. Otherwise, we need to change the sub-
dataset of large or small vehicles used in the second stage of classification and reclassify 
the vehicle type based on the have changed sub-dataset and the KSRC. The detailed 
process of the two-stage classification is summarized into Fig. 2. 

Edge feature extraction

SKNNC design

The first  stage of classification 

The second stage of classification

Test vehicle image

KSRC design (Based on 
the sub-dataset of large 

vehicle)

Minimum residual
is smaller than T ?

KSRC design (Based on 
the sub-dataset of small 

vehicle)

Minimum residual
is smaller than T ?

Yes

No

Yes

No

The extraction of the most 
effective Gabor features 

The extraction of the most 
effective Gabor features 

Preliminary classification:
Large vehicle or small vehicle?

Large vehicle?Yes No

Specific classification:
Bus or Truck?

Specific classification:
Sedan or Van?

KSRC design (Based 
on the sub-dataset of 

small vehicle)

KSRC design (Based 
on the sub-dataset of 

large vehicle)

 
Figure 2: Flowchart of vehicle type recognition 
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3.2 First stage of classification 
The first stage is important in the proposed two-stage classification scheme. It directly 
determines how well the second stage classification performs. In order to enhance the 
first stage classification, we propose to combine Euclidean distance and cosine similarity 
to measure the similarity between the test sample and every training sample during the 
KNN based classification. Due to considering the similarity of samples in both position 
and direction, the proposed similarity measure well adapts to the changes of samples such 
as position or direction. Based on the extracted edge feature and the improved KNN 
classifier with cosine similarity measure, we can classify the test sample into big vehicle 
or small vehicle. The steps of the first stage classification are as follows: 
1) Assume that the number of vehicle types is M . For each vehicle type there exists 

jn ( )1,2, ,j M=   samples. Suppose that ( , )a x y  reprsents the edge feature extracted 

from the test sample, and ( , )ib x y  indicates the edge feature extracted from the 

thi training sample in sample set ( ) ( ) ( ){ }1 2, , , , , ,NB b x y b x y b x y= 
, where N =

1

M
j

j
n

=
∑ . 

Referring to Eq. (11), we can calculate the Euclidean distance E ( )D i  between ( , )a x y  
and ( , )ib x y , for all {1,2, , }i N∈  . 

( ) ( )E 2
( ) , ,iD i a x y b x y= −                                                                                          (11) 

2) The cosine similarity C ( )S i  between the test sample ( , )a x y  and every training sample 
( , )ib x y  can be calculated as:  

( ) ( )
( ) ( )

( ) ( )
( ) ( )C 2 2

, , , ,
( )

, ,, ,

i i

ii

a x y b x y a x y b x y
S i

a x y b x ya x y b x y

× ×
= =

××
                                               (12) 

3) The improved similarity measure I ( )S i  is defined as: 

C
I

E

( )( )
( )D

S iS i
i

=

       
                                                                                                          (13) 

Eq. (13) shows that the greater the similarity between the test sample and the thi training 
sample the higher the value of I ( )S i . 

4) Find the largest K values of the improved similarity measure I ( )S i  and their 
corresponding vehicle type, i.e., big vehicle or small vehicle, and count the number of 
every vehicle type corresponding to the largest K values of the similarity measure. 
Finally, the vehicle type with the largest voting number is deemed as the final 
classification result. 

3.3 Second stage of classification 
After the first stage classification, the test sample is classified preliminarily into big 
vehicle or small vehicle. However, to achieve a more specific vehicle type classification, 
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a kernel sparse representation based classifier is exploited to classify a big vehicle into 
bus or trunk and a small vehicle into van or sedan in the second stage classification.  

3.3.1 Sparse representation based classification 
SRC needs to train the over-complete dictionary based on the target features, then 
reconstruct the samples using the trained dictionary and recognize the target according to 
the minimum residual between the target and the reconstructed samples. Suppose 

1 2[ , ,..., ] m n
KA A A A ×= ∈ℜ  is the set of training samples, where iA  is the subset of training 

samples from class i , ,1 ,2 ,, , , i

i

m n
i i i i nA S S S × = ∈ℜ  , and ,i jS  is the descriptor of thj  

sample for the thi class. Given a test sample my∈ℜ , the problem of the sparse 
representation of y  in terms of A  can be written as follow:  

2

2 1

1min
2

A y
β

β λ β− +                                                                                                (14) 

where 1
1

n

j
j

β β
=

=∑  is the 1l  norm of β , and 0λ ≥  is a constant parameter for sparsity. 

We can identify y  once the solution to Eq. (14) is obtained. The class identity of y  is 
based on the minimization of residuals: 

( ) ( ) 2

2
min Residualc cc

y A yδ β= −                                                                                (15)
 
 

where ( )cδ β  is a function that selects the coefficient corresponding to the thc  class 

and makes the rest equal to zero. For K  classes, there are K  functions of ( )cδ β , 
which generate K  residuals. Thus SRC algorithm labels y  to the class that has the 
minimum residual. 

3.3.2 Kernel sparse representation based classification 
Kernel sparse representation [Chen, Wang, Xia et al. (2019); Lin, Feng, Chen et al. 
(2017); Yang, Shrestha, Li et al. (2018)] is a nonlinear extension of basic sparse 
representation. Through kernel trick, samples are mapped into a new kernel feature space 
and then SRC is used in the new feature space. This nonlinear mapping can change the 
sample distribution. In particular, some samples that are linearly inseparable in the 
original space can become linearly separable in the new space, which can improve the 
performance of object classification [Andri, Wang and Tai (2015)]. Therefore, we 
propose to use the KSRC to classify a big vehicle into bus or truck and classify a small 
vehicle into van or sedan based on the most effective Gabor features. 
Considering the Lasso problem of Eq. (14), we rewrite Eq. (14) as follows:  

2

1
1 2

1min
2

n

i i
i

A y
β

β λ β
=

− +∑                                                                                    (16) 
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where 1
β  is the Lasso penalty, and 0λ ≥  is a constant parameter for sparsity. In this 

paper, we focus on the Lasso problem of Eq. (16) in kernel space: 

( ) ( ) ( )
2

1
1 2

1min =
2

n

i i
i

J A y
β

β β φ φ λ β
=

− +∑                                                           (17) 

where ( )φ ⋅  is an implicit mapping that maps a feature vector to a kernel space. Assume 

that ( )φ ⋅  satisfies ( ) ( ) 1TA Aφ φ = . In order to solve Eq. (17), we introduce a Kernel 
Coordinate Descent (KCD) algorithm [Jerome, Trevor and Rob (2010)] considering its 
simplicity and efficiency. Assume that all iβ  are fixed except for i j= . Minimizing Eq. 
(17) is equivalent to minimizing Eq. (18): 

( ) 2

2

1 ˆ
2 j i j jA rβ φ λ β− +                                                                                     (18)  

where ( ) ( )
1,

ˆˆ
n

j i i
i i j

r y Aφ β φ
= ≠

= − ∑  is the partial residual for fitting jβ . Consider 

( ) ( ) 1
T

j jA Aφ φ = . Then Eq. (18) is equivalent to: 

( ) 21 ˆ=
2j j j j j jJ β β α β λ β− +                                                                                          (19) 

where ( )ˆ ˆ=
T

j j jA rα φ is the residual correlation. If 0jβ ≠ , taking ( ) 0j j jJ β β∂ ∂ =  in the 

Eq. (19) can obtain the minimization values when ˆ jα λ> , i.e., ˆ jα λ−  for 0jβ > , and 

ˆ jα λ+  for 0jβ < . Otherwise, if ˆ jα λ≤ , we have 

( ) 21 ˆ ˆ 0
2j j j j j j jJ β β α β α β≥ − + ≥                                                                                   (20)

 
 

The equality holds if and only if 0jβ = . Consequently, the coordinate-wise update of jβ  is: 

ˆ ˆif
ˆ ˆif

ˆ0 if

j j

j j j j

j

α λ α λ
β β α λ α λ

α λ

 − >
′← = + < −
 ≤

                                                                                     (21)
 
 

This update, denoted as ( )( )ˆ ˆsignj j jβ α α λ
+

← − , is the well-known soft-thresholding 

shrinkage operation. Note that  

( ) ( ) ( ) ( )
1,

ˆˆ ˆ
nT T

j j j j j i
i i j

A r A y Aα φ φ φ β φ
= ≠

 
= = − 

 
∑                                                           (22) 

The above equation can be rewritten as: 
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( ) ( )
1,

ˆˆ , ,
n

j i j i
i i j

K A y K A Aα β
= ≠

= − ∑    (23) 

where ( ) ( ) ( ), TK A y A yφ φ= is the kernel function and ( ) ( ) ( ), 1TK A A A Aφ φ= = . This 
is a kernel extension of the covariance update suggested in [28]. Given a kernel function 
K , we use the KCD algorithm to update β  iteratively in the kernel space by applying 
Eq. (21) and Eq. (23). 
For classification, the corresponding kernel SRC criterion as follow: 

( ) ( )
( )

( ) ( ) ( )
2

2

identity = arg min arg min 2T T
i i c c cc cl i c

A y R Zβ φ φ δ β δ β δ β
=

− = −∑
        

  (24) 

where ( )( ),i j n n
R K A A

×
=  is the training kernel matrix, ( )( ) 1

,i n
z K A y

×
=  contains 

correlation coefficients in the kernel space, and ( )l i  is the class label of the thi  sample. 
The KSRC algorithm labels y  to the class that has the minimum residual. 

3.3.3 Vehicle type recognition verification 
Because the classification in the second stage relies on the result in the first stage, if the 
classification in the first stage is false, then the false classification will cause erroneous 
results in the second stage. Experimental investigation finds that, as long as the employed 
sub-dataset is correct, the minimum residual in the second stage of classification will not 
be larger than a given threshold. Namely, in the second stage classification, the minimum 
residual is larger when the first stage classification is false than the value when the first 
stage classification is correct. Therefore, we propose to add a verification step to judge 
whether the classification result in the first stage is accurate or not by setting a threshold 
T . For a false classification, we re-run the VTR based on the proposed KSRC by 
changing the employed sub-dataset of large or small vehicle in the second stage 
classification. The threshold T  is determined through a sequence of numerical 
experiments based on field samples. 
The verification step is as follows: (i) if the minimum residual in the second stage is 
smaller than the set threshold T , then we infer that the classification in the second stage 
is reasonable and output the classification result directly. (ii) Otherwise, the classification 
in the second stage is regarded to be unreasonable, and the classification is false in the 
first stage. For obtaining a correct classification, we change the sub-dataset of large or 
small vehicle employed in the second stage classification and recognize specific vehicle 
type based on the changed sub-dataset and the proposed KSRC algorithm. 

4 Experiments 
To validate the proposed algorithm, we obtained a dataset of 4000 vehicle images 
containing 1000 bus images, 1000 truck images, 1000 van images, and 1000 sedan 
images. The proportion of the challenging vehicle images that are partially occluded by 
other objects or captured in bad condition is about 10% of the whole dataset. The size of 
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every image is 200 200×  pixels. Fig. 3 shows some image examples in the dataset under 
various conditions. All the experiments were coded and run in Matlab 2014b on a PC 
with 3GHz i7-2600 CPU and 16GB RAM. 
To facilitate the proposed VTR method, all vehicle images were classified into two 
datasets: big vehicle and small vehicle. The big vehicle dataset is further classified into 
two sub-sets: bus and truck. The small vehicle dataset is further classified into two sub-
sets: van and sedan.  
The performance of the VTR is evaluated by the following three typical indicators: 
precision, recall, and accuracy, defined as follows: precision=TP/(TP+FP), 
recall=TP/(TP+FN), and accuracy=(TP+TN)/(TP+FN+FP+TN), where, TP, FP, FN and 
TN are the abbreviations of true positives, false positives, false negatives, and true 
negatives, respectively, which are defined in [Powers (2011)]. 

4.1 Selection of the most effective gabor features 
We used the Gabor wavelet kernels with five different scales and eight different 
orientations to extract Gabor features of every partitioned local patch. Fig. 4. shows the 
extracted Gabor features of the local patch of the license plate.  
Then we exploited the proposed GRA algorithm to select the most effective Gabor 
features. We randomly selected 1000 vehicle images, including four vehicle types from 
the vehicle image dataset to implement the GRA algorithm. The gray relational degrees 
between the original partitioned patch images and the Gabor feature images extracted 
from five scales and eight orientations are shown in Fig. 5. In Fig. 5, the horizontal 
coordinate indicates the index of the extracted 40 Gabor feature images. The numbers 
from one to eight in the horizontal coordinate indicate the Gabor feature images when v  
equals zero and  equals zero to seven, respectively. The numbers from nine to sixteen 
indicate these Gabor feature images when v  equals one and u  equals zero to seven, 
respectively. The numbers from 17 to 24 in the horizontal coordinate indicate these 
Gabor feature images when v  equals two and u  equals zero to seven, respectively. The 
numbers from 25 to 32 in the horizontal coordinate indicate these Gabor feature images 
when v  equals three and u  equals zero to seven, respectively. The numbers from 33 to 
40 in the horizontal coordinate indicate these Gabor feature images when v  equals four 
and u  equals zero to seven, respectively. The last index indicates the mean value of the 
gray relational degree values of the 40 extracted Gabor features images.  
We find that grey relational degree values beyond the mean value mainly concentrate in 
the ten indexes, such as 17, 23, 25, 31, 32, 33, 34, 35, 39, and 40. It means that the Gabor 
features extracted from the ten indexes can better describe the vehicle characteristics 
compared to the Gabor features extracted from other indexes. Therefore, in this paper, we 
choose the 10 Gabor features corresponding to the ten indexes as the most effective 
Gabor features (MEGFs). After the MEGFs were selected, the dimension of the Gabor 
feature of every patch reduced by 75%, from 40 200 50=400000× ×  to 
10 200 50=100000× × . 
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(a) Fine day 

 
(b) Rainy day 

 
(c) Occluded partial 

 
 (d) Dusk and Night 

Figure 3: Vehicle images under various conditions 

To verify the efficacy of the MEGFs selected by the GRA, we randomly selected 1600 
training samples and 1000 test samples from the vehicle image dataset and implemented 
the VTR based on the Gabor features extracted from every patch and the proposed KSRC. 
Tab. 1 shows the accuracy and computing time of the VTR based on the MEGFs 
extracted from different Gabor kernels, where the average computing time (ACT) 
includes training time and test time. In Tab. 1, the used 15 Gabor features include 5 other 
Gabor features except the 10 MEGFs and the 20 Gabor features includes 10 other Gabor 
features except for the 10 MEGFs.  
Tab. 2 shows the accuracy and ACT of the VTR based on other Gabor features except the 
MEGFs. Comparing Tab. 1 to Tab. 2, the ACT increases when the number of the used 
Gabor features increases; however, the accuracy, precision and recall of the VTR do not 
increase much. The VTR based on the MEGFs has higher accuracy, precision, and recall 
compared to the methods without using the MEGFs when the number of the selected 
Gabor features is equal. Especially when the MEGFs selected by the GRA were 
employed, the best performance was achieved, which has the highest accuracy, precision 
and recall, as well as the least computing time. Therefore, for the VTR, the Gabor feature 
selection based on the GRA is effective, which can not only improve the performance of 
the VTR but also reduce the computing time of classifiers. 



 
 
 
A Two-Stage Vehicle Type Recognition Method Combining                                2503 

 
(a) License plate  

 

 

 

 

 
(b) The extracted Gabor features 

Figure 4: Gabor feature extraction 
 

                  
                 (a) Vehicle roof                          (b) Windscreen and rear-view mirror 

              
(c) Hood                                                    (d) License plate 

Figure 5: Grey relational degree of vehicle patches 

4.2 Results of two-stage classification 
4.2.1 Results of the first stage classification 
For the first stage classification, we randomly selected 1600 samples as training samples, 



 
 
 
2504                                                                       CMC, vol.65, no.3, pp.2489-2510, 2020 

200 samples under good illumination without occlusion as well as 200 samples under 
poor illumination or partial occlusion as test samples. If the vehicle type is recognized as 
bus or truck, the test sample is considered to be a big vehicle. Similarly, if the type is 
recognized as van or sedan, the test sample is considered to be a small vehicle. Tab. 3 
shows the experimental results where the test samples are captured under good 
illumination without occlusion. Further, Tab. 4 shows the results under poor illumination 
or partial occlusion. 
Tabs. 3 and 4 show that the VTR based on the first stage of classification has high 
accuracy, precision and recall, even for the test samples captured under poor illumination 
or partial occlusion. 
 

Table 1: Classification results based on the MEGFs 

Number of 
used Gabor 

features 

Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

ACT 
(ms) 

5 93.2 92.7 89.5 1621 
10 95.8 94.4 90.9 2819 
15 94.7 93.9 88.9 3820 
20 93.6 91.8 87.2 5014 

 
Table 2: Classification result without using the MEGFs 

Number of used 
Gabor features 

Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

ACT 
(ms) 

5 87.8 86.4 85.9 1636 
10 90.7 88.9 89.1 2836 
15 91.0 89.8 88.6 3845 
20 92.4 91.1 90.4 5114 

 
Table 3: Result based on the first stage of classification under good illumination and 
non-occlusion 

Vehicle type Accuracy (%) Precision (%) Recall (%) 
Large vehicle 98.7 97.9 97.1 
Small vehicle 98.5 98.1 97.3 
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Table 4: Result based on the first stage of classification under poor illumination or partial 
occlusion 

Vehicle type Accuracy (%) Precision (%) Recall (%) 
Large vehicle 91.7 90.8 90.6 
Small vehicle 91.3 90.4 90.2 

4.2.2 Results of the second stage classification 
Based on the result in the first stage of classification, if the test sample is considered to be 
big vehicle, the sub-dataset of big vehicles will be used in the following second stage of 
classification. Similarly, if the test sample is recognized as a small vehicle, the sub-
dataset of small vehicles will be used. We randomly selected 1600 samples as training 
samples including 400 bus images, 400 truck images, 400 sedan images, and 400 van 
images. Additionally, we also randomly selected 200 samples under good illumination 
without occlusion and 200 samples under poor illumination or partial occlusion as test 
samples from the big vehicle dataset or small vehicle dataset for further classification. 
Tab. 5 shows the experimental results for test samples captured under good illumination 
without occlusion. Tab. 6 shows the results under poor illumination or partial occlusion. 
Tab. 5 and Tab. 6 shows that the second stage classification achieves high-accuracy 
results for the four types of vehicles. Compared to the classification results under good 
illumination without occlusion, the performance of the second stage classification under 
poor illumination or partial occlusion decreases in terms of accuracy, precision and recall; 
however, when partial occlusion occurs, our proposed method can still correctly 
recognize the vehicle type through other non-occluded key patches.  

 
Table 5: Result based on the second stage of classification under good illumination and 
non-occlusion 

Vehicle type Accuracy (%) Precision (%) Recall (%) 
Bus 96.0 95.7 95.3 

Truck 96.2 95.6 94.9 
Van 95.9 95.1 94.5 

Sedan 95.8 94.6 95.1 
 

Table 6: Result based on the second stage of classification under poor illumination or 
partial occlusion 

Vehicle type Accuracy (%) Precision (%) Recall (%) 
Bus 90.5 88.9 89.1 

Truck 90.9 89.2 89.8 
Van 91.5 90.3 90.1 

Sedan 92.3 91.4 90.6 
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4.3 Comparison with single-stage classification 
To illustrate the efficacy of the two-stage scheme, we implemented single-stage 
classification methods using two classifiers, SKNNC and the KSRC, for comparison 
purposes. We randomly selected 1600 samples as training samples and 400 samples as 
test samples from the dataset. The single-stage classification results based on the SKNNC 
and edge feature, as well as the results based on the KSRC and MEGFs, are shown in Tab. 
7 and Tab. 8, respectively. Comparing the results in Tabs. 7 and 8 to the results in Tab. 6, 
we can see that the proposed VTR method with two classification stages overpasses the 
single-stage classification in terms of accuracy, precision, and recall. Further research 
shows that the SKNNC has an excellent ability to distinguish large vehicles and small 
vehicles by taking position and direction into consideration. However, when the four 
types of vehicles are mixed, the method becomes difficult to distinguish specific vehicle 
type precisely. Moreover, the single-stage classification based on the KSR needs more 
training samples to train more classifier parameters for the involving four types of 
vehicles. Therefore, the performance of the single-stage classification methods will 
degrade in accuracy, precision, and recall compared to the proposed method based on the 
two-stage scheme. 

Table 7: Single-stage classification results based on SKNNC and Edge feature  

Vehicle type Accuracy (%) Precision (%) Recall (%) 
Bus 88.9 87.8 87.4 

Truck 88.2 86.9 87.1 
Van 87.9 86.4 85.9 

Sedan 87.6 86.2 85.6 

Table 8: Single-stage classification results based on KSRC and MEGFs  

Vehicle type Accuracy (%) Precision (%) Recall (%) 
Bus 92.8 91.3 90.8 

Truck 92.5 91.1 89.7 
Van 92.1 90.7 89.4 

Sedan 91.2 90.0 88.8 

4.4 Comparison with other methods 
To verify the advantages of the proposed method over other popular methods, we tested our 
method on the dataset in Peng et al. [Peng, Jin and Luo (2012)]. The experiments on daylight 
images and nightlight images were conducted respectively. Our method achieves 96.0% 
classification accuracy for daylight images and 91.5% for nightlight images, better than the 
results of other popular methods, as demonstrated in Tab. 9. In addition, we tested our 
proposed method on the public BIT-Vehicle dataset provided in Dong et al. [Dong, Wu, Pei 
et al. (2015)]. Our method achieves 90.4% classification accuracy, yet the accuracy of the 
method in Dong et al. [Dong, Wu, Pei et al. (2015)] reaches 88.11% only. Therefore, our 
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proposed method outperforms the method in Dong et al. [Dong, Wu, Pei et al. (2015)] on the 
BIT-Vehicle dataset.  
The advantages of the proposed method are due to three reasons as follows. First, the 
improved Canny edge detection algorithm in the proposed method can extract the edge 
feature with more complete information that improves classification performance in the 
first stage. Second, the GRA incorporated in the proposed method helps to select more 
discriminative Gabor features for VTR while eliminating potential data redundancy. 
Third, the proposed method with a two-stage scheme leverages the advantages of the 
extracted edge and Gabor features in describing vehicle attributes. In details, the 
extracted edge feature that represents the geometrical contour of a vehicle is applied to 
the first stage classification only to determine whether the test sample belongs to large 
vehicle or small vehicle. The Gabor feature that represents the structural details of a 
vehicle is then applied to the second stage classification to determine whether the vehicle 
belongs to bus, truck, van or sedan based on the classification result from the first stage. 
Such a hierarchical determination process improves the accuracy and reliability of VTR. 

Table 9: Comparison results between our method and other methods 

Methods Accuracy (%) 
 Daylight Nightlight 

Psyllos et al. [Psyllos, 
Anagnostopoulos and Kayafas 

(2011)] 
78.3 73.3 

Peng et al. [Peng, Jin and Luo 
(2012)] 90.0 87.6 

Dong et al. [Dong and Jia 
(2013)] 91.3 - 

Dong et al. [Dong, Wu, Pei et 
al. (2015)] 96.1 89.4 

Ours 97.7 91.5 

5 Conclusions 
This paper has proposed a new two-stage VTR method combining the most effective 
Gabor features, which can improve classification accuracy, robustness and computation 
efficiency. The improved Canny edge detection algorithm is adopted to extract the edge 
feature of vehicle. A set of Gabor wavelet kernels with five scales and eight orientations 
can extract local structural details of vehicle from four partitioned key image patches. 
The introduced GRA can select the most effective Gabor features to reduce the 
dimension of input feature vector. The proposed two-stage VTR scheme can improve the 
reliability and robustness of VTR, where the preliminary vehicle type such as big vehicle 
or small vehicle is recognized based on the SKNNC and vehicle edge features. Detailed 
specific vehicle type, such as bus, truck, van, or sedan, is recognized based on the KSRC 
and the most effective Gabor features by adding a verification and correction step using 
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minimum residual analysis. Experimental results demonstrate the efficacy of the 
proposed VTR method. 
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