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Abstract: In recent years, mobile Internet technology and location based services have 
wide application. Application providers and users have accumulated huge amount of 
trajectory data. While publishing and analyzing user trajectory data have brought great 
convenience for people, the disclosure risks of user privacy caused by the trajectory data 
publishing are also becoming more and more prominent. Traditional k-anonymous 
trajectory data publishing technologies cannot effectively protect user privacy against 
attackers with strong background knowledge. For privacy preserving trajectory data 
publishing, we propose a differential privacy based (k-Ψ)-anonymity method to defend 
against re-identification and probabilistic inference attack. The proposed method is 
divided into two phases: in the first phase, a dummy-based (k-Ψ)-anonymous trajectory 
data publishing algorithm is given, which improves (k-δ)-anonymity by considering 
changes of threshold δ on different road segments and constructing an adaptive threshold 
set Ψ that takes into account road network information. In the second phase, Laplace 
noise regarding distance of anonymous locations under differential privacy is used for 
trajectory perturbation of the anonymous trajectory dataset outputted by the first phase. 
Experiments on real road network dataset are performed and the results show that the 
proposed method improves the trajectory indistinguishability and achieves good data 
utility in condition of preserving user privacy. 
 
Keywords: Trajectory data publishing, privacy preservation, road network, (k-Ψ)-
anonymity, differential privacy. 

1 Introduction 
In recent years, location-based services are widely applied to a large variety of mobile 
applications such as route navigation, social games, and Mobile Crowdsensing [Liu, Liu, 
Zheng et al. (2018); Xiao, Chen, Xie et al. (2018)] and so on. During the application of 
above location-based services, massive trajectory data of users is generated and collected. 
Trajectory data analysis has significant value for no matter governments, commercial 
organizations or individuals. For example, trajectory data analysis can help improve traffic 
safety and reduce traffic congestion [Xia, Hu and Luo (2017)]. For individuals, it can bring 
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conveniences to daily life, like optimal route selection when a traffic jam occurs. 
However, trajectory data is a sampling sequence of the moving object with position and 
time information. It usually contains rich explicit spatio-temporal information, and 
implicit features such as personal behavior patterns, frequent meet and future mobility 
[Feng and Zhu (2016)]. Directly publishing original trajectory data or publishing 
trajectory data without carefully taking privacy preservation into consideration may cause 
problems of privacy disclosure. Nowadays, users pay more attention to personal privacy 
concerns and the risks of privacy disclosure will severely reduce the enthusiasm of users 
to contribute his/her trajectory data. Thus privacy preserving data publishing become a 
hot topic in the data mining field, and its goal is to keep the utility of published data 
under the constraint of privacy protection. In general, the published data should meet the 
following two objectives: firstly, to ensure the attackers cannot infer the sensitive 
information of target individual with high probability. Secondly, to keep the published 
data still has good utility for third-party users to perform data analysis in condition of 
privacy preservation. 
Since trajectory data is spatio-temporal correlated, high-dimension and context-aware, 
traditional privacy preserving techniques such as k-anonymity [Gruteser and Grunwald 
(2003)], are not well suited for privacy preserving trajectory data publishing. However, k-
anonymity model aims at the pre-set attack, and may cannot resist other attacks. 
Compared with k-anonymity model, differential privacy [Dwork and Roth (2014)] is an 
unconditional privacy protection mechanism that can resist arbitrary attacks and it has 
been applied to protect trajectory data with two privacy definitions: event-level and user-
level, the former protects any single event (e.g., a single location point), whereas the 
latter protects all the events of any user (e.g., the trajectory of any individual) [Wang, 
Zheng, Rehmani et al. (2018)]. 
In this paper, we combine both k-anonymity and differential privacy, propose a 
differential privacy based (k-Ψ)-anonymity method to address the privacy threat in 
trajectory data publishing and defend against malicious attackers with strong background 
knowledge. In summary, we make the following contributions in this paper: 
i. We propose a two-stage trajectory data publishing method that enables the published 

data against re-identification and probabilistic inference attack. At the first stage, a 
dummy-based (k-Ψ)-anonymity algorithm is presented for the indistinguishability of 
the trajectory data. And at the second stage, Laplace noise is used for trajectory 
perturbation under differential privacy. 

ii. We propose a dummy-based (k-Ψ)-anonymity algorithm. Different from (k-δ)-
anonymity, the radius δ at each moment is adaptively determined by the query 
context and the motion model. On this basis, an adaptive threshold set Ψ that 
considers road network information is constructed for dummy trajectory generation. 

iii. For trajectory perturbation, Laplace noise regarding distance of anonymous locations 
is used to ensure better privacy preservation. The experimental results on the real 
dataset show that the proposed method improves the trajectory indistinguishability 
and achieves good data utility in condition of preserving user privacy. 
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The rest of the paper is organized as follows. Section 2 presents the related works. 
Section 3 introduces system architecture of privacy preserving trajectory data publishing. 
Section 4 and Section 5 describe the (k-Ψ)-anonymity trajectory algorithm and 
differentially private trajectory perturbation algorithm respectively. The security analysis 
of the differential privacy based (k-Ψ)-anonymity algorithm is given in Section 6. Section 
7 shows the experimental results and analysis of comparative experiments. Section 8 
concludes this paper. 

2 Related works 
A recent survey divide the location privacy protection mechanisms into two scenarios 
(online or offline scenario) and six categories of techniques including mix-zones, 
generalization-based, dummy-based, perturbation-based, protocol-based and rule-based 
techniques [Primault, Boutet, Mokhtar et al. (2018)]. The online scenario mostly focuses 
on snapshot queries and its extension, that is, users query and want an immediate answer, 
e.g., Peng et al. [Peng, Liu, Meng et al. (2017)] proposed a collaborative trajectory 
privacy preserving (CTPP) scheme in continuous LBSs. The scheme can confuse the 
LBS adversary by issuing fake queries to obfuscate the actual trajectory of users. While 
the offline scenario refers to an LBS has collected users’ trajectory data and want to 
publish it, whether it is for commercial or non-profit purposes, e.g., Dong et al. [Dong 
and Pi (2018)] proposed a privacy preserving trajectory data publishing algorithm based 
on frequent path to strike a balance between data utility and privacy. The workflow of the 
proposed algorithm is to remove infrequent roads in each trajectory firstly, and divide 
trajectories into candidate groups, then find the most frequent path and lastly select the 
representative trajectory to represent all trajectories within a group. Most of above 
mentioned techniques adopt k-anonymity, differential privacy or other privacy 
preservation model to satisfy requirements of privacy protection. 
Various k-anonymity models can protect the trajectory data from trail re-identification 
attack by hiding the connection between user and the trajectory data, and the attackers 
cannot identify the identity of specific user or the user that the target trajectory belongs to. 
Based on the k-anonymity, Abul et al. [Abul, Bonchi and Nanni (2010)] presented (k-δ)-
anonymity. They considered the perturbed trajectory of a moving object as a cylinder 
with radius δ, and the objects in the same cylinder are indistinguishable. A series of 
methods based on (k-δ)-anonymity are proposed for privacy preserving trajectory data 
publishing. k-anonymity cannot protect spatio-temporal trajectory data from the 
probabilistic attacks, so Gramaglia et al. [Gramaglia, Fiore, Tarable et al. (2017)] 
introduced ,kτ ε − anonymity to solve the probabilistic and record linkage attacks for 
mobile subscriber trajectory data. They discuss the optimal spatio-temporal 
generalization of k trajectories and propose the k-merge algorithm that generalizes 
trajectories with minimal loss of data granularity to guarantee ,kτ ε − anonymity. Tu et al. 
[Tu, Zhao, Xu et al. (2017)] introduced a novel attack in publishing trajectory datasets, 
namely semantic attack. Then for the objective of not only preventing individuals from 
being re-identified but more importantly protecting semantic information of the trajectory 
data, they proposed an algorithm to continuously merge trajectories from the original 
dataset, and obtain a new generalized dataset consisting of all merged trajectories. The 
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experimental results show that the algorithm achieves k-anonymity, l-diversity, and t-
closeness of trajectories.  
Differential privacy is an unconditional privacy protection mechanism which achieves 
privacy preservation by adopting perturbation-based techniques. Wang et al. [Wang and 
Xu (2017)] proposed a correlated time-series data publication solution based on 
differential privacy by enforcing Series-Indistinguishability and designing a correlated 
Laplace mechanism. Series-Indistinguishability guarantees the perturbed series and the 
original series is indistinguishable for an adversary, and the mechanism uses four Gauss 
white noise series to produce a correlated Laplace noise series. Based on the utility 
violation of the released trajectory data, Li et al. [Li, Zhu, Zhang et al. (2017)] proposed a 
differentially private trajectory data publishing scheme including a bounded Laplace 
noise generation algorithm and a trajectory merging algorithm. The experimental results 
show that the scheme can reduce trajectory merging time and have similar data utility 
with the works of Hua et al. [Hua, Gao and Zhong (2015)]. Gursoy et al. [Gursoy, Liu, 
Truex et al. (2018)] proposed DP-Star method for publishing trajectory data with 
differential privacy guarantee and high utility. DP-Star uses the MDL (Minimum 
Description Length) metric to summarize raw trajectories, and construct a density-aware 
grid to ensure spatial densities. DP-Star preserves the correlations between trajectories' 
end points through a private trip distribution, and intermediate points through a private 
Markov mobility model. At last, DP-Star estimates users’ trip lengths using a median 
length estimation method, and generates synthetic trajectories that preserve both 
differential privacy and high utility. To solve the extreme sparseness problem of spatio-
temporal data, Al-Hussaeni et al. [Al-Hussaeni, Fung, Iqbal et al. (2018)] proposed a 
solution combined with SafePath to model trajectories as a noisy prefix tree, with the 
goal of publishing differentially private trajectories while minimizing the impact on data 
utility. Ou et al. [Ou, Qin, Liao et al. (2018)] consider the mutual correlation between 
trajectories of two users may leak sensitive social relations, and propose a n-body 
Laplace framework to prevent social relations inference attack. Under the n-body Laplace 
framework, two Lagrange Multiplier-based Differentially Private (LMDP) approaches 
are proposed to optimize the privacy budgets, and the experimental results show that the 
proposed approaches achieve good privacy and data utility. All these DP-based schemes 
directly work on trajectory data, but in actual scenarios, the users’ location data is stored 
discretely in a row format, so they are difficult to protect location data in data mining. To 
solve this problem, Gu et al. [Gu, Yang and Yin (2018)] propose a DP-based scheme to 
protect location data records. The scheme can query and publish location data on 
database by using a multi-level query tree structure, and it can provide a balance between 
data utility and privacy preservation. 

3 System model 
3.1 Attack model 
In dummy-based trajectory data publishing, attackers try to infer the dummy trajectory to 
weaken privacy protection, or even identify the user’s real trajectory. Thereby attackers can 
illegally get user’s sensitive information.  
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Usually, the malicious attacker can be divided into two types: passive attackers and active 
attackers. A passive attacker is someone who collect user’s information through 
interception without tampering, replaying or re-injecting data. In practice, some mature 
encryption methods [Shi, Wang, Zhu et al. (2019); Liu, Chen, Zhu et al. (2017)] such as 
public key encryption can be used to defend against such attack. An active attacker often 
takes cooperative attack or inference attack [Wang, Zheng, Rehmani et al. (2018)] as the 
common attack method, and both of above two type attacks can cause severe privacy 
disclosure. For example, Huo et al. [Huo, Meng and Zhang (2013)] propose a hidden 
location inference attack, and the adversaries can infer users’ location based on users’ 
historical check-in location data. Cooperative attack is often used as an up-front auxiliary 
part of inference attack, to get some fundamental data and use this acquired data as the 
input of inference attack.  
In this paper, we will take both cooperative attack and inference attack into consideration, 
but mainly focus on inference attack.  
The inference attack commonly uses probabilistic reasoning, which handles uncertain and 
probabilistic information and results a range of possible area. For k-anonymity method, the 
inference probability can be expressed as ( | )P V v→ Ω , where V denotes the anonymity 
dataset, v  is the actual data of the target user. And Ω  is the attribute set of the target user 
gained by the attacker, namely the background knowledge of the attacker, for example, 
time, location, interests and other attributes. The inference probability of k-anonymity is 
actually the probability of matching degree between the explicit identifier and the sensitive 
information. The relationship of inference probability is expressed as follows: 

 (1) 

According to above relationship, the inference probability of k-anonymity is: 
( | ) ( | ) ( | ) ( | )EI SI QI EI QI SIQI QIP A A T T P A A T P A A T P A A T′ ′ ′↔ = → × → × →  (2)

 where T  is the original attribute dataset, T ′  is the anonymity attribute dataset, and EIA , QIA  
are the explicit identifier set and the quasi-identifier set respectively, QIA  is the anonymity 

quasi-identifier attribute set, SIA  is the anonymity sensitive attribute set, and T T ′Ω =  . 
( | )EI SIP A A T T ′↔   is the probability that the explicit identifiers and the sensitive 

attributes can be derived from each other under the condition of attribute sets Ω . 
( | )QI EIP A A T→  is the probability that the explicit identifiers can be derived according to 

the quasi-identifiers in T . ( | )QIQIP A A T ′→  is the probability that the original quasi-

identifiers can be derived according to the anonymity quasi-identifiers in T ′ . 
( | )SIQIP A A T ′→  is the probability that the anonymity sensitive attributes can be derived 

according to the anonymity quasi-identifiers in T ′ . Probability threshold is set in advance for 
each reasoning process, and inference is successful if inference probability exceeds the 
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threshold. Therefore in addition to guarantee the dataset with k-anonymity, considering 
features of probabilistic reasoning and improving the probabilistic reasoning process, may 
reduce the success rate of inference attack and enhance the capability of privacy preservation. 

3.2 Architecture 
The generalization-based trajectory k-anonymity technology can protect the user’s 
privacy while guarantee the availability of published trajectory data. But when faced with, 
attackers with strong background knowledge, it still has the risk of privacy disclosure. 
Recently, differential privacy is widely used as a privacy protection technology in 
statistical queries, machine learning, etc. And it has been proven to be a good defense 
against attackers with strong background knowledge.  
We adopt the centralized architecture [Primault, Boutet, Mokhtar et al. (2018)] and use 
differential privacy based (k-Ψ)-anonymity technology to publish trajectory data. The 
proposed architecture consists of three parts: the trajectory data provider (individual user), 
the trusted third party, and the data consumer, as shown in Fig. 1. Among them, the tasks 
completed by the third party include trajectory data collection, trajectory data 
preprocessing and trajectory data processing to satisfy privacy requirements.  

 

Figure 1: System architecture of privacy preserving trajectory data publishing 

3.3 Related concepts 
Definition 1 (Trajectory): The trajectory is a spatio-temporal sequence, which consists of 
the locations of the user over a period of time, it can be expressed as: 

1 1 1 2 2 2 n{(x , , ),(x , , ), , (x , , )}n ntrail y t y t y t=  , where ( , , )i i ix y t  is the spatial location at 
time it , 1 i n≤ ≤ . As shown in Fig. 2, t1->t2->t3->t4->t5->t6->t7 is a trajectory of certain 
user in the road network.  
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Figure 2: Trajectory of road network 

Definition 2 (Trajectory Set): When the trajectory data is publishing, the 1k −  dummy 
trajectory generated by the anonymity server and the real trajectory realtrail constitute a 
trajectory set 1 2 1{ , , , , }k realTrails trail trail trail trail−=  , | |Trails  is the number of 
elements in the set Trails . 
Definition 3 (Trajectory (k-Ψ)-Anonymity): For any trajectory in the (k-Ψ)-anonymity 
sets S which contains the real one realtrail , there are at least k-1 other trajectories 
indistinguishable in time and location, where Ψ is a set of uncertain threshold 

i (1 )i kδ ≤ ≤ .  

4 (k-Ψ)-Anonymity trajectory data publishing 
4.1 (k-Ψ)-Anonymity trajectory model 
The real trajectory realtrail in three-dimensional space is denoted as 

1 1 1 2 2 2{( , , ),( , , ) ( , , )}n n nx y t x y t x y t， ， , and other 1k −  dummy trajectories need to be 
generated based on δ rule to achieve (k-δ)-anonymity. Usually, the dummy trajectories 
method firstly generate 1k −  dummy locations at each time it  during the time period 

1 2{ , , , }nt t t . Then selecting a dummy location at time it  respectively to synthetize 1k −  
dummy trajectories. At time it , we use 1 1 2 2 1 1{( , , ),( , , ), , ( , , )}k k

i i i i i i i i ix y t x y t x y t− −
  to denote 

the 1k −  dummy locations, and the distance between each of these dummy locations and 
the true location should be less than δ. However, deciding the uncertain circle that centers 
on the real location and has a radius δ to generate dummy locations is not enough. If the 
road network and the moving object are not taken into consideration, there may exists 
invalid dummy locations in the 1k −  dummy location sets, and these invalid ones can be 
easily identified by the attacker. Therefore, we process the trajectory based on the 
moving object model in the road network to achieve (k-δ)-anonymity.  
The threshold δ of all trajectories is same in default. For better workability of anonymity 
and adapting to road changes of different segments in the road network, different 
thresholds are adopted and iδ  is the threshold at time it . We use 1 2 n={ , ,  ..., }ψ δ δ δ  to 
denote the set of these uncertain thresholds. 



 
 
 
2672                                                                        CMC, vol.65, no.3, pp.2665-2685, 2020 

Definition 4 (Approximate Trajectory): In the discrete time range 1[ , ]nt t , if and only if at 
any time 1[ , ]i nt t t∈ , any spatio-temporal point 1 1( , , )i i ix y t  on the trajectory 1τ  and any 
spatio-temporal point 2 2( , , )i i ix y t  on the trajectory 2τ  satisfy 

1 1 2 2(( , ),( , )) 2i i i i iDist x y x y δ≤ , the two trajectories 1τ  and 2τ  are approximate trajectories 
with each other, where 1 i n≤ ≤  and  

2 2
1 1 2 2 1 2 1 2(( , ),( , )) ( ) ( )i i i i i i i iDist x y x y x x y y= − + −    (3) 

The approximate trajectories 1τ  and 2τ  are represented as 1 2( , )iSimilarδ τ τ  with given 
threshold iδ , they can be mutually possible moving curves. According to Eq. (3), any 
two approximate trajectories in the uncertain trajectory dataset are indistinguishable. That 
is, if 1τ  and 2τ  are approximate trajectories, when the attacker infers 1τ  based on the 
background knowledge, 2τ  will also be the trajectory recognized. Since 2τ  is also in the 
cylinder 1( , )Vol τ ψ  composed of the uncertain trajectory dataset, and it can be the 
possible moving curve of 1τ . Consequently, the attacker is unable to distinguish the 
approximate trajectories 1τ  and 2τ . 
Definition 5 (Trajectory Anonymity Set): For a given threshold set Ψ, the trajectories set 
Trails  is called an anonymity set if and only if any two trajectories in Trails  are 
approximate trajectories. That is: 

,i j Trailsτ τ∀ ∈ , i( , )jSimilarψ τ τ  (4) 

Definition 6 ((k-Ψ)-Anonymity of Trajectories): For the given trajectories set Trails , 
degree of anonymity k, and the threshold set Ψ, Trails  achieve (k-Ψ)-anonymity if and 
only if there exists a k-anonymity set S Trails⊆  for each trajectory Trailsτ ∈ , which 
satisfies Sτ ∈  and | |S k≥ . 
Fig. 3 is a three-dimensional space map of an anonymity set of trajectories. In the figure, 
the degree of anonymity k is 3. There are three trajectories including a real one and two 
dummy trajectories, and every two among them are approximate trajectories. In the 
irregular cylinder 1( , )Vol τ ψ  composed of the uncertain trajectory dataset, a circle with a 
radius of iδ  at each time it  can be drawn, and the location of the real trajectory and the 
locations of the dummy trajectories are all within this uncertain circle. Taking the road 
network model into consideration is to eliminate invalid dummy locations, and let the 
generated dummy locations are all in the vicinity of the road network segment, which 
makes the dummy locations and the real location more difficult to distinguish. 
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Figure 3: (k-Ψ)-anonymity set of trajectories 

4.2 (k-Ψ)-Anonymity trajectory algorithm 
 (k-Ψ)-anonymity trajectory algorithm generates 1k −  dummy trajectories based on the 
real trajectory of the user and a threshold set Ψ. The real trajectory of the user is 

1 2( , , , )real real real
real ntrail l l l=  , and 1k − dummy locations are generated based on the real 

location in the trajectory at each time it , we define 1 2 1( , , , , )k real
i i i i iL l l l l−=   as the set of 

k locations at time it . In order to guarantee the validity of the dummy locations, we used 
a dummies generation method called TreeGenerate [Li and Li (2018)]. This method 
firstly generates a valid dummy edges set 1 2 1{ , , , }i kQ e e e −=   based on the query context 
and motion model, and then converts the 1k −  edges into 1k −  locations in the circle of 
radius with iδ , where the real location is also included in. The (k-Ψ)-anonymity 
trajectory algorithm is given as follows. 

Algorithm 1: (k-Ψ)-anonymity trajectory algorithm 
Input: the real trajectory realtrail , the degree of anonymity k  

Output: the k-anonymity trajectories set 1 2 1{ , , , , }k realTrails trail trail trail trail−= 

 

1: FOR each real
i reall trail∈  

2:   ( )real
i realConvertToe l e→    // convert the real location at it  to an edge in  

// the road network 
3:    WHILE | | 1iQ k< −    // | |iQ  is the number of valid edges generated based  
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// on reale  

4:     ( , )real iTreeGenerate G e Q→  

5:    END WHILE 
6:    FOR each j ie Q∈    //convert the k-1 dummy edges to the locations in the road 

                                        //network and put them into a dummy locations set iL  

7:       ( ) j
j iConvertTol e l→  

8:       { }j
i i il L L∪ →  

9:    END FOR 
10:    { }real

i i il L L∪ →  

11:    IF ( )i iL CircularArea δ∈   //whether all the dummy locations generated at time 

                                                    // it  are in the circular of radius with iδ  

12:       { }iL LL LL∪ →   // 1 2{ , , , }nLL L L L= 

 

13:    ELSE 
14:       GOTO 3  // jump to step 3 if the conditions are not met 
15:    END IF 
16: END FOR 
17: FOR each iL LL∈   //generate k trajectories based on the locations at each time 

18:    FOR each j
i il L∈  

19:      { }j
i j jl trail trail∪ →  

20:    END FOR 
21:  END FOR 
22:  RETURN Trails  

5 Trajectory perturbation under differential privacy 
Traditional location privacy protection strategies are usually closely related to the attacker’s 
background knowledge and can only resist certain pre-set attacks. For example, the above 
(k-Ψ)-anonymity trajectory algorithm can resist the re-identification attack, but cannot 
prevent sub-trajectory attack. Differential privacy assumes the attacker has a maximized 
background knowledge and perturbs the input/output data or intermediate result by adding 
noise to achieve privacy protection. This method can provide a strong privacy guarantee 
while keeping a relatively small amount of computation overhead, which can be well 
applied to solve the privacy disclosure problem in the trajectory data publishing. 
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5.1 Differential privacy 
Differential privacy is a data distortion-based privacy protection method that add noise to 
the original data. Supposing that 1D  and 2D  are a pair of adjacent datasets that are only 
differ in one record, the concept of -ε differential privacy is given as follows: 
Definition 7 ( -ε Differential Privacy [Dwork and Roth (2014)]): A random algorithm q  
is -ε differentially private if for all ( )S Range q⊆ : 

1

2

Pr[ ( ) ]
Pr[ ( ) ]

q D S e
q D S

ε∈
≤

∈
 (5) 

where Pr[ ]A  is the probability that the algorithm output A  and S  is the subset of all the 
output of the algorithm q .  

By perturbing the output, differential privacy guarantees a randomized algorithm behaves 
similarly on adjacent datasets. Moreover, for numeric data, we can use the Laplace 
mechanism which adding noise subject to Laplace distribution to the output.  
Definition 8 (Laplace Distribution): If the probability density function of a random 
variable is: 

1( | , ) exp( )
2

exp( ) ( )
1 b
2 exp( ) ( )

xf x b
b b

x if x

xb if x
b

µµ

µ µ

µ µ

−
= −

− − <=  − − ≥


 (6) 

then the random variable subject to the Laplace distribution, where µ  is the location 
parameter, and 0b >  is the scale parameter.  
Definition 9 (Sensitivity): For the random algorithm q , the sensitivity is defined as the 
difference between the adjacent datasets 1D  and 2D : 

1 2 1,1 2
max || ( ) ( ) ||
D D

q q D q D∆ = −  (7) 

where 1 2 1|| ( ) ( ) ||q D q D−  is the 1l  norm distance between 1( )q D  and 2( )q D .  

Definition 10 (Laplace Mechanism [Dwork and Roth (2014)]): For the random algorithm 
q , the Laplace mechanism is defined as: 

1 2( , , ) ( ) ( , , , )kM x q q x Y Y Yε = +   (8) 

where x  is a k-dimensional input and iY  is the Laplace noise. The Laplace mechanism 
perturbs the output with Laplace noise, and preserves -ε differential privacy. For each 
noise, they are random variables drawn from the Laplace distribution centered at 0 and 

the scale is calibrated to the sensitivity of q (divided by ε ), that is, ( )i
qY Lap
ε
∆

 . 
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5.2 Perturbation by adding laplace noise 
The algorithm 1 output a (k-Ψ)-anonymity trajectory set Trails , and to achieve 
differentially private perturbation, we first extract the locations set 

1 1 2 2{( , , ),( , , ), , ( , , )}i i i i i i ki ki ix y t x y t x y t  drawn from the all k trajectories at time it , where 
1 i n≤ ≤ . For convenience, we use a simple version 1 2{ , , , }kL l l l=   to denote the 
locations set at time it . For two locations il  and jl  in L , they may get a same perturbed 
result ( , )p p pl x y=  by adding random noise drawn from the Laplace distribution. The 
whole trajectory set is -ε differentially private if for any two locations il  and jl  in every 
L , the probability of the algorithm output ( , )p p pl x y=  satisfy the following formula: 

( | ) ( | )p i p jP x x e P x xε≤  (9) 

( | ) ( | )p i p jP y y e P y yε≤  (10) 

where 0ε ≥ , , {1,2, }i j k∈  , ( | )p iP x x  and ( | )p iP y y  are the probability of outputting 
the perturbed results along x  and y  axis. It has been proved that adding noise to each 
coordinate point of the location is better than adding to the location directly to achieve 
privacy protection. Therefore, the Laplace noise with the scale b  is added to each 
coordinate point respectively for achieving the perturbed location ( , )p p pl x y=  

| |
1( | )
2

x xi p
b

p iP x x e
b

−
−

=  (11) 

| |
1( | )
2

y yi p
b

p iP y y e
b

−
−

=  (12) 

The random noise in each axis is ( ) ln (1-2| |)nd ndbsign r r− , where ndr  is a uniform random 
value within range [-1/2,1/2] . For scale b , it is set to (max min ) /n n n nx x ε−  when 
computing px , and set to (max min ) /n n n ny y ε−  when computing py , where maxn nx  
and minn nx  are the maximum and minimum value within set 1 2{ , ,  ..., }nx x x  respectively.  

In general, for the locations il , jl  and pl , we can get the following triangle inequality: 

| | | | | |j p j i i pl l l l l l− ≤ − + −  (13) 

we get a new inequality by transforming with dividing by b , taking the power exponent 
with e as the base, and multiplying by 1 / 2b  in both sides: 

| | | | | |
1 1
2 2

l l l l l li p j p i j
b b be e e

b b

− − −
− −

≤  (14) 

According to Formulas (11) and (12), (14) can be turned into: 
| |

( | ) ( | )
l lj i

b
p i p jP l l P l l e

−

≤  (15) 
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Considering the independence of x and y  coordinates, we can get: 
| |

( | ) ( | )
x xj i

b
p i p jP x x e P x x

−

≤  (16) 

| |

( | ) ( | )
y yj i

b
p i p jP y y e P y y

−

≤  (17) 

The maximum value of | |j ix x−  and | |j iy y−  are | max min |n n n nx x− and 
| max min |n n n ny y−  respectively. Therefore, we further transform (16) and (17) to: 

|max min |

( | ) ( | )
x xn n n n

b
p i p jP x x e P x x

−

≤  (18) 

|max min |

( | ) ( | )
y yn n n n

b
p i p jP y y e P y y

−

≤  (19) 

Therefore, when the scale b  is calibrated to | max min |n n n nx x−  and 
| max min |n n n ny y−  (divided by ε ) respectively, we can limit the probability of the 
random algorithm output the same value to the constant factor eε . 

5.3 Differentially private trajectory perturbation algorithm 
In the proposed differentially private trajectory perturbation algorithm, trajectory 
perturbation is achieved by the location perturbation. For location set 

1 2 1( , , , , )k real
i i i i iL l l l l−=   at time it , we add Laplace noise ( ) ln (1 2 | |)nd ndbsign r r− −  to 

each location in iL . Based on the perturbation, we can limit the probability ratio that the 
inference attack algorithm output the same location to the constant factor eε , and prevent 
the real location information from being inferred by the attacker with strong background 
knowledge. The differentially private trajectory perturbation algorithm is given as follows. 

Algorithm 2: differentially private trajectory perturbation algorithm 
Function 1: ( , )GetSourceData Trails T  

Input: (k-Ψ)-anonymity trajectory dataset 1 2, , , }kTrails trail trail trail= ｛ , 

time set 1 2, , , nT t t t= ｛ ｝ 
Output: original locations set 1 2{ , , , }nD L L L= 

 

1: FOR each it T∈  

2:   FOR each jtrail Trails∈  

3:       { }i
j i iloc L L∪ →   // i

jloc  is the location of -thj trajectory at time it  

4:   END FOR 
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5:   { }iL D D∪ →  

6: END FOR 
7: RETURN D  
Function 2: ( , )LapDifferential D ε  

Input: original locations set 1 2{ , , , }nD L L L= 

, privacy budget ε  

Output: perturbed location set D′  
1: FOR each iL D∈  

2:   FOR each j il L∈  

3:      ' ( ) ( ) [ ( ) ln(1 2 | |)]j j nd ndl x l x bsign r r= + − −  

4:      ' ( ) ( ) [ ( ) ln(1 2 | |)]j j nd ndl y l y bsign r r= + − −  

5:      ' ' '{ }j i il L L∪ →  

6:   END FOR 
7:   '{ } ' 'iL D D∪ →  

8: END FOR 
9: RETURN 'D  

6 Security analysis 
For trajectory data publishing, (k-δ)-anonymity reduces the probability of the attacker 
identifying the real trajectory to 1 / k , but it is still easy for the attacker with strong 
background knowledge to infer the real trajectory. The differential privacy based (k-Ψ)-
anonymity algorithm proposed in this paper, can effectively resist cooperative attack and 
inference attack. 
(1) Cooperative attack usually requires interactions between groups of users. However, 
the trajectory dataset we used is composed of multiple independent sub datasets, namely 
each sub dataset is only related to one user, so the cooperation attack has no effect on 
other users. Therefore, the algorithm we proposed can resist the cooperative attack. 
Ideally, the active attacker can capture the location service providers and get information 
about all relevant users, then the attacker can perform the inference attack.  
(2) Inference attack against (k-Ψ)-anonymity trajectory dataset focuses on inferring the 
location at each time on the trajectory. In other words, inference attack is successful if the 
attacker can infer the real trajectory by inferring the real location at each time. Ideally, 
the attacker cannot find any connection between the user and the perturbed location. 
However, the attacker may has a maximized background knowledge, such as the entire 
road network information, approximate locations related to the user, and even the general 
distribution of the adding noise. Based on these auxiliary information, the attacker can 
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access to user’s real location by inference attack. The trajectory data published by the 
proposed algorithm is 1 2 1{ , , , , }k real

i i i i iL l l l l−=  , where 1 i n≤ ≤ , and we assume that the 
attacker can access all k trajectory data and has the knowledge of differential privacy 
perturbation and the distribution of noise ( )iP l . As a result, the attacker can exclude some 
locations where the perturbation is highly unlikely to be generated according to these 
knowledge, and may increase the probability of successful inference attack. But according 
to the proposed algorithm, the size of Laplace noise added to the location coordinates ( , )x y  
is determined by the maximum distance of any two points in each coordinate component 
and the privacy budget ε . When the scale parameter b is set to the maximum distance, any 
two locations at the same time point in the anonymity dataset are reciprocal and satisfy 
differential privacy. For a perturbed location ( , )p p pl x y= , any location at the same time 
point in the anonymity dataset may generate this perturbed location by noise injection with 
nearly same probability (confined by eε ). Thus the attacker knowing these knowledges still 
cannot increase the probability of successful inference attack.  

7 Experimental evaluation 
In this section, we evaluate the effectiveness of the differential privacy-based (k-Ψ)-
anonymity algorithm for trajectory data publishing. The hardware environments of 
simulation experiment are Intel i5-6600 3.30 GHz CPU with 16 GB memory and 1T hard 
disk, and the software environments are Windows 10 (64bit), Microsoft Visual Studio 2013 
and MATLAB 2016. C++ and MATLAB are adopted as the programming languages. 
The experiment is conducted into two groups, the first group is to examine the 
indistinguishability of the trajectory data published by the (k-Ψ)-anonymity algorithm, and 
the second group is to examine the effectiveness of differentially private trajectory 
perturbation algorithm, the dataset used in the experiment is the road network of Oldenburg 
(OL) city, Germany. This OL dataset is a real-life dataset with 6,105 nodes and 7,035 edges, 
and the road network diagram simulated by MATLAB is presented in Fig. 4. 

 
Figure 4: The road network of oldenburg city 
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7.1 Analysis on trajectory data indistinguishability 
In order to examine (k-Ψ)-anonymity algorithm, we firstly generate a real trajectory with 
n  time-location points in the Oldenburg Road Network, and set 13n = . As shown in Fig. 
5, 8Trail  is the real trajectory of the user. Then, we generate seven dummy trajectories 
{ 1, 2, , 7}trail trail trail  based on the (k-Ψ)-anonymity algorithm. Any two trajectories in 
this anonymity set are approximate trajectories with each other. 
The DM (discernibility metric) is an important indicator commonly used to test the 
quality of anonymity trajectory dataset, which measures the indistinguishability between 
the trajectories in the anonymity trajectory dataset. Given a real trajectory realtrail , we 
can get a (k-Ψ)-anonymity trajectory dataset 1 1{ , , , , , }i k realTrails trail trail trail trail−=   , 
where 1{ , , , , }j n

i i i itrail loc loc loc=   , the DM can be defined as: 

1 1

1 1( )
( 1) ( ( , ))

k k

j jm i i mi m

DM Trails
k k Max Dist loc loc= =

≠

= × ∑ ∑
× −  (20) 

where ( ( , ))j j
i mMax Dist loc loc  is the maximum distance between the any two trajectory i  

and trajectory ( )m i m≠   at time j , 1 j n≤ ≤ . The DM value reflects the indistinguishable 
degree of the trajectory in the anonymity trajectory dataset, the larger of the DM value 
means the better indistinguishability. 

 

Figure 5: (k-Ψ)-anonymity trajectories in the road network 

To verify the validity of the 1k −  dummy locations of the proposed method, we compare 
our dummy locations regarding road network with those dummy locations generated 
ignoring road network information, to analyze the discernibility metric in two cases. If the 
location coordinates of any of j

iloc  and j
mloc  are not in the vicinity of road segment, the 

diameter value 2 jδ  is taken as ( ( , ))j j
i mMax Dist loc loc . As shown in Fig. 6, DM values of 

the two anonymity trajectory datasets (whether regarding road network or not) increase 
with the increasing of k value, this means that the risk of privacy leakage decreases 
as k increases. Another found is that the risk of privacy leakage of the dataset regarding 



 
 
 
A Differential Privacy Based (k-Ψ)-Anonymity Method                                      2681 

road network is smaller than the dataset ignoring road network. As k increases, computation 
cost also increases and the availability of the anonymity dataset decrease. Therefore, we 
need to balance between the quality of the dataset and the risk of privacy leakage. 

 
Figure 6: DM values of two anonymity trajectory datasets 

7.2 Analysis of differentially private trajectory perturbation algorithm 
To resist attackers with powerful background knowledge effectively, the differentially 
private trajectory perturbation algorithm is integrated with the (k-Ψ)-anonymity algorithm 
to generating anonymity trajectory dataset. In preparatory step, we firstly set 8k = , 

13n = , and generate trajectories in the road network. Fig. 7 is the 3-dimentional map of 
the anonymity trajectory dataset Trails , where 8trail  is the real trajectory, and 

1 7, ,trail trail  are dummy approximate trajectories, the blue square indicates the plane 
in which the location of the k  trajectories at time 1t = .  

 
Figure 7: 3-Dimentional map of the anonymity trajectory dataset 
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In next step, we get a location dataset 1 13{ , , , , }jL L L L=    from Trails , where 

1 2 8{ , , , }j j j jL l l l=  , and add Laplace noise to each coordinate of the location based on the 
proposed algorithm. In the differential perturbation, random noise 

( ) ln (1 2 | |)nd ndbsign r r− −  is independently calculated and added to the X coordinate and 
the Y coordinate of each location in jL , and the scale b  is calibrated to 
(max ( ) min ( )) /j jx x ε− , where we set 1ε = . As shown in Fig. 8, (a) is the 3-dimentional 
map of 8 anonymity trajectories with Laplace noise perturbation, (b) is the 3-dimentional 
map of k trajectories with and without perturbation, where red polylines are trajectories 
without perturbation, black polylines are trajectories with differential perturbation. It can be 
seen from figure (b) that the perturbed trajectories are similar in overall shape with the 
undisturbed ones, thereby the proposed algorithm can protect the trajectory privacy of the 
user without reducing the quality of the published trajectory data a lot.  

 
(a) 

 
(b) 

Figure 8: 3-Dimentional map of perturbation (k-Ψ)-anonymity trajectory 
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The indicator closeness degree is used to evaluate the effectiveness of the differential 
privacy based (k-Ψ)-anonymity algorithm, where the closeness degree is the ratio of the 
perturbed locations that are near to the real ones. We use dist  to denote the distance 
between the perturbed location and the real location, and compute the average 
perturbation percentage of dist  is less than 100/500/1000 meters when privacy 
budgetε is taken different value, the result is shown in Fig. 9.  

 

Figure 9: The closeness degrees of differential perturbation 

It can be seen that with increase in privacy budgetε , the added Laplace noise decreases, 
so the dist  between the perturbed locations and the real ones decreases. In general, the 
closeness degree increases as ε  increases. 
As shown in Fig. 9, and in the case of the same ε , the smaller the specified range is, the 
smaller the closeness degree is. For example, when ε  is 0.5, more than 90% of the 
perturbed locations are within 1000 meters of the real ones, and more than 60% are 
within 500 meters. Although we hope the proposed algorithm can output a similar result 
on the dummy locations and the real ones to achieve privacy protection, we want to retain 
the data utility of the published dataset. Privacy budget 0.5ε ≥  is a better choice.   

8 Conclusions 
To achieve privacy preserving trajectory data publishing for real road network, we discuss 
the drawbacks of single invariant δ value and ignoring road network information in 
traditional (k-δ)-anonymity technologies. To get a better balance between data utility and 
privacy, we propose a differential privacy based (k-Ψ)-anonymity method for trajectory 
data publishing in the paper. The proposed method firstly generate 1k −  dummy 
trajectories based on the real trajectory and road network using an adaptive threshold set Ψ, 
then the outputted anonymous trajectory dataset is perturbed by Laplace noise regarding 
distance of anonymous locations. The results of experiment with real road network dataset 
show that the proposed method improves the trajectory indistinguishability and achieves 
good data utility while satisfying the requirements of user privacy. In future research, how 
to decrease the amount of Laplace noise and improve the computation efficiency of the 
proposed method will be our main research direction. 
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