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Abstract:Diabetic retinopathy, aged macular degeneration, glaucoma etc. are
widely prevalent ocular pathologies which are irreversible at advanced stages.
Machine learning based automated detection of these pathologies facilitate
timely clinical interventions, preventing adverse outcomes. Ophthalmologists
screen these pathologies with fundus Fluorescein Angiography Images (FFA)
which capture retinal components featuring diverse morphologies such as
retinal vasculature, macula, optical disk etc. However, these images have
low resolutions, hindering the accurate detection of ocular disorders. Con-
struction of high resolution images from these images, by super resolution
approaches expedites the diagnosis of pathologies with better accuracy. This
paper presents a deep learning network for Single Image Super Resolution
(SISR) of fundus fluorescein angiography images, modeled on residual learn-
ing, gridded interpolation and Swish activation functions. The image prior
for this network is constructed by gridded interpolation which provides better
image fidelity compared to other priors. Evaluation of the performance of
this network and comparative analysis with benchmark architectures, on a
standard dataset shows that the proposed network is superior with respect to
performance metrics and computational time.
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LR: Low Resolution
LSTM: Long Short Term Memory
MISR: Multi Image Super Resolution
NARM: Nonlocal Auto Regressive Model
NPDR: Non-Proliferative Diabetic Retinopathy
PDR: Proliferative Diabetic Retinopathy
ReLU: Rectified Linear Unit
RNN: Recurrent Neural Network
SASC: Structured Analysis Sparse Coding
SGDM: Stochastic Gradient Descent with Momentum
SISR: Single Image Super Resolution
SRCNN: Super Resolution Convolution Neural Network
SRF: Super-resolution Random Forest
SSC: Simultaneous Sparse Coding
SSOCTA: Swept Source Optical Coherence Tomography Angiography
TPS: Thin Plate Spline
VDSR: Very Deep Super-resolution Network

1 Introduction

Advancements in medical imaging have significantly improved the early detection of several
pathologies of the eyes including Diabetic Retinopathy (DR), glaucoma, sclerosis, macular degen-
eration, etc. DR, one of the widely prevalent eye diseases manifests with disorders in retinal
capillaries, called microaneurysms. Similarly, flecks of oily secretions called exudates appear on the
retinal vision region due to extreme permeability of retinal vascular structures. Various imaging
modalities such as fluorescein angiography, direct and indirect ophthalmoscopy, optical coherence
tomography and stereoscopic color film photography are employed in the early detection and
classification of several ocular disorders.

Fundus Fluorescein Angiography is an imaging methodology widely employed in the imaging
and quantification of blood flow in the choroidal and retinal region. FFA images are captured
with specialized fundus cameras after injection or oral administration of the fluorescent dye to the
subject. These images facilitate the interpretation of the retinal vasculature in the identification of
several disorders in children and adults as discussed in [1,2]. This modality has been in practice
for over 6 decades as evident from literatures [3–6]. A recent investigation on diabetic macular
perfusion, assessing the efficacies of FFA and Swept Source Optical Coherence Tomography
Angiography (SSOCTA) has been performed by La Mantia et al. [7]. This study reveals that FFA
is highly sensitive in the identification of microaneurysms compared to SSOCTA. An elaborate
review of inflammatory macular diseases by Velly et al. [8] shows that many lesions are visible in
the FFA compared toother imaging modalities.

Conventional fundus imaging cameras capture FFA images with Field of View (FoV) ranging
from 30◦ to 50◦. Though wide-field FA with FoV in the range [>30◦–200◦] and ultra wide-field [9]
FA cameras with FoV> 200◦ are in existence for more than a decade, they are not used in smaller
clinical settings due to lack of skilled operators and cost of image acquisition.

Generally, the spatial resolutions of the FFA images are limited due to the small FoV
supported by the fundus cameras. Detection of retinal disorders such as exudates, a lesion etc., in
the pediatric and adult population requires a thorough examination of the fine vascular structures.
The resolution of the FFA images can be enhanced at the cost of upgradation of the components
of conventional fundus cameras.
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Image super resolution which refers to the construction of a High Resolution (HR) image
from a Low Resolution (LR) image is one of the promising solutions proposed by researchers
for improving the resolution of fundus images. Super resolution problems on fundus images
are formulated as Single Image Super Resolution (SISR) and Multiple Image Super Resolution
(MISR) problems, based on the number of LR images involved in the construction of HR images.
The first work on image super resolution was proposed by Tsai [10] in 1984. Since then, these
techniques have been extended to the construction of HR images from LR images of different
modalities such as ultrasound [11,12], MRI [13–15], CT [16] and PET [17].

A detailed evaluation of super resolution algorithms for retinal fundus images is presented
by Thapa et al. [18]. This paper provides a detailed analysis of different categories of inter-
polation and learning based approaches. Interpolation based methods construct HR images by
estimating the pixels from LR images. However, SISR interpolation methods are not successful
in estimating pixels lost during image acquisition as described in [19]. Conversely, learning [20]
based approaches extract these pixels from a set of training images and integrate them with the
LR images to construct the HR images.

With the evolution of Deep Learning (DL), super resolution problems are solved with
Convolution Neural Networks (CNN) which perform an end to end mapping from the LR to
HR images. The pioneering work deploying Deep Neural Networks (DNN) for super resolution
problems proposed by Dong et al. [21], is a light-weight structure which maps the LR image to
HR image. Later, the authors improved this model named Super Resolution Convolution Neural
Networks (SRCNN) with large sized filters in the nonlinear mapping layers.

Inspired by the successful application of DNNs in super resolution problems, this paper
presents a novel deep residual learning network based on image priors for constructing a HR
FFA image from the corresponding LR image. This network is conceptualized as a SISR model
based on explicit image priors constructed from gridded interpolation of the LR images.

Rest of this paper is organized as follows. Section 2 presents a detailed account of the
super resolution methods and sparse image priors essential to understand the proposed work.
The underlying methods and datasets employed in this investigation are described in Section 3.
The proposed super resolution network is presented in Section 4 followed by experimental results
and comparative analyses in Section 5. The paper is concluded in Section 6 summarizing the
major findings of this research and presenting the scope for further research.

2 Related Works

The architectures of the existing deep super resolution networks and sparse representation of
priors are discussed in this section.

2.1 Sparse Image Priors
Super resolution problems are called ill-posed problems as a number of HR images can be

constructed from a given LR image. However, the best HR image can be generated from well-
defined image priors. Basically, a prior of an image refers to the specific information from the
LR image required for construction of a HR image. Learned priors are a kind of image priors
constructed by training DNNs with large datasets. To the contrary explicit priors are obtained
only from the available LR image, which do not require external images for training.

Based on the image priors employed, the SISR methods are classified into patch based
or example based methods, statistical models, prediction models and edge based methods.



128 CMES, 2020, vol.125, no.1

A subjective and quantitative benchmark evaluation of these methods by Yang et al. [22] shows
that example based methods exhibit best performance. The basic schematic of example based
method is shown in Fig. 1.

Figure 1: Example based SISR

The example based methods construct priors internally from the candidate LR images or
from large set of LR and equivalent HR image pairs. It has been demonstrated in [22,23] that sta-
tistical priors of natural images can be exploited in several inverse problems in image processing.
In [22], the authors have estimated high resolution images from their incomplete representations,
employing natural priors. Generally image priors are constructed mathematically from candidate
images based on sparse coding and its variants. Sparse coding is based on the hypothesis that
band-pass filter responses are distinct for natural images, with distributions exhibiting sharp
peaks around zero and heavy tails. This prior is employed in several image processing problems
including super resolution.

Sparse coding is used in capturing the structural elements of images by mathematical com-
putations or learning with a large set of training images. Dong et al. [24] have established that
a structured sparse coding network based on Gaussian Scale Mixture (GSM) and Simultaneous
Sparse Coding (SSC), preserves the sharp edges and suppresses visual artifacts in image restora-
tion applications. Better spatial adaptation of the sparse coding techniques is significant in super
resolution applications.

In sparse coding, LR images are mathematically expressed as down-sampled versions of
HR images. The super resolution problem is the inverse problem in which the HR images are
constructed from these LR images. Hence, super resolution problems based on sparse coding can
be characterized as interpolation problems. Earlier, Dong et al. [25] introduced a Nonlocal Auto
Regressive Model (NARM) for improving the fidelity of sparse images under image interpolation.
Recently, Liu et al. [26] have proposed an approach for enhancement of resolutions in medical
images, based on nonlocal interpolation and intrinsic similarities.

Super resolution Random Forests (SRF) [27] is for FFA images demonstrate superior perfor-
mance compared to non-DL and DL based methods for a dataset of 185 images. This method is
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implemented with pairs of LR and HR patches extracted from the FFA images. The trees within
the SRF are trained independently to map the LR to HR patches and finally the SRF model
maps a LR FFA image into a HR image.

2.2 Deep Neural Networks for Super Resolution
With the advent of deep learning, learning based methods have also been widely employed

in image super resolution problems. Researchers have shown that the external example based
learning pipeline can be realized with DNNs. The first work on DL based image super resolution
was proposed by Cui et al. [28]. The internal prior based approach proposed in this paper
employs cascaded Auto Encoders (AE) which requires optimization for prior construction and
AEs in each stage of the network. To the contrary, the end-to-end mapping approach employed
in the SRCNN, proposed in [21] optimizes all the layers together, considerably improving the
performance of the network. This model is the basis for the other super resolution networks
proposed till date. The schematic of the SRCNN is shown in Fig. 2. This network consists of
3 layers one each for patch representation, non-linear mapping and reconstruction.

Figure 2: SRCNN architecture

The super resolution operation in this architecture starts with upsampling the given LR
image X to the required resolution by bicubic interpolation. The upsampled image Y is the LR
representation of the target HR image Y ′. The process involved in the construction of the HR
image Y ′ from X is described as below.

(1) Patch extraction and representation: High dimensional vectors called feature maps are con-
structed from an LR image Y by convolving it with n1 filters of size f1× f1. Each feature
map extracted as a patch is represented as an n1 dimensional vector.

(2) Non-linear mapping: The patches extracted in Step 1 are further convolved with n2 filters
of size n1× f2× f2 such that f2 is smaller than f1. This operation results in high resolution
vectors of dimension n2 which carry comparatively finer details.

(3) Reconstruction: In this step, the feature maps generated in Step 2 are convolved with n3
filters each of size n2× f3× f3 to construct the HR image Y ′.

The super resolution models proposed so far are the variants of this basic model. Though
several DL architectures for image super resolution exist, they are classified under four generic
models namely pre-upsampling, post-upsampling, progressive upsampling and iterative up and
down sampling based on the super resolution pipeline stage at which the upsampling operation is
performed. The SRCNN is a pre-upsampling model as shown in Fig. 2. Inspired by this model,
new DL based architectures for image super resolution are proposed in [29,30]. Though this model
has reported improved quality of super resolved images compared to other models, it suffers
from heavy computational costs due to the convolution operations. The Fast Super-Resolution
Convolutional Neural Networks (FSRCNN) is a variant of the SRCNN which is designed to
improve the speed of the SRCNN. This network is a post-upsampling model with five stages
performing feature extraction, shrinking, mapping, expanding and deconvolution operations in



130 CMES, 2020, vol.125, no.1

sequence. Initially, feature extraction is performed with the LR image and the deconvolution layer
performs upsampling in the final stage. The complete architecture of FSRCNN and a comparative
analysis with SRCNN with respect to the speed of computations and quality of HR images is
given in [31].

An approach for the construction of hybrid priors combining the internal priors obtained
by sparse coding and external priors by learning is proposed in [32]. Called Structured Analysis
Sparse Coding (SASC), it employs a deep learning network with substages for internal and
external prior construction with a CNN and a sparse coding network for image reconstruction
respectively. Several reviews on deep learning based image super resolution exist in literature,
presenting a thorough analysis on their architecture and diversities. Two recent articles in [33]
and [34] present a complete review in this context, based on multiple aspects such as the
underling frameworks of the models, interpolation methods, learning approaches, network design
issues etc.

Several approaches for improving the performance of the existing CNNs have been proposed
so far with respect to modification of the key parameters of the models such as window size,
stride size, scaling factors etc. An investigation by Simonyan et al. [35] shows that increasing
the depth of the network with fixed values of other parameters considerably improves the clas-
sification and localization accuracies of CNNs. Inspired by the performance of this network, a
deep network for image super resolution is proposed by Kim et al. [36] in 2016. This model
called the Very Deep Super-Resolution Network (VDSR), based on the VGG network for image
classification is implemented as a pre-upsampling based residual learning network. The schematic
of the VDSR is shown in Fig. 3.

Figure 3: VDSR architecture

As shown in Fig. 3, the ground truth image is upscaled to the dimension of the HR image.
This image is convolved by the intermediate convolution layers. The residual image is constructed
at the final layer and is added with the upscaled LR image to generate the HR image. Though
a plethora of deep learning networks exist in literature for super resolution, we confine our
discussion to unique kinds of networks.

3 Materials and Methods

The dataset employed in this investigation and the underlying methods in realizing the
proposed super resolution network architecture are discussed in the following subsections.

3.1 Dataset
The dataset [37] used in this research comprises 70 FFA images of diabetic patients captured

for a study in Isfahan University of Medical Sciences. These images are of dimension 576× 720
with 8-bit depth. The FFA images acquired from 70 diabetic patients with various pathologies
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such as mild Non-Proliferative Diabetic Retinopathy (NPDR), moderate NPDR, severe NPDR
and Proliferative Diabetic Retinopathy (PDR) are represented in two categories namely Normal
and Abnormal with 30 and 40 images respectively.

3.2 Gridded Interpolation
Interpolation is an indispensable process in image super resolution for upsampling the images,

irrespective of the network design. Generally, nearest neighbor [38], bilinear [39] and bicubic [40]
interpolations are widely employed in various super resolution schemes. Nearest neighbor inter-
polation estimates a pixel from a nearest pixel in the region of interpolation without considering
other pixels. Though it is implemented as an algorithm generating a piecewise-constant, it results
in noise around the boundaries.

Bilinear interpolation constitutes two linear interpolations in sequence on the two image
axes resulting in a quadratic interpolation. For scaling the images, this interpolation considers
a 2 × 2 neighborhood for the pixel to be interpolated. A weighted average of these pixels is
the interpolated value, resulting in better image quality compared to neighbor interpolation.
Bicubic interpolation is performed on 4 × 4 nearest pixels generating high quality images with
fewer artifacts. However, it is comparatively slower than other interpolation techniques. A number
of image super resolution networks such as SRCNN, FSRCNN, and VDSR etc., are based
on bicubic interpolation. The NARM proposed in [25] is an interpolation scheme based on
the sparse image representation which adaptively models pixels from the local and non-local
image similarities. The authors show that the NARM can be included as a fidelity term in the
sparse image representation model which generalizes interpolation into image restoration problems
such as super resolution. The importance of the study of interpolation techniques and their
evaluations, exclusively for medical images is highlighted in [41]. This paper presents a detailed
analysis of various interpolation techniques and advocates the need for non-linear adaptive
interpolation schemes.

Basically interpolation of a digital image is performed by resampling the respective contin-
uous function at discrete locations, i.e., reconstruction of the continuous function. An adaptive
interpolation mechanism which derives an optimal interpolator for the candidate image can
facilitate improved interpolation, compared to employing a standard arbitrary function. The deep
learning network proposed in our paper employs a grid based interpolation scheme which builds
a gridded interpolant for each image to perform interpolation in the two dimensional space as
described below.

For a given image I , let f(p), be its continuous function. Then the discrete image g(p)
interpolated at a set of discrete locations P such that p εP is represented as in Eq. (1).

f (p)=
{
g (p) on grid
undefined not on grid

(1)

Now, the interpolation problem can be modeled as a construction of the continuous function
g′(p) from f (p) as in Eq. (2).

g′ (p)=
∑
p

f (p)Hp (x− p) , p εP (2)

where Hp is the interpolation function at the point p.
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In the interpolation of a digital image, it is required to determine only the location of the
new sample points rather than reconstruction of the complete image. Let the new locations p′ be
represented a set of points P′ such that each p′ εP′. The new image interpolated at new locations
p′ is as in Eq. (3).

g′
(
p′

) = f
(
p′

) =∑
p

f (p)Hp
(
p′ − p

)
, p εP, p′ εP′ (3)

As it is unrealistic to interpolate a point from all the input samples, interpolation of a new
point can be performed with a small subset of points that lie in close proximity d to the candidate
point. Hence the interpolation function in Eq. (3) can be rewritten as in Eq. (4).

g′
(
p′

) = f
(
p′

) =∑
p

f (p)Hp
(
p′ − p

)
, p′ εP′, p εPp′,d (4)

where Pp′,d � {p εP,
∥∥p− p′

∥∥2 < d} is the set of points at a distance d.

In image super resolution, wherever the image patterns are similar in the LR image, the
pixels are repeated in the HR image carrying over the weights of the LR pixels to the HR
solution space. Many machine vision applications have successfully employed the Thin Plate
Spline (TPS) for mapping coordinates between solution spaces, finding the missing data in grid
based construction of images. For transformation of n×n data points, TPS requires inversion of
a matrix of dimension n× n. Here, the computational cost linearly increases with the number of
points in the patterns to be mapped from the LR to the HR space.

It has been demonstrated in [42] that a weighted TPS with low computational cost can
be used in the gridded interpolation of Light Detection and Ranging (LiDAR) images. This
interpolation is modeled with a minimization objective function as given in Eq. (5).

min
f

∥∥p− p′
∥∥2+λT(f ) (5)

where λ is the smoothness parameter and T(f ) is the penalty term for smoothness as in Eq. (6).

T (f )=
∫

(f 2xx+ 2f 2xy+ f 2yy)dxdy (6)

It is evident that this interpolation is achieved by minimizing the fidelity-smoothness trade-off
of the images. Hence, the TPS based gridded interpolation can be extended to the 2D FFA images
for a smooth representation of HR image from the LR image. Similarly, it can also be extended
to multi dimensional fundus image tensors, performing the interpolation in multiple directions.

3.3 Residual Learning
Though accuracy of a network considerably improves with deep layers, it is diminished due

to vanishing gradients as the weights do not update at deeper layers. This degradation problem
was first reported by He et al. [43] who proposed the residual learning as a solution to improve
accuracy in networks with a depth of 2000. The schematic of a shallow residual network is shown
in Fig. 4.

In this framework, the input x is transformed by a sequence of weighted convolutional layers
resulting in F(x) which is summed with the unaltered input x to construct the residual y.
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Input x

y=F(x)+x

ReLUF(x)

Figure 4: Residual learning

Residual learning can simplify image super resolution by finding the residual, i.e., the dif-
ference between the reference HR and the upscaled LR images. In pre-upsampling frameworks
the LR and HR images are highly correlated and differ only by the fine high resolution features.
These residuals can be added with the upscaled LR images to generate the HR images. The
VDSR network proposed in [36] is a kind of pre-upsampling residual learning network with 20
layers which maps the LR image constructed from the reference image by bicubic interpolation
into an HR image.

As described in the previous subsection, gridded interpolation provides better approximation
compared to conventional interpolation schemes. When residual learning is applied on the grid
interpolated LR image, the resolution of the HR image will be comparatively better.

3.4 SWISH Activation Function
Activation functions play a significant role in DL networks. The Rectified Linear Unit (ReLU)

is widely used in deep networks due to its ease of implementation and the ability of the gradient
to flow for positive inputs. Given an input x, weight w and bias b, the activation a and the
application of ReLU on a is in Eqs. (7) and (8).

a=wx+ b (7)

f (x)=max(a, 0) (8)

From the above, it is seen that a tends to increase with x and becomes b when x is 0
which eliminates the gradient vanishing problem. Also, ReLU results in sparse representations
when x ≤ 0. However, for high learning rates, most of the neurons may not be activated by
ReLU resulting in the dying ReLU problem. Recently, a novel non-monotonic activation function
called the Swish [44] which is comparatively smoother than ReLU has been introduced. The swish
function based on sigmoid function is as given in Eq. (9). The Swish activation function is shown
in Fig. 5 for x ranging from −5 to +5. It is seen that the function is completely adaptive, with
no assumptions.

f (x)= x.σ(x) (9)

where σ(x)= (1+ exp (−x))−1
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Figure 5: Swish activation function

Significant improvement in classification accuracy is evidenced with NASNet-A [45] and
Inception-ResNet-v2 [46] deep networks on the ImageNet dataset, with Swish activation replacing
ReLUs. Investigations in [44] show that the Swish activation function outperforms ReLU in
various deep learning networks and it is also reported that the Swish function closely resembles
the activate functions in retinal neurons of vertebrates. Gating mechanisms in Recurrent Neural
Networks (RNNs) such as Long short-term memory (LSTM) networks dynamically control the
flow of information from previous layers to a current layer, preventing the gradient descent
problems, characteristic of the RNNs. This problem is completely eliminated with the self-gating
Swish activation functions as shown in Fig. 6.

x f1

f2(x)
f2x

f1(x) f3(f1(x) , f2(x))

f6(f4 , f5)

f4

f5
x

f6

f5(x)

f4(f3)f3

Self-Gated
Function

Figure 6: Self-gating swish activation function

The architecture in Fig. 6 is a combination of a unary and binary operation implemented
with a self Gating network. In this network, the functions f1 and f2 are unary while f3 is binary.
The gate comprising these functions evaluates the Swish function in Eq. (9). By self-gating this
function, it is can replace the conventional ReLU in recurrent and deep residual networks for
achieving best approximations.
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4 Proposed System

4.1 Model Configuration
The proposed deep learning network for super resolution is designed as a pre-upsampling

residual learning network based on the VDSR model with two significant changes in the
underlying model. First, the gridded interpolation is employed for pre-upscaling in place of
the bicubic interpolation and the ReLU is replaced with the Swish function. The schematic of
the proposed system is shown in Fig. 7.

Figure 7: Gridded Interpolation based residual learning architecture

The above residual network is implemented and tested in Matlab 2019b. The network is
implemented with 20 weighted layers, each of which is coupled with the swish function. Initially,
the LR image is upscaled to match the size of the HR image by gridded interpolation and the
HR image is constructed from this LR interpolated image.

4.2 Model Optimization
Basically, the Image Input Layer is trained to operate on image patches of the luminance

channel. In this work, we train this layer to operate on the intensity values as the input images
are of 8 bit depth. However, we stick to the patch size of 41 × 41 and 64 filters of size
3× 3 in the convolutional layers similar to the VDSR network. We also employ the Stochastic
Gradient Descent with Momentum (SGDM) function with an initial learning rate of 0.2 and
0.9 momentum. These values are empirically chosen varying the learning rate in the range 0.01
and 0.1 for the momentum value 0.9. As the model produced HR images with reasonable PSNR
values at the learning rate 0.2, the network is trained for 100 epochs minimizing the learning
factor by 10 for each epoch. However, the learning rate is 0.1 in the basic VDSR while the
diminishing factors and the number of epochs are the same. We have assumed the value of
the smoothness parameter λ as 0.1 in our model after empirical evaluation of the quality of the
reconstructed images.

Tab. 1 presents the configuration of the proposed model with design and optimiza-
tion parameters.
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Table 1: Model parameters

Parameter Value

No. of weighted layers 20
Maximum epochs 100
MiniBatchSize 128
Momentum 0.9000
Learning rate 0.200
Optimization SGDM
Activation function Swish

Since the basic VDSR model is trained with a wide range of natural image dataset, we
initially train the network with a new dataset constructed from the 70 images of the test dataset.
The training dataset is created by down sampling the 30 normal and 40 abnormal images of
dimension 576× 720 to 128× 128. Initially, the network is trained with these images with scale
factors 2 and 4 to construct HR images of dimensions 256× 256 and 512× 512 respectively.

5 Experimental Works and Discussions

We have implemented and tested our residual network in a i7-7700K processor with 16 GB
DDR4 RAM and NVIDIA GeForce GTX1060 3 GB Graphics card. The proposed system is
tested with 2 scaling factors, 2 and 4 on both the raw normal and abnormal FFA images of
the dataset each of dimension 576 × 720. We get HR images of dimensions 1152 × 1440 and
2304 × 2880 for scaling factors 2 and 4 respectively. The reconstructed HR images with the
benchmark approaches and corresponding performance metrics are shown in Fig. 8a for one
Normal and Abnormal FFA image. The LR test images are given in Fig. 8a. The HR reference
images for evaluation of performance metrics are obtained by bicubic interpolation of the LR test
images applying suitable scaling factors. The first column in Fig. 8b shows a normal image scaled
by 2 and the second column shows an abnormal image scaled by 4. The quality of the super
resolved FFA images is evaluated with the PSNR and SSIM metrics evaluated with Eqs. (10) and
(12) respectively.

PSNR= 10log10

(
R2

MSE

)
(10)

MSE = 1
MN

∑
M,N

[I1 (m,n)− I2(m,n)]
2 (11)

SSIM (x,y)= l(x,y)∝ ∗ c(x,y)β ∗ s(x,y)γ (12)

where l (x,y)= 2μxμy+C1

μ2
x+μ2

y+C1
, C (x,y)= 2σxσy+C2

σ 2
x+σ 2

y+C2
and S (x,y)= σxy+C3

σxσy+C3

where μx, μy, σx,σy and σxy are the local means, standard deviations, and cross-covariance for
images x and y if α = β = γ = 1.

In the above figure, the figure to the left is a normal FFA with no obvious visual artifacts.
Whereas microaneurysms are evident as white dots on the retinal surface. These microaneurysms
manifest as a result of the leakage of the fluorescein from the retinal vessels signifying the
abnormality in the retina. Detection of fine blood vessels and lesions is very vital in the diagnosis
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and prognosis of several retinal disorders. Generation of HR images from these images facilitate
the magnification of the vessels and lesions for accurate diagnosis.

The super resolved images in Fig. 8b clearly depict the retinal vessels for a through diagnosis
based on the retinal vasculature. From the corresponding PSNR and SSIM metrics, it is seen
that the perceptual image quality of the HR is comparatively lower for scaling factor 4 compared
to that obtained with the scaling factor 2. Invariably degradation by 2 dB is witnessed for all
the super resolution models. Compared with the VDSR model, the proposed model demonstrates
matching PSNR values and better SSIM values for this image pair. The higher SSIM values
indicate that the structural contents of the images are preserved well by the proposed model
compared to the VDSR. To the contrary, our model also exhibits lower SSIM compared to the
SRF, for scaling factor 4 in spite of a higher PSNR.

However, the values given in Fig. 8a are characteristic of the image pair shown and not
representative of the entire dataset. We present the average metrics evaluated for the normal and
abnormal images of the entire dataset in Tab. 2. We have done a quantitative assessment with the
PSNR and SSIM metrics to evaluate the quality of the super resolved images constructed with
the proposed residual network, SRCNN, FSRCNN, SRF, VDSR and bicubic interpolation on the
dataset as in Tab. 2.

It is seen that the proposed super resolution model provides best HR image recon-
struction for both the scaling factors. Further, it also achieves best results compared to the
FSRCNN and the VDSR both of which are pre-upsampling methods. Also, the proposed
system exhibits a comparatively improved performance than the most recent SRF. The qual-
ity of the reconstructed HR FFA images is attributed to the gridded interpolation and the
Swish function.

Though the proposed model is based on the 20 layered VDSR architecture, the PSNR values
are higher by 6 dB and 2 dB for the scaling factors 2 and 4 respectively compared to the
VDSR. Similarly, significant improvements in SSIM metrics are also evidenced under both the
scaling factors. By convention, the VDSR, SRCNN, and the FSRCNN, transform the bicubically
interpolated FFA image in to the HR image which introduces jagged artifacts. We have introduced

Normal FFA Abnormal FFA

(a)

Figure 8: (Continued)
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Method Reconstructed HR Image with  PSNR/SSIM
Scaling Factor =2 Scaling Factor =4

Proposed

43.0134/0.9823 41.5412/0.9731

VDSR [36] (2016)

43.166/0.9735 41.0165/0.9595

SRCNN [21](2014)

40.2872/0.9819 38.9954/0.9701

FSRCNN[31](2016)

41.0736/0.9835 39.4168/0.9719

SRF[27](2018)

41.7738/0.9891 41.0169/0.9819

Bicubic ( Matlab)

40.9476/0.9812 39.5413/0.9832

(b)

Figure 8: (a) Low resolution FFA. (b) Super resolution results—proposed system & benchmarks
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gridded interpolation with an intention of reducing these artifacts to strike a balance between
image fidelity and smoothness. While the PSNR and SSIM are indicative of these image features,
the smoothness parameter λ considerably affects these metrics. With λ= 0.1, we achieve the per-
formance metrics in Tab. 2. For a fair evaluation,we have employed the optimization function as
SGDM with momentum 0.9 without modifying their underlying architecture in VSDR, SRCNN
and FSRCNN models. We see that FSRCNN and VDSR have closely matching PSNR and SSIM
values with around 2 dB and 1 dB improvement in PSNR for scaling factors 2 and 4 respectively
compared to SRCNN. It is also evidenced that FSRCNN shows only a marginal improvement
than SRCNN for scaling factor 4.

Table 2: Performance metrics

Method Scale Factor = 2 Scale Factor = 4

PSNR SSIM PSNR SSIM

Proposed 42.2797 0.9568 39.6129 0.9712
VDSR 36.0175 0.9254 34.5012 0.9213
SRCNN 34.1240 0.9317 33.1691 0.9112
FSRCNN 36.3901 0.9448 34.2019 0.9104
SRF 38.0128 0.9316 35.894 0.9335
Bicubic 35.7921 0.8886 34.5413 0.9156

Compared with SRCNN, RSRCNN and VDSR, SRF achieves better PSNR and SSIM values
for both the scaling factors, except a slight fall in SSIM compared to FSRCNN for scaling
factor 2. SRF model learns directly by mapping the LR patches into HR patches constructing an
ensemble of decision tress. The performance of this model depends on the number of decision
trees which introduces a trade-off between the performance and computational intensity. We have
tested the SRF model with 6 decision trees as in [27]. Though this model seems to be better than
VDSR, there is a noticeable degradation of 4 dB compared to the proposed model for scaling
factor 2.

From the above analysis we understand that nearly perfect reconstruction can be achieved
by mapping the LR images to HR images by direct mapping or without introducing artifacts
in the pre/post upsampling interpolation operations. We also see low SSIM values for images
with higher PSNR values which raises concern on the evaluation metrics of the super resolution
models. While a higher PSNR signifies good visual quality, SSIM signifies structural intactness.
A higher PSNR with relatively low PSNR indicates that the image is reconstructed well but with
structural artifacts. For the FFA super resolution problem, it must be ensured that fine structural
information is not lost by super resolution.

The experimental results show that the proposed SISR model can reconstruct FFA images
with enhanced visual quality highlighting the artifacts for better diagnosis. This model is a
promising replacement for the complex MISRmodels which demand intensive computations and
also cause discomfort to the subject during the acquisition of multiple FFA images. This model is
prospective for low resource constrained environments in which only single images of the fundus
are captured which can be super resolved to improve their diagnostic values.

The average computational times for the super resolution of the images in the dataset are
presented in Tab. 3.
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Table 3: Computational time-HR image construction

Method Computational time (ms)

Scale Factor = 2 Scale Factor = 4

Proposed 12.31 19.43
VDSR 17.25 25.23
SRCNN 15.32 25.21
FSRCNN 13.74 23.05
SRF 16.32 28.01
Bicubic 20.78 25.31

The computational times for the construction of HR images for both the scale factors are
best for the proposed system. A thorough analysis of the quality metrics and computational times
show that the performance of the proposed system is better compared to the FSRCNN for the
test dataset. However, in [45], it is shown that the SRF performs better than VDSR which is a
pre-upsampling model.

Though the proposed system matches the structure of the VDSR, it is seen that the HR
image quality and computational time are comparatively better for the proposed system. We see
that there is an enhancement of around 5 dB in PSNR value for both the scaling factors. Further
substantial improvements are also evidenced in SSIM and computational times. Enhancement in
computational times is attributed to the higher learning rate of this network. As mentioned in
Section 4, the initial learning rate is 0.2 which is diminished by 10 for each iteration. While the
residual networks reported in existing literature employing ReLU assume a learning rate of 0.1,
the Swish function supports a high learning rate, enabling the networks to train faster.

A notable characteristic of the proposed system is that, it does not involve assumption of any
parameters. Initially, the interpolated image is constructed from the gridded interpolants, intrinsic
to the images. Similarly, the swish activation function is also characteristic of the candidate image.
Generally, the performance of the deep residual models depends upon the learning of images
residuals, which is constrained by the number of weighted layers and the ability of the networks
to learn the weights either forward or backward. We have shown that an unsupervised model
proposed in this paper generates HR images of significant clinical values from FFA image priors
constructed by gridded interpolation.

Finally, it is very well evident that residual learning networks in which the interpolation is
minimized, enhanced with adaptive image priors and activation functions are very prospective for
the super resolution of medical images.

Though this model features superior performance compared to the other deep learning and
SRF models, we have not evaluated its performance to specific retinal disorders. It has been tested
with an integral dataset containing normal and abnormal FFA images without focusing on any
particular disorder in particular. This model can be extended by transfer learning to a specific
disorder which requires intensive training and testing with an exclusive disorder dataset. We have
provided only the generic model which needs to be fine-tuned to the disorders to leverage its
fullest potential.
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A most recent representative work by Anoop et al. [47] similar to our research employs a K
Nearest Neighbor network focusing on the Region of Interest (ROI) of the retinal image rather
than the entire image to extract the image features from the LR images.

In line with this, our model can be coupled with a segmentation module to extract the ROI
from the LR FFA images for super resolution.

6 Conclusion

Recent clinical research has proved the effectiveness of FFA in the diagnosis and treatment
of diabetic retinopathy. However, the resolution of the FFA images is limited by the image acqui-
sition devices in resource constrained clinical settings. This paper proposes a novel deep learning
based super resolution network exploiting the characteristics of gridded interpolation, residual
learning and swish functions. The visual and quantitative experimental results and computational
cost show that the proposed residual learning model is comparatively better than other benchmark
mechanisms. Inspired by these results, this paper advocates FFA imaging as reliable modality
in the prognosis of various retinal pathologies as it facilitates the detection of microaneurysms
and visual artifacts by super resolution. The proposed residual model can be further refined with
priors pertaining to retinal components such as exudates, Hemorrhages, Microaneurysms, lesions
etc. to construct their HR representations. This paper also encourages researchers to investigate
novel adaptive activation mechanisms for deep learning networks, alternative to the conventional
activation functions.
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