
echT PressScienceComputer Modeling in Engineering & Sciences
DOI:10.32604/cmes.2020.09502

Article

A Novel Binary Firefly Algorithm for the Minimum Labeling
Spanning Tree Problem

Mugang Lin1,2,*, Fangju Liu3, Huihuang Zhao1,2 and Jianzhen Chen1,2

1College of Computer Science and Technology, Hengyang Normal University, Hengyang, 421002, China
2Hunan Provincial Key Laboratory of Intelligent Information Processing and Application, Hengyang, 421002, China

3School of Computer Science, University of South China, Hengyang, 421001, China
∗Corresponding Author: Mugang Lin. Email: mglin@hynu.edu.cn

Received: 23 December 2019; Accepted: 17 July 2020

Abstract:Given a connected undirected graph G whose edges are labeled, the
minimum labeling spanning tree (MLST) problem is to find a spanning tree of
G with the smallest number of different labels. TheMLST is anNP-hard com-
binatorial optimization problem, which is widely applied in communication
networks, multimodal transportation networks, and data compression. Some
approximation algorithms and heuristics algorithms have been proposed for
the problem. Firefly algorithm is a new meta-heuristic algorithm. Because
of its simplicity and easy implementation, it has been successfully applied in
various fields. However, the basic firefly algorithm is not suitable for discrete
problems. To this end, a novel discrete firefly algorithm for the MLST prob-
lem is proposed in this paper. A binary operation method to update firefly
positions and a local feasible handling method are introduced, which correct
unfeasible solutions, eliminate redundant labels, andmake the algorithmmore
suitable for discrete problems. Computational results show that the algorithm
has good performance. The algorithm can be extended to solve other discrete
optimization problems.

Keywords: Minimum labeling spanning tree problem; binary firefly
algorithm; meta-heuristics; discrete optimization

1 Introduction

Given a connected undirected labeled graph G= (V , E, L), where V , E and L represent the
set of vertices, the set of edges, and the set of labels, respectively. Each edge of E is assigned
a label from set L and each label in L can be assigned to one or more edges. The minimum
labeling spanning tree (MLST) problem is to find a spanning tree of G with the least number of
different labels. Fig. 1 illustrates the MLST. In Fig. 1a, a label graph G = (V , E, L) is given,
where V = {v1, v2, . . . , v6}, L = {R, B, Gr, Y , P}, and the label with each edge is indicated
by the letter close to it. Fig. 1b shows an optimal solution Lopt= {R, B} with |Lopt| = 2, and its
minimum labeling spanning tree. The MLST problem is a combinatorial optimization problem,
which has a wide range of applications in communication networks [1], multimodal transportation
networks [2], and data compression [3]. For example, in communication networks, there are many

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://dx.doi.org/10.32604/cmes.2020.09502

198 CMES, 2020, vol.125, no.1

different types of communication media, such as fiber optics, cable, microwave, telephone line, and
so on. A node can communicate with other nodes by selecting different types of media. When a
communication network is constructed, it requires that the network must be connected. To reduce
the cost and complexity of the network, it is often desirable to find a spanning tree that uses as
few types of media as possible.

v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

R

R

B

B

B

Gr
Gr

Y
Y

P

R

R

B

B

B

(a) (b)

Figure 1: Small example for the MLST. (a) Original graph. (b) Minimum labeling spanning tree

The MLST problem was first introduced by Chang et al. [4]. They showed this problem
is NP-hard by a reduction from the set cover problem and presented an exact exponential
algorithm based on the A∗ algorithm and two heuristics algorithms which are the edge replace-
ment algorithm (ERA) and the maximum vertex cover algorithm (MVCA). Krumke et al. [5]
analyzed the result of Chang and Leu from theoretical performance, proposed an approxima-
tion algorithm based on the MVCA with logarithmic performance guarantee and showed that
there is no constant factor approximation with polynomial time for the MLST problem unless
P = NP. Since then, researchers have studied the MLST problem and proposed many heuristic
algorithms [6–10], approximation algorithms [11–13], integer programming (IP) models and meth-
ods [14–17]. In recent years, a wide variety of meta-heuristics methods have been proposed and
used to solve NP-hard problems [18–20]. For the MLST problem, the meta-heuristics method is
one of the main research methods. Xiong et al. [7,21] and Nummela et al. [22] proposed some
efficient genetic algorithms for the MLST problem. Cerulli et al. [23] applied the pilot method
to deal with the MLST problem and compared it with several meta-heuristic methods (simulated
annealing, reactive tabu search, and variable neighborhood search). Chwatal et al. [24] applied
ant colony optimization to solve the problem. Consoli et al. [25] proposed a hybrid local search
method combining with variable neighborhood search and simulated annealing. Lai et al. [26]
theoretically studied the performances of evolutionary algorithms for the MLST problem. Consoli
et al. [27] proposed an intelligent optimization method that integrates variable neighborhood
search with some complementary approaches and self-tuning mechanisms. Recently, Da Silva
et al. [28] presented a meta-heuristic method, which combines the efficiency of constructing
heuristic algorithms with the exploration capacity of local search methods based on MIP.

Nowadays, most meta-heuristic algorithms inspired by the biological process in nature have
been developed and shown their power and efficiency in various fields, such as Genetic algo-
rithm [7], Particle Swarm algorithm [29], and Ant Colony algorithm [24]. The swarm intelligent
algorithms simulate the interaction and cooperation between individuals and their own indepen-
dent behavior in real swarm organisms. Therefore, the methods have a good learning mechanism
between individuals, which can promote the algorithm to converge faster, and a strong individual
self-learning ability, which makes the algorithm to fall into a local optimum solution with lower
probability. The firefly algorithm is a swarm intelligent meta-heuristic method developed by

CMES, 2020, vol.125, no.1 199

Yang [30,31] to solve continuous optimization problems. It has two major advantages over other
evolutionary algorithms: automatical subdivision and the ability of dealing with multimodality.
Since the firefly algorithm is based on attraction and attractiveness decreases with distance the
whole population can automatically subdivide into subgroups, and each group can swarm around
each mode or local optimum. Among all these modes, the best global solution can be found.
If the population size is sufficiently higher than the number of modes, this subdivision allows
the fireflies to be able to find all optima simultaneously [32]. Although the basic firefly algorithm
is easy to operate and implement, it cannot be directly used to solve discrete problems [33].
Thus, discrete firefly algorithms have received extensive attention from many researchers. There
are two modifying methods to make the basic firefly algorithm suitable for discrete problems.
The first method is to update the position of a firefly in the continuous space and then convert
its result to discrete values based on a threshold function [34,35]. This method is suitable for
problems with binary variables. However, the solution depends on the threshold function. The
second method is to directly update the position of firefly in discrete space based on the nature
code of problems [36,37]. The method uses Hamming distance to measure the distance between
fireflies, and uses different update methods to update the position of fireflies according to the
properties of problems.

In this paper, we study applying the firefly algorithm to solve the MLST problem. The
main contributions are: (1) proposed a novel binary firefly algorithm for the MLST problem;
(2) proposed a new strategy of updating firefly positions by switching the bits of the position of
a firefly, where the changing bit number can be computed based on the attractiveness, distance
or other parameters; (3) proposed a local feasible handling method to repair the unfeasible
solution, eliminate redundant labels, and make the algorithm more suitable for discrete problems;
(4) evaluated the performance of the algorithm, and the computational results show the algorithm
is as effective as existing meta-heuristic approaches.

2 Firefly Optimization Algorithm

2.1 Firefly Algorithm
Firefly algorithm is a population-based meta-heuristic inspired by the flashing behavior of

fireflies in nature [30,31]. In a swarm of fireflies, each firefly flashes its light, and its brightness
can be different. Brighter fireflies will attract darker fireflies. Moreover, the attractiveness between
two fireflies decreases with the increase of their distance and the light absorption of medium. In
the algorithm, each firefly is a feasible solution randomly distributed in the solution space, the
brightness of each firefly depends on the value of the objective function, and the attractiveness
will guide fireflies to iteratively move towards more attractive locations to obtain a better solution.

Defining the brightness and attractiveness of fireflies are two important issues for the fire-
fly algorithm to solve optimization problems. For a maximization problem, the brightness is
proportional to the value of the objective function. For a minimization problem, however, the
brightness is inversely proportional to the value of the objective function. The attractiveness
between two fireflies is relative and changes with the distance between them. At the same time,
the attractiveness is also related to the absorption coefficient of the medium. Its general form is
as follows:

β
(
dij

) = β0e
−γ dkij (k≥ 1) (1)

where dij is the distance between two fireflies i and j, β0 is the maximum attractiveness, i.e., the
attractiveness at dij = 0, and γ is the light absorption coefficient. The distance dij between two

200 CMES, 2020, vol.125, no.1

fireflies i and j at positions xi and xj is defined the following:

dij = |xi−xj| =
√√√√dim∑

k=1

(
xik−xjk

)2 (2)

where dim is the dimension number of firefly’s position.

The updating position of a firefly is determined by the following formulation.

xi = xi+β
(
dij

) (
xj −xi

)+α (rand− 0.5) (3)

In the left of Eq. (3), xi is the new position of firefly i. In the right of Eq. (3), xi and xj are
respectively the current positions of fireflies i and j; the second term is the increment of firefly
i due to the attraction of the brighter firefly j, which makes the algorithm have global search
capability; and the last term represents the random movement of firefly i, which lets the algorithm
have local search capability; where α is the random parameter and rand is a vector of random
number generator uniformly distributed in the space [0, 1].

2.2 Binary Firefly Algorithm
The basic firefly algorithm is proposed to solve continuous optimization problems, and the

algorithm cannot be applied directly to discrete problems. To solve the permutation flow shop
scheduling problems, Sayadi et al. [34] first proposed a binary firefly algorithm, which was
designed by modifying the basic firefly algorithm to adapt to solving discrete problems. There
are two methods to modify the original firefly algorithm to get the discrete algorithm. The first
method is to update the position of fireflies in the continuous space and then discretize, and the
second method directly updates the position of fireflies in discrete space. For a detailed review
of binary firefly algorithms, see the recent survey of Tilahun et al. [38]. In this paper, the binary
firefly algorithm belongs to the second method, and a novel method is proposed using a complete
binary operation for updating the position of fireflies.

3 Binary Firefly Algorithm for the MLST Problem

In the MLST problem, a given labeled graph G = (V , E, L) needs to be connected, where
|V | = n, |E| =m and |L| = l, otherwise there doesn’t exist a solution to the problem. The MLST
problem can be equivalently defined as a connected spanning subgraph instead of a spanning
tree. Since if a spanning subgraph G′ of graph G by induced all edges with labels in the label
set R is connected, then any spanning tree of graph G′ has at most |R| labels. Moreover, if
R is the minimum label set such that graph G′ is connected, then any spanning tree of G′ is a
minimum labeling spanning tree in graph G′. Thus, for the MLST problem, a feasible solution
can be defined as a subset R of label set L such that the graph G′ induced by all edges with the
labels in R is connected. In the following, we discuss some important definitions and operations
of the binary firefly algorithm for the MLST problem in detail.

3.1 Preprocessing
To speed the algorithm, given instance is preprocessed first. In a connected graph, if a bridge

(cut edge) is deleted, then the graph becomes unconnected. Thus, the corresponding label of the
bridge must be in all feasible solutions of the MLST problem. Therefore, we first find all bridges
in input graph G, and the corresponding label set is denoted by Lf . In the algorithm, we only
require to find a label subset Ls from set L−Lf .

CMES, 2020, vol.125, no.1 201

3.2 Initializing Population of Fireflies
The position of each firefly in a population represents a feasible solution, where the feasible

solution is defined by a label subset Ls from set Lu = L− Lf such that all edges with labels in
Ls∪Lf construct a connected subgraph of G. For each firefly i, its position is encoded as a vector
xi = [xi1, xi2, . . . , xilu], where xij ∈ {0, 1}, lu = |Lu| and j ∈ {1, 2, . . . , lu}, if xij = 1, then the
j-th label in set Lu is in the feasible solution which the firefly stands for, otherwise it isn’t in the
solution. In initializing the population, the position xi of each firefly i is generated by randomly
assigning 1 to an element of xi which is originally a zero vector until a feasible solution arises.
Therefore, the initial population can be easily generated.

3.3 Defining Attractiveness and Distance

For the MLST problem, the light intensity of firefly i is defined as I (xi) = lu −
∑lu

k=1 |xik,
which represents the number of unselected labels in set Lu. The less the number of selected labels
is, the brighter the firefly flashes. The position of firefly is represented in binary code. Thus,
Eq. (2) is no longer suitable for measuring the distance between two fireflies. In our algorithm,
we use Hamming distance dij to measure the distance between two fireflies i and j at positions xi
and xj respectively.

dij = |xi−xj | =
lu∑
k=1

|xik⊕xjk| (4)

where ⊕ denotes the XOR operation.

The attractiveness β(dij) between the two fireflies i and j is defined as follows.

β
(
dij

) = β0

1+ γ dij
(5)

3.4 Binary Movement Operator of Fireflies
In the algorithm, the distance between two fireflies is measured by the hetero-elements of

two fireflies. Changing some hetero-elements in the darker firefly may improve its light intensity.
Thus, the movement of a firefly is achieved by changing some elements of position x from 0 to 1
or from 1 to 0. In each iteration, each firefly has two ways of moving: the attraction movement
guided by the brighter fireflies which is called β-step in the basic firefly algorithm and is regulated
by the attractiveness, and the random movement. In the algorithm, we define the number lij of
changing hetero-elements of firefly i due to the attraction of the brighter firefly j.

lij = round
(
β

(
dij

)× |xi−xj|
) = round

(
dijβ0

1+ γ dij

)
(6)

where round(x) is the function that round x to the nearest integer. β(dij) is a percent of hetero-
elements between fireflies i and j. Thus, the β-step operation is randomly selecting lij elements in
the hetero-elements of firefly i with firefly j, and changing the values of the elements from 0 to
1 or from 1 to 0.

202 CMES, 2020, vol.125, no.1

The random movement, also called α-step in the basic firefly algorithm, is controlled by
parameter α. We define the number li of changing elements of firefly i caused by its random
movement as follows.

li = round (α× |rand− 0.5| × lu) (7)

where rand is a random number generator uniformly distributed in the space [0, 1]. The α-step
operation is randomly selecting li elements in the position of firefly i, and changing the values of
the elements from 0 to 1 or from 1 to 0.

After the β-step and α-step operations, the position of firefly i is updated.

3.5 Local Feasible Handling
In a connected labeled graph, a label is redundant if the remaining graph is still connected

after deleting the corresponding edges of the label from the graph. After updating the position of
each firefly, the graph represented by the position of a firefly can be unconnected, or has some
redundant labels. Thus, we apply an additional local operation for each firefly such that we can
build a feasible solution and eliminate redundant labels. The unfeasible solutions are repaired by
randomly selecting an element whose value is 0 and changing its value from 0 to 1, until the
graph which the firefly stands for becomes connected. Then, checking each label whether being
redundant or not, and deleting all redundant labels.

3.6 Algorithm and Running Time Analysis
The binary firefly algorithm for the MLST is described in the pseudocode as Algorithm 1. In

the following, we analyze the time complexity of Algorithm BFA. In the preprocessing (line 2),
we call Tarjan’s bridge-finding algorithm [39] to search all bridges of graph G with running time
O(n2). β-step operation (line 10) and α-step operation can perform in time O(l). In line 13,
we can add or delete at most O(l) labels and use depth-first search (DFS) with running time
O(m+ n) to determine whether a solution is feasible or redundant. Thus, the worst running time
of the local feasible handing (line 13) is O(l(m+n)). In line 6, it takes O(Slg(S)) time to sort the
population in ascending order according to light intensity. Hence, it takes O(TS2l(m+ n)) time
to run the programming from line 5 to line 17. In line 19, we can use the DFS method to get a
spanning tree at O(m+ n) time. Therefore, the total running time of BFA is O(TS2l(m+ n)).

Algorithm 1: BFA

Input: A connected labeled undirected graph G(V , E, L);

Output: A labeling spanning tree Tr and label set LTr.

1. Set parameters: α, β, γ , T (maximum iteration number) and S (size of the population), t= 1;
2. Preprocess: find all bridges in graph G and the corresponding label set Lf ;
3. Lu=L−Lf ; % Lf must be in the solution, while Lu is uncertain.
4. Generate the initial population of fireflies X = {x1,x2, . . . ,xS};
5. while t≤T do
6. Sort the population in ascending order by light intensity I(xi)= lu−

∑lu
k=1 |xik|;

7. for i= 1 to S do
8. for j= 1 to i do
9. if I(xj) > I(xi) then

(Continued)

CMES, 2020, vol.125, no.1 203

Algorithm 1 (Continued)

10. β-step operation: lij = round(
dij

1+γ dij
), randomly select lij elements from the hetero-elements

of firefly i with firefly j, and change its values 0→ 1 or 1→ 0;
11. α-step operation: li = round(α× |rand − 0.5| × lu), randomly select li elements of firefly i,

and change its values 0→ 1 or 1→ 0;
12. end if
13. Local Handling: if G[xi] is unconnected, then randomly select an element xik = 0, let

xik = 1, until G[xi] is connected; Delete all redundant labels;
14. end for
15. end for
16. t= t+ 1;
17. end while
18. Get the brightest position xbest;
19. Find a spanning tree Tr of graph G[xbest] and label set LTr;
20. return the labeling spanning tree Tr and label set LTr;

4 Experiments and Computational Results

To evaluate the performance of the algorithms, we perform computational experiments on
the set of benchmark instances of Cerulli et al. [23] which has been used in MLST litera-
tures [7–10,21,24–28]. In our experiments, we choose 36 different datasets from the benchmark set
which cover small, middle, and large instances, and each dataset contains 10 different graphs of
the MLST problem with the same parameters which are the number of vertices (n), the density of

edges (d), and the number of labels (l). In each graph, the number of edges m= d · n·(n−1)
2 , where

the value of d is 0.8, 0.5, and 0.2, respectively. For each dataset the solution quality is evaluated
as the average objective function value of the 10 different graphs with the same parameters. Our
method is compared in terms of solution quality, computational time, and iterative process with
the methods: Exact method (EXACT), the MVCA [5], the VNS [8], the GRASP [8], and the
MGA [7]. For the EXACT, we obtain the optimal solution by backtrack search which checks
all possible subsets of the label set and finds all feasible solutions. To reduce the number of
subsets, we use the label number of the MVCA solution in the initial step to prune some solution
space. In the GRASP, we also use the above approach to reduce the number of possible subsets.
The running time of the EXACT method grows exponentially, but it is reasonable if the problem
size is small and the optimal solution is small. In our experiments, if it takes more than 3 hours
to test the EXACT, the exact solution and running time are reported “-”. The MVCA is a
greedy heuristics that starts with an empty graph, then successively adds one label which minimize
the number of connect components, until the graph becomes one connected graph. The VNS is
a meta-heuristic method based on dynamic changes of the neighborhood structure during the
search process. All of the methods were implemented on the Matlab platform and performed on
a computer with Intel(R) Core(TM) I5-8265U CPU, 1.60 GHz, 8G of RAM, and Windows 10
as the operating system.

We first test small instances with n= l= 20, 30, 40, 50 and d = 0.8, 0.5, 0.2. The population
size is 10 in the MGA and BFA, and the number of iterations is 10 except for the EXACT and

204 CMES, 2020, vol.125, no.1

MVCA. Computational results are presented in Tab. 1, and iterative processes are described in
Figs. 2–4. In Tab. 1, the values of the last row are the sum of the corresponding columns above.
Observing the table and figures, the results and running time of the EXACT are better for small
instances, but the running time increases exponentially as the size of instance becomes larger. All
heuristic methods performed well for the instances. The MGA can converge to the best results
after one iteration, but it is slower than other heuristic methods. Although the methods MVCA,
VNS and GRASP have less running time than the MGA and BFA, their solutions are not very
well. The BFA can yield the best solutions, and its running time is between the MGA and the
MVCA, VNS and GRASP.

Table 1: Computational results for the MLST problem with n= l= 20, 30, 40, 50

Parameters Objective function values Time (seconds)

d n l EXACT MVCA VNS GRASP MGA BFA EXACT MVCA VNS GRASP MGA BFA

0.8 20 20 2.5 2.6 2.5 2.5 2.5 2.5 0.141 0.029 0.325 0.221 4.519 1.953
30 30 2.7 2.8 2.8 2.7 2.7 2.7 0.423 0.051 0.541 0.347 7.017 2.086
40 40 2.6 2.7 2.6 2.6 2.6 2.6 0.669 0.065 0.807 0.492 8.561 2.490
50 50 3 3 3 3 3 3 1.596 0.086 1.275 0.789 11.004 2.758

0.5 20 20 3.1 3.1 3.1 3.1 3.1 3.1 0.210 0.035 0.557 0.294 5.683 2.286
30 30 3.9 4.0 3.9 3.9 3.9 3.9 2.652 0.063 1.099 0.581 8.801 2.769
40 40 4 4 4 4 4 4 8.071 0.089 1.507 0.877 11.133 3.125
50 50 4.1 4.5 4.1 4.2 4.1 4.1 29.039 0.125 2.537 1.281 14.231 3.702

0.2 20 20 7.2 7.4 7.2 7.2 7.2 7.2 16.431 0.078 2.084 0.812 22.482 4.615
30 30 7.4 8.0 7.5 7.5 7.4 7.4 1026.321 0.150 3.653 1.245 31.877 7.001
40 40 – 8.5 7.9 8.1 7.7 7.7 – 0.182 5.179 2.203 45.281 9.817
50 50 – 9.6 9 9.1 8.9 8.9 – 0.325 8.748 2.838 62.374 10.116

Total – 60.2 57.6 57.9 57.1 57.1 – 1.278 28.312 11.98 232.963 52.718

0 1 2 3 4 5 6 7 8 9 10

Iteration Number

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

La
be

l n
um

be
r

Iterative process (HDGraph20*20)

GRASP
VNS
MGA
BFA

0 1 2 3 4 5 6 7 8 9 10

Iteration Number

2.5

3

3.5

4

4.5

5

La
be

l n
um

be
r

Iterative process (HDGraph30*30)

GRASP
VNS
MGA
BFA

CMES, 2020, vol.125, no.1 205

0 1 2 3 4 5 6 7 8 9 10

Iteration Number

2.5

3

3.5

4

4.5

5

5.5
La

be
l n

um
be

r
Iterative process (HDGraph40*40)

0 1 2 3 4 5 6 7 8 9 10

Iteration Number

3

3.5

4

4.5

5

5.5

6

La
be

l n
um

be
r

Iterative process (HDGraph50*50)

GRASP
VNS
MGA
BFA

GRASP
VNS
MGA
BFA

Figure 2: Iterative process of instances (n= l= 20, 30, 40, 50 and d = 0.8)

0 1 2 3 4 5 6 7 8 9 10

Iteration Number

3

3.5

4

4.5

5

5.5

6

6.5

La
be

l n
um

be
r

Iterative process (MDGraph20*20)

0 1 2 3 4 5 6 7 8 9 10

Iteration Number

3.5

4

4.5

5

5.5

6

6.5

7

7.5
La

be
l n

um
be

r
Iterative process (MDGraph30*30)

0 1 2 3 4 5 6 7 8 9 10

Iteration Number

4

4.5

5

5.5

6

6.5

7

7.5

La
be

l n
um

be
r

Iterative process (MDGraph40*40)

0 1 2 3 4 5 6 7 8 9 10

Iteration Number

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

La
be

l n
um

be
r

Iterative process (MDGraph50*50)

GRASP
VNS
MGA
BFA

GRASP
VNS
MGA
BFA

GRASP
VNS
MGA
BFA

GRASP
VNS
MGA
BFA

Figure 3: Iterative process of instances (n= l= 20, 30, 40, 50 and d = 0.5)

206 CMES, 2020, vol.125, no.1

0 1 2 3 4 5 6 7 8 9 10

Iteration Number

7

7.5

8

8.5

9

9.5

10

10.5

11

La
be

l n
um

be
r

Iterative process (LDGraph20*20)

0 1 2 3 4 5 6 7 8 9 10

Iteration Number

7

8

9

10

11

12

13

14

La
be

l n
um

be
r

Iterative process (LDGraph30*30)

0 1 2 3 4 5 6 7 8 9 10

Iteration Number

7

8

9

10

11

12

13

14

15

La
be

l n
um

be
r

Iterative process (LDGraph40*40)

0 1 2 3 4 5 6 7 8 9 10

Iteration Number

GRASP
VNS
MGA
BFA

8

10

12

14

16

18

20

La
be

l n
um

be
r

Iterative process (LDGraph50*50)

GRASP
VNS
MGA
BFA

GRASP
VNS
MGA
BFA

GRASP
VNS
MGA
BFA

Figure 4: Iterative process of instances (n= l= 20, 30, 40, 50 and d = 0.2)

Table 2: Computational results for the MLST problem with n= 200

Parameters Objective function values Time (seconds)

d n l EXACT MVCA VNS GRASP MGA BFA EXACT MVCA VNS GRASP MGA BFA

0.8 200 50 2 2 2 2 2 2 0.049 0.080 0.715 0.758 87.082 12.817
200 100 2.4 2.6 2.6 2.4 2.5 2.5 2.129 0.217 3.098 2.913 153.992 15.649
200 200 4 4 4 4 4 4 1235.045 0.713 14.126 9.222 347.396 23.552
200 250 – 4.7 4.8 4.6 4.5 4.6 – 1.169 25.438 14.639 637.622 68.616

0.5 200 50 2.2 2.4 2.3 2.2 2.2 2.2 0.2745 0.117 1.371 1.477 191.258 29.885
200 100 3.4 3.8 3.5 3.5 3.5 3.5 66.140 0.346 7.162 5.179 439.808 53.005
200 200 – 6.1 6.1 5.8 5.9 5.9 – 1.031 36.519 17.921 804.553 63.250
200 250 – 7 7.1 6.5 6.6 6.6 – 1.373 53.809 23.662 1215.473 75.947

0.2 200 50 5.2 5.5 5.4 5.3 5.3 5.3 981.397 0.219 6.844 3.344 150.340 33.121
200 100 – 8.7 8.9 8.5 8.4 8.6 – 0.717 35.710 11.794 335.892 50.581
200 200 – 13.4 13.3 12.8 12.4 12.4 – 2.289 182.592 34.037 837.144 148.797
200 250 – 15.5 15.6 14.9 14.8 14.8 – 3.222 286.044 58.492 1041.374 236.309

Total – 75.7 75.6 72.5 72.1 72.4 – 11.493 653.428 183.438 6241.934 811.529

The second dataset group is middle instances with n= 200, l = 0.25n, 0.5n, n, 1.25n, and d =
0.8, 0.5, 0.2. The population size is 20 in the MGA and BFA, and the number of iterations is 15
except for the EXACT and MVCA. Computational results and iterative processes are described in
Tab. 2 and Figs. 5–7. For instances with small density and a high number of labels, it is difficult

CMES, 2020, vol.125, no.1 207

for the EXACT to calculate the results in a limited time. All heuristic methods can perform for
the instances, but their performances are different. The MGA can converge to the best results,
but its speed is the slowest. Although the MVCA and VNS have fast running speeds, they are
easy to fall into a local optimal solution. The GRASP and BFA can yield better solutions, but
the BFA runs slower than the GRASP.

0 5 10 15

Iteration Number

2

2.05

2.1

2.15

2.2

2.25

2.3

La
be

l n
um

be
r

Iterative process (HDGraph200*50)

0 5 10 15

Iteration Number

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

La
be

l n
um

be
r

Iterative process (HDGraph200*100)

0 5 10 15

Iteration Number

4

4.5

5

5.5

6

6.5

7

7.5

La
be

l n
um

be
r

Iterative process (HDGraph200*200)

0 5 10 15

Iteration Number

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

La
be

l n
um

be
r

Iterative process (HDGraph200*250)

GRASP
VNS
MGA
BFA

GRASP
VNS
MGA
BFA

GRASP
VNS
MGA
BFA

GRASP
VNS
MGA
BFA

Figure 5: Iterative process of instances (n= 200, l = 0.25n, 0.5n, n, 1.25n, and d = 0.8)

0 5 10 15

Iteration Number

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

La
be

l n
um

be
r

Iterative process (MDGraph200*50)

0 5 10 15

Iteration Number

3.5

4

4.5

5

5.5

6

6.5

7

La
be

l n
um

be
r

Iterative process (MDGraph200*100)

GRASP
VNS
MGA
BFA

GRASP
VNS
MGA
BFA

208 CMES, 2020, vol.125, no.1

0 5 10 15

Iteration Number

5

6

7

8

9

10

11

12
La

be
l n

um
be

r
Iterative process (MDGraph200*200)

0 5 10 15

Iteration Number

6

7

8

9

10

11

12

13

14

15

La
be

l n
um

be
r

Iterative process (MDGraph200*250)

GRASP
VNS
MGA
BFA

GRASP
VNS
MGA
BFA

Figure 6: Iterative process of instances (n= 200, l= 0.25n, 0.5n, n, 1.25n, and d = 0.5)

0 5 10 15

Iteration Number

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

La
be

l n
um

be
r

Iterative process (LDGraph200*50)

0 5 10 15

Iteration Number

8

9

10

11

12

13

14

15

16
La

be
l n

um
be

r
Iterative process (LDGraph200*100)

0 5 10 15

Iteration Number

12

14

16

18

20

22

24

26

28

La
be

l n
um

be
r

Iterative process (LDGraph200*200)

0 5 10 15

Iteration Number

14

16

18

20

22

24

26

28

30

32

34

La
be

l n
um

be
r

Iterative process (LDGraph200*250)

GRASP
VNS
MGA
BFA

GRASP
VNS
MGA
BFA

GRASP
VNS
MGA
BFA

GRASP
VNS
MGA
BFA

Figure 7: Iterative process of instances (n= 200, l= 0.25n, 0.5n, n, 1.25n, and d = 0.2)

CMES, 2020, vol.125, no.1 209

The last dataset group is big instances with n = 500, l = 0.25n, 0.5n, n, 1.25n, and d = 0.8,
0.5, 0.2. The population size is 40 in the MGA and BFA, and the number of iteration is 15
except for the EXACT and MVCA. Computational results and iterative processes are described
in Tab. 3 and Figs. 8–10. For most instances, the EXACT is difficult to calculate results within
a limited time. All heuristic methods can perform for the instances, but they vary widely in per-
formance. The MGA can obtain the best results, but its running time is unacceptable. Although
the MVCA runs fast, its solution is bad. The performance of the VNS is worst in the methods.
The comprehensive performances of the GRASP and BFA are the best in these methods, but the
BFA runs slower than the GRASP.

Table 3: Computational results for the MLST problem with n= 500

Parameters Objective function values Time (seconds)

d n l EXACT MVCA VNS GRASP MGA BFA EXACT MVCA VNS GRASP MGA BFA

0.8 500 125 2 2 2 2 2 2 3.266 0.659 7.458 7.124 657.503 97.505
500 250 3 3 3 3 3 3 108.128 2.153 28.169 23.975 1266.91 123.841
500 500 – 5 5 5 5 5 – 7.874 181.237 93.773 2723.955 276.55
500 625 – 5.9 5.9 5.4 5.3 5.3 – 11.274 309.652 150.193 6090.295 255.61

0.5 500 125 2.9 3.1 2.9 2.9 2.9 2.9 24.193 1.023 15.399 13.125 691.59 118.979
500 250 – 4.4 4.4 4.3 4.3 4.3 – 3.158 79.369 39.835 1328.951 162.847
500 500 – 7.3 6.6 6.4 6.4 6.5 – 11.906 419.413 139.958 2718.718 338.509
500 625 – 8.3 8.6 8.2 7.9 8.3 – 16.984 742.66 230.789 7539.984 432.228

0.2 500 125 – 6.8 6.3 6.3 6.2 6.3 – 2.376 89.763 33.865 1082.705 278.292
500 250 – 10.6 10.3 10.1 10.1 10.2 – 7.525 475.213 133.82 2032.724 498.895
500 500 – 16.9 16.5 16.3 16.2 16.2 – 24.188 1794.329 336.643 8637.177 925.178
500 625 – 19.9 19.7 19.1 19.1 19.2 – 46.997 3546.501 619.628 11536.655 1177.899

Total – 93.2 91.2 89 88.4 89.2 – 136.117 7689.163 1822.728 46307.17 4686.333

0 5 10 15

Iteration Number

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

La
be

l n
um

be
r

Iterative process (HDGraph500*125)

0 5 10 15

Iteration Number

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

La
be

l n
um

be
r

Iterative process (HDGraph500*250)

GRASP
VNS
MGA
BFA

GRASP
VNS
MGA
BFA

210 CMES, 2020, vol.125, no.1

0 5 10 15

Iteration Number

5

5.5

6

6.5

7

7.5

8

8.5
La

be
l n

um
be

r
Iterative process (HDGraph500*500)

0 5 10 15

Iteration Number

5

6

7

8

9

10

11

La
be

l n
um

be
r

Iterative process (HDGraph500*625)

GRASP
VNS
MGA
BFA

GRASP
VNS
MGA
BFA

Figure 8: Iterative process of instances (n= 500, l= 0.25n, 0.5n, n, 1.25n, and d = 0.8)

0 5 10 15

Iteration Number

2.8

3

3.2

3.4

3.6

3.8

4

La
be

l n
um

be
r

Iterative process (MDGraph500*125)

0 5 10 15

Iteration Number

4

4.5

5

5.5

6

6.5

7

7.5
La

be
l n

um
be

r
Iterative process (MDGraph500*250)

0 5 10 15

Iteration Number

6

7

8

9

10

11

12

13

14

15

La
be

l n
um

be
r

Iterative process (MDGraph500*500)

0 5 10 15

Iteration Number

7

8

9

10

11

12

13

14

15

16

17

La
be

l n
um

be
r

Iterative process (MDGraph500*625)

GRASP
VNS
MGA
BFA

GRASP
VNS
MGA
BFA

GRASP
VNS
MGA
BFA

GRASP
VNS
MGA
BFA

Figure 9: Iterative process of instances (n= 500, l= 0.25n, 0.5n, n, 1.25n, and d = 0.5)

CMES, 2020, vol.125, no.1 211

0 5 10 15

Iteration Number

6

7

8

9

10

11

12

13
La

be
l n

um
be

r
Iterative process (LDGraph500*125)

0 5 10 15

Iteration Number

10

12

14

16

18

20

22

La
be

l n
um

be
r

Iterative process (LDGraph500*250)

0 5 10 15

Iteration Number

16

18

20

22

24

26

28

30

32

34

36

La
be

l n
um

be
r

Iterative process (LDGraph500*500)

0 5 10 15

Iteration Number

15

20

25

30

35

40

45

La
be

l n
um

be
r

Iterative process (LDGraph500*625)

GRASP
VNS
MGA
BFA

GRASP
VNS
MGA
BFA

GRASP
VNS
MGA
BFA

GRASP
VNS
MGA
BFA

Figure 10: Iterative process of instances (n= 500, l= 0.25n, 0.5n, n, 1.25n, and d = 0.2)

By the above results, it is known that the complexity of the instances increases with the
number of vertices and labels of the graph, and the reduction of the density in the graph. For the
EXACT, the running time is reasonable if the size of instances is small or the optimal solution
is small; while it grows exponentially with the problem size increasing and the graph density
reducing. The MVCA has the shortest computational running time than other methods, however,
it is easy to obtain a local optimal solution in the greedy local search process. The VNS is a
meta-heuristic based on dynamically changing neighborhood structures during the local search
process. When the density of the graph is different, the structural properties of the graph are also
different. Thus, the computational time of the VNS mainly depends on graph density: the more
sparse the graph, the larger the time. The MGA can obtain the solution with the best quality, but
its running time is long, even unacceptable. This may be because its chromosomes are obtained by
calling MVCA in each of its crossover operations, causing the convergence to become fast but the
running time to increase. The GRASP is a meta-heuristic combining the power of greedy local
search with randomization, such that it has a good diversification capability. The computational
results show that the GRASP can obtain solutions with better quality in a shorter time. Although
the BFA runs slower than the GRASP, the computational results reveal that the BFA can reliably
search the global optimal or suboptimal solutions within a relatively reasonable time, and the
BFA algorithm is stable and has good convergence ability. This may be due to the fact that the

212 CMES, 2020, vol.125, no.1

BFA is a swarm intelligent algorithm based on multi-individual search, where each individual
searches itself solution by interacting with each other during the iterative search process, the
algorithm’s final result takes the best solution of all individuals. Thus the quality of the solution
is better, but the running time of the algorithm increases. Therefore, the BFA algorithm for
the MLST problem is an effective method as other methods from the theoretical analysis and
experimental results.

5 Conclusions

In this paper we proposed a binary firefly algorithm for the MLST problem. A novel method
of updating positions of fireflies is introduced, which makes the algorithm more suitable for
solving discrete problems. Moreover, we also applied a preprocessing step to improve the running
time of the algorithm, and a local handling step to ensure a feasible solution after updating the
position and eliminate redundant labels. Computational results show the algorithm for the MLST
problem is as effective as the existing meta-heuristic algorithms. Our BFA algorithm can also
be extended to solve other discrete optimization problems. Future research will include trying to
improve the performance of the algorithm (such as hybridization with other methods), setting
appropriate algorithm parameters and testing large instances of the MLST problem.

Funding Statement: This work is supported by the National Natural Science Foundation of
China under Grant 61772179, the Hunan Provincial Natural Science Foundation of China
under Grant 2019JJ40005, the Science and Technology Plan Project of Hunan Province under
Grant 2016TP1020, the Double First-Class University Project of Hunan Province under Grant
Xiangjiaotong [2018]469, the Open Fund Project of Hunan Provincial Key Laboratory of Intel-
ligent Information Processing and Application for Hengyang Normal University under Grant
IIPA19K02, and the Science Foundation of Hengyang Normal University under Grant 19QD13.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References
1. Tanenbaum, A. S. (1988). Computer networks, 2nd edition, Upper Saddle River, NJ, USA: Prentice-

Hall, Inc.
2. Van Nes, R. (2002). Design of multimodal transport networks: a hierarchical approach (Ph.D. Thesis).

TRAIL Research School, Delft University, The Netherlands.
3. Chwatal, A., Raidl, G., Dietzel, O. (2007). Compressing fingerprint templates by solving an extended

minimum label spanning tree problem. Proceedings of the Seventh Metaheuristics International Confer-
ence, Montreal, Canada.

4. Chang, R. S., Shing-Jiuan, L. (1997). The minimum labeling spanning trees. Information Processing
Letters, 63(5), 277–282. DOI 10.1016/S0020-0190(97)00127-0.

5. Krumke, S. O., Wirth, H. C. (1998). On the minimum label spanning tree problem. Information
Processing Letters, 66(2), 81–85. DOI 10.1016/S0020-0190(98)00034-9.

6. Voss, S., Cerulli, R., Fink, A., Gentili, M. (2005). Applications of the pilot method to hard modifica-
tions of the minimum spanning tree problem. Proceedings of the 18thMINI EURO Conference on VNS,
Tenerife, Spain.

7. Xiong, Y., Golden, B., Wasil, E. (2006). Improved heuristics for the minimum label spanning tree prob-
lem. IEEE Transactions on Evolutionary Computation, 10(6), 700–703. DOI 10.1109/TEVC.2006.877147.

http://dx.doi.org/10.1016/S0020-0190(97)00127-0
http://dx.doi.org/10.1016/S0020-0190(98)00034-9
http://dx.doi.org/10.1109/TEVC.2006.877147

CMES, 2020, vol.125, no.1 213

8. Consoli, S., Darby-Dowman, K., Mladenović, N., Pérez, J. M. (2009). Greedy randomized adaptive
search and variable neighbourhood search for the minimum labelling spanning tree problem. European
Journal of Operational Research, 196(2), 440–449. DOI 10.1016/j.ejor.2008.03.014.

9. Cerrone, C., Cerulli, R., Golden, B. (2017). Carousel greedy: a generalized greedy algorithm with appli-
cations in optimization. Computers & Operations Research, 85, 97–112. DOI 10.1016/j.cor.2017.03.016.

10. Cerrone, C., D’Ambrosio, C., Raiconi, A. (2019). Heuristics for the strong generalized minimum label
spanning tree problem. Networks, 74(2), 148–160. DOI 10.1002/net.21882.

11. Wan, Y., Chen, G., Xu, Y. (2002). A note on the minimum label spanning tree. Information Processing
Letters, 84(2), 99–101. DOI 10.1016/S0020-0190(02)00230-2.

12. BrüGgemann, T., Monnot, J., Woeginger, G. J. (2003). Local search for the minimum label span-
ning tree problem with bounded color classes. Operations Research Letters, 31(3), 195–201. DOI
10.1016/S0167-6377(02)00241-9.

13. Xiong, Y., Golden, B., Wasil, E. (2005). Worst-case behavior of the MVCA heuristic for
the minimum labeling spanning tree problem. Operations Research Letters, 33(1), 77–80. DOI
10.1016/j.orl.2004.03.004.

14. Chen, Y., Cornick, N., Hall, A. O., Shajpal, R., Silberholz, J. et al. (2008). Comparison of heuristics
for solving the GMLST problem. In Telecommunications Modeling, Policy, and Technology, pp. 191–217.
Boston, MA: Springer.

15. Captivo, M. E., Clímaco, J. C., Pascoal, M. M. (2009). A mixed integer linear formulation for the
minimum label spanning tree problem. Computers & Operations Research, 36(11), 3082–3085. DOI
10.1016/j.cor.2009.02.003.

16. Chwatal, A. M., Raidl, G. R. (2011). Solving the minimum label spanning tree problem by
mathematical programming techniques. Advances in Operations Research, 2011(2), 1–38. DOI
10.1155/2011/143732.

17. Da Silva, T. G., Gueye, S., Michelon, P., Ochi, L. S., Cabral, L. D. A. F. (2019). A polyhedral
approach to the generalized minimum labeling spanning tree problem. EURO Journal on Computational
Optimization, 7(1), 47–77. DOI 10.1007/s13675-018-0099-5.

18. Lones, M. A. (2014). Metaheuristics in nature-inspired algorithms. Proceedings of the Companion Publi-
cation of the 2014AnnualConference on Genetic and Evolutionary Computation, pp. 1419–1422. New York,
NY, USA: ACM.

19. Ma, T., Zhou, H., Jia, D., Al-Dhelaan, A., Al-Dhelaan, M. et al. (2019). Feature selection with a
local search strategy based on the forest optimization algorithm. Computer Modeling in Engineering &
Sciences, 121(2), 569–592. DOI 10.32604/cmes.2019.07758.

20. Venkatakrishnan, G., Rengaraj, R., Salivahanan, S. (2018). Grey wolf optimizer to real power dispatch
with non-linear constraints. Computer Modeling in Engineering & Sciences, 115(1), 25–45.

21. Xiong, Y., Golden, B., Wasil, E. (2005). A one-parameter genetic algorithm for the minimum
labeling spanning tree problem. IEEE Transactions on Evolutionary Computation, 9(1), 55–60. DOI
10.1109/TEVC.2004.840145.

22. Nummela, J., Julstrom, B. A. (2006). An effective genetic algorithm for the minimum-label span-
ning tree problem. Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation,
pp. 553–558. New York, NY: ACM.

23. Cerulli, R., Fink, A., Gentili, M., Voß, S. (2005). Metaheuristics comparison for the minimum
labelling spanning tree problem. In TheNextWave in Computing,Optimization, andDecision Technologies,
pp. 93–106. Boston, MA: Springer US.

24. Chwatal, A. M., Raidl, G. R. (2010). Solving the minimum label spanning tree problem by ant
colony optimization. Proceedings of the 7th International Conference on Genetic and EvolutionaryMethods,
pp. 91–97. Las Vegas Nevada, USA: CSREA Press.

25. Consoli, S., Pérez, J. M. (2012). Solving the minimum labelling spanning tree problem using hybrid
local search. Electronic Notes in Discrete Mathematics, 39, 75–82. DOI 10.1016/j.endm.2012.10.011.

http://dx.doi.org/10.1016/j.ejor.2008.03.014
http://dx.doi.org/10.1016/j.cor.2017.03.016
http://dx.doi.org/10.1002/net.21882
http://dx.doi.org/10.1016/S0020-0190(02)00230-2
http://dx.doi.org/10.1016/S0167-6377(02)00241-9
http://dx.doi.org/10.1016/j.orl.2004.03.004
http://dx.doi.org/10.1016/j.cor.2009.02.003
http://dx.doi.org/10.1155/2011/143732
http://dx.doi.org/10.1007/s13675-018-0099-5
http://dx.doi.org/10.32604/cmes.2019.07758
http://dx.doi.org/10.1109/TEVC.2004.840145
http://dx.doi.org/10.1016/j.endm.2012.10.011

214 CMES, 2020, vol.125, no.1

26. Lai, X., Zhou, Y., He, J., Zhang, J. (2013). Performance analysis of evolutionary algorithms for the
minimum label spanning tree problem. IEEETransactions on EvolutionaryComputation, 18(6), 860–872.

27. Consoli, S., Mladenović, N., Pérez, J. M. (2015). Solving the minimum labelling spanning tree problem
by intelligent optimization. Applied Soft Computing, 28, 440–452. DOI 10.1016/j.asoc.2014.12.020.

28. Da Silva, T. G., Queiroga, E., Ochi, L. S., Cabral, L. D. A. F., Gueye, S. et al. (2019). A hybrid meta-
heuristic for the minimum labeling spanning tree problem. European Journal of Operational Research,
274(1), 22–34. DOI 10.1016/j.ejor.2018.09.044.

29. Gao, H., Pun, C. M., Kwong, S. (2016). An efficient image segmentation method based on a
hybrid particle swarm algorithm with learning strategy. Information Sciences, 369, 500–521. DOI
10.1016/j.ins.2016.07.017.

30. Yang, X. (2009). Firefly algorithms for multimodal optimization. In Watanabe, O., Zeugmann, T. (Eds.)
Stochastic Algorithms: Foundations and Applications. Berlin Heidelberg: Springer.

31. Yang, X. (2010). Nature-inspired metaheuristic algorithms. Frome, UK: Luniver Press.
32. Yang, X. S. (2014). Cuckoo search and firefly algorithm: overview and analysis. Cuckoo search and

firefly algorithm. pp. 1–26. Cham, Germany: Springer.
33. Yang, X. S., He, X. (2013). Firefly algorithm: recent advances and applications. International Journal

of Swarm Intelligence, 1(1), 36–50. DOI 10.1504/IJSI.2013.055801.
34. Sayadi, M. K., Ramezanian, R., Ghaffari-Nasab, N. (2010). A discrete firefly meta-heuristic with local

search for makespan minimization in permutation flow shop scheduling problems. International Journal
of Industrial Engineering Computations, 1(1), 1–10. DOI 10.5267/j.ijiec.2010.01.001.

35. Chandrasekaran, K., Simon, S. P. (2012). Network and reliability constrained unit commitment prob-
lem using binary real coded firefly algorithm. Electrical Power and Energy Systems, 43(1), 921–932.
DOI 10.1016/j.ijepes.2012.06.004.

36. Poursalehi, N., Zolfaghari, A., Minuchehr, A. (2015). A novel optimization method, effective discrete
firefly algorithm, for fuel reload design of nuclear reactors. BMC Bioinformatics, 81, 263–275.

37. Zhang, J., Gao, B., Chai, H., Ma, Z., Yang, G. (2016). Identification of DNA-binding proteins using
multi-features fusion and binary firefly optimization algorithm. BMC Bioinformatics, 17(323), 1–12.
DOI 10.1186/s12859-015-0844-1.

38. Tilahun, S. L., Ngnotchouye, J. M. T. (2017). Firefly algorithm for discrete optimization problems: a
survey. KSCE Journal of Civil Engineering, 21(2), 535–545. DOI 10.1007/s12205-017-1501-1.

39. Tarjan, R. E. (1974). A note on finding the bridges of a graph. Information Processing Letters, 2(6),
160–161. DOI 10.1016/0020-0190(74)90003-9.

http://dx.doi.org/10.1016/j.asoc.2014.12.020
http://dx.doi.org/10.1016/j.ejor.2018.09.044
http://dx.doi.org/10.1016/j.ins.2016.07.017
http://dx.doi.org/10.1504/IJSI.2013.055801
http://dx.doi.org/10.5267/j.ijiec.2010.01.001
http://dx.doi.org/10.1016/j.ijepes.2012.06.004
http://dx.doi.org/10.1186/s12859-015-0844-1
http://dx.doi.org/10.1007/s12205-017-1501-1
http://dx.doi.org/10.1016/0020-0190(74)90003-9

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

