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Abstract: Heart arrhythmia is a group of irregular heartbeat conditions and
is usually detected by electrocardiograms (ECG) signals. Over the past years,
deep learning methods have been developed to classify different types of
heart arrhythmias through ECG based on computer-aided diagnosis sys-
tems (CADs), but these deep learning methods usually cannot trade-off
between classification performance and parameters of deep learningmethods.
To tackle this problem, this work proposes a convolutional neural network
(CNN)model named PDNet to recognize different types of heart arrhythmias
efficiently. In the PDNet, a convolutional block named PDblock is devised,
which is comprised of a pointwise convolutional layer and a depthwise
convolutional layer. Furthermore, an improved loss function is utilized to
improve the results of heart arrhythmias classification. To verify the proposed
CNN model, extensive experiments are conducted on public MIT-BIH ECG
databases. The experimental results demonstrate that the proposed PDNet
achieves an accuracy of 98.2% accuracy and outperforms state-of-the-art
methods about 2%.

Keywords: Electrocardiograms; heart arrhythmia; convolutional neural
network; PDblock; loss

1 Introduction

Cardiovascular diseases (CVDs) are the leading cause of death globally. It is reported that
about 17.7 million people died in 2015 due to CVDs worldwide, 82% of which are from devel-
oping countries [1]. In 2015, China also reported approximately 290 million people who were
suffering from cardiovascular diseases, which means that CVDs are parts of the priority diseases
and should be taken seriously. According to recent research [2], it is reported that over 90% of
CVDs may be preventable with prevention including improving risk factors (e.g., exercise). Hence,
it is meaningful and important to predict CVDs as soon as possible through developing advanced
CADs. Arrhythmia (abnormal heartbeats) is one of the most common types of CVDs, which is
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usually detected through ECG signals. In clinic, arrhythmias contain a broad range of irregular
heart rhythms, and can be classified into two groups of non-life-threatening and life-threatening.
According to the Association for the Advancement of Medical Instrumentation (AAMI) [3], non-
life-threatening arrhythmias can be loosely divided into five types: unknown (Q), supraventricular
ectopic (S), ventricular ectopic (V), non-ectopic (N), and fusion (F). The ECG signals have been
standard testing for arrhythmia diagnosis over the years. In clinical practice, arrhythmia diagnosis
is performed by cardiologists or doctors via special ECG monitor devices, which can collect ECG
signals from the patients. However, due to the differences in experiences of cardiologists and
doctors,the actual diagnosis of arrhythmia is time-consuming, subjective, laborious, and error-
prone. In addition, a serious problem in poor countries is that experienced cardiologists and
expensive medical equipment are very scarce [4].

In recent years, a lot of small intelligent devices have been developed to collect various
data from human and environments like smartwatches, smartphones, sensors, and ECG monitors.
With the development of Internet of Thing (IoT), small intelligent devices have become an
essential part of daily life in both developing countries and developed countries. Many mobile
applications have been deployed on small intelligent devices to provide different service such as
health monitoring, face recognition and sport monitoring. Researchers [5–7] have committed to
developing CAD systems for biomedical signal processing and ECG analysis based on small
intelligent devices, which presents a potential method to provide health service for people and is
possible to be used for early CVD prevention.

To detect different types of heart arrhythmias accurately, it is necessary and important to
propose advanced methods for ECG CAD systems. Heart arrhythmia detection can be treated as
a classical pattern recognition problem. In the past decades, many machine learning methods have
been used to analyze ECG signals ranging from traditional machine learning methods to deep
learning methods, like support vector machine (SVM), convolutional neural networks (CNNs),
and recurrent neural networks (RNNs). Due to the strong feature representation abilities of deep
learning methods, recent works have gradually used deep learning methods for heart arrhythmia
detection and have achieved expected performance. However, the classification performance of
deep learning methods for heart arrhythmia detection heavily depends on the number of param-
eters or the depth of deep learning methods. Therefore, deploying deep learning models on small
intelligent devices and resource-constrained platforms has become a bottleneck.

In general, with the rapid development of artificial intelligence technique (AI), Internet of
things (IoT), wearable sensors and small intelligent medical equipment in recent years, it is likely
to collect and monitor ECG signals in the remote. It presents new challenges and great potentials
for the development of intelligent ECG CAD systems.

This work is different from most previous works which are focused on improving heart
arrhythmia detection results through devising complicated deep learning methods. It is an exten-
sion of our previous work [8] in 2nd ICHSE. The core aim of this work is to apply deep
learning methods to heart arrhythmia detection, which can not only achieve high heart arrhythmia
detection performance, but also does not require a huge number of parameters. To achieve the
aim, a novel convolutional neural network (CNN) model called PDNet is built on a novel con-
volutional block named PDblock. The PDblock is comprised of a pointwise convolutional layer
and a depthwise convolutional layer, in which the pointwise convolution operation is followed
by the depthwise convolution operation. According to related literature [9,10], both depthwise
convolution operation and pointwise convolution operation are efficient methods to reduce the
parameters of deep learning methods. To further improve the accuracy of heart arrhythmia
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detection, an improved loss is devised, inspired by Lee et al. [11] proposed in literature. The
improved loss utilizes label replication methods to make the dense layers of the PDNet generate
errors, thus it enables the PDNet to learn more feature information from data. To validate the
effectiveness of the proposed methods, the experiments are conducted on MIT-BIH arrhythmia
databases [12]. The experiment results demonstrate that the proposed PDNet outperforms strong
baselines and state-of-the-art previous methods. Compared with advanced CNN models such
as AlexNet [13], VGGNet, and MobileNet [14], the PDNet trades off better between heart
arrhythmia detection results and the number of parameters in CNN models. Furthermore, the
results also show that the improved loss achieves better classification performance than cross
entropy loss and focal loss. Therefore, the PDNet is likely to be embedded in intelligent ECG
CAD systems to assist cardiologists to screen common heart arrhythmias and provide health
service to people on intelligent ECG-based CAD systems and devices. Fig. 1 presents a framework
of intelligent ECG CAD systems with the proposed PDNet, which is likely to be deployed on
small intelligent devices to detect different types of heart arrhythmias. The main contributions of
this work are constructed as follows.

(1) A CNN model named PDNet is proposed to detect different types of heart arrhythmias.
Moreover, the comparison to state-of-the-art CNN models shows that it is capable of trad-
ing off accuracy and parameters of deep learning methods efficiently through comparison
to state-of-the-art CNN models.

(2) An improved loss function is utilized to improve the heart arrhythmia results based on the
label replication method.

(3) Extensive experiments have been carried out on public MIT-BIH arrhythmia databases, and
the proposed methods outperform strong baselines and previous methods on evaluation
measures such as accuracy, precision, and recall.

The rest of this work is organized as follows: we review previous works of heart arrhythmia
detection based on CAD and recent advances in CNN in Section 2. Section 3 elucidates
the PDNet architecture and the improved loss. MIT-BIH Arrhythmia databases and data
preprocessing are introduced in Section 4. In Section 5, we introduce the experiment setup and
result analysis. Conclusion and future work are presented in Section 6.

Figure 1: The framework of intelligent ECG CAD systems with the proposed PDNet deployed
on small intelligent devices to detect different types of heart arrhythmias
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2 Related Work

In this section, previous works of heart arrhythmia detection based on CAD are surveyed
from traditional machine learning methods and deep learning methods, and followed by recent
advances in CNN.

ECG CAD. Heart arrhythmia detection through ECG signals can be taken as a classical
pattern recognition problem. In the past decades, researchers have developed lots of machine
learning methods to recognize different types of heart arrhythmias through ECG signals can be
loosely split into two classes as traditional machine learning methods and recent deep learning
methods. Traditional machine learning methods comprise three common processing procedures:
data preprocessing, feature extraction, modeling, and classification. Literature [15–19] use tra-
ditional machine learning methods to classify different types of arrhythmias based on ECG
signals and achieve good classification results. E.g., Alonso-Atienza et al. [20] used a person-
alized feature selection method and support vector machine (SVM) to detect arrhythmias and
achieved over 90% accuracy. In literature [21], researchers developed a hierarchical classification
method for heartbeat classification based on weighted extreme gradient boosting (XGBoost)
and feature selection methods. The result showed that the proposed method improved the
classification performance.

Due to powerful feature representation learning ability [22], recent works have gradually deep
learning methods for heart arrhythmia detection based on ECG signals [7,20,23–31] and have
achieved good classification performance in both public ECG datasets and self ECG datasets.
Hannun et al. [28] used a 34-layer convolutional neural network (CNN) to detect arrhythmias. To
alleviate the gradient vanishing problem, two shortcut connections were used. The results showed
the proposed CNN model outperformed the board-certified cardiologists, which also confirmed
deep learning has potential in ECG based CAD systems. Acharya et al. [32] utilized a deep
CNN for arrhythmia diagnosis on publicly available arrhythmia database. The results showed the
proposed CNN was able to achieve similar accuracies of arrhythmia diagnosis on noise and noise-
free ECG dataset. He et al. [33] also proposed a CNN-based method to diagnose arrhythmias
and achieved over 95% accuracy. Wang et al. [34] proposed a dual fully-connected neural network
for different types of heartbeat classification and achieves excellent classification performance.
Shi et al. [35] proposed a hybrid deep learning framework for automated heartbeat classification
which is comprised of a CNN and a long short-term memory (LSTM) network. In their work,
the combination of automatic features and handcraft features as inputs were used to improve
the overall classification performance, and results showed that the proposed model achieved an
accuracy of 99.26%.

In recent years, many m-health devices and mobile applications are applied to monitor the
activities and health of human [36]. The Computing in Cardiology [12] organized a challenge
to devise advanced methods to classify arrhythmias accurately through mobile devices, which
presented a promising perspective in Mobile Health (m-health). Gradl et al. [37] developed a
mobile system for arrhythmia detection automatically based on mobile devices, which can be
used to process ECG signals and generates arrhythmia prediction results in real-time. The results
showed that the proposed mobile system achieved a sensitivity of 89.5% and a specificity of
80.6%, respectively.

Recent Advances in CNN. Considering the real requirements of intelligent mobile devices and
resource-constrained platforms, it is necessary and urgent to construct light-weight deep learning
models. Hence, many convolution methods were proposed to devise advanced and light-weight
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CNN architectures [9,38,39] such as group convolution method [10,40], depthwise separable
convolution method, depthwise convolution method, and pointwise convolution method [41]. In
the depthwise separable convolution method, a standard convolution operation is divided into a
pointwise convolution operation and a depthwise convolution operation. It is difficult to construct
powerful deep learning models in the medical field, and researchers [42] have gradually used the
transfer learning strategy to train the deep neural network for achieving excellent performance
by loading pre-trained network structures. However, pre-trained network structures are trained
on two-dimensional (2D) images, which is not suitable for one-dimensional (1D) time-series
ECG signals.

3 Method

In this section, the proposed CNN architecture based on the devised PDblock is introduced
in detail and followed by the improved loss function, which is introduced to further enhance the
classification results of arrhythmia diagnosis.

3.1 PDblock
Convolutional neural network (CNN) is one of the most used deep learning models and has

achieved great success in many tasks. It is usually comprised of convolutional layers, pooling
layers, and dense layers (fully-connected layers). In this work, a novel CNN model named PDNet
is constructed to classify heart arrhythmias, which is built on the proposed convolutional block
called PDblock. The PDblock is comprised of a pointwise convolutional layer and a depth-
wise convolutional layer based on a pointwise convolution method and a depthwise convolution
method. It can be treated that a standard convolutional layer is split into two above types of
convolutional layers. Generally, a pointwise convolution is a 1 × 1 standard convolution that
projects the output space of each channel to a new channel space. While a depthwise convo-
lution method applies a single convolution operation to each channel of a pointwise channel
output correspondingly. Fig. 2 presents an example of how to factorize a standard convolutional
layer Fig. 2a into a pointwise convolutional layer (Fig. 2b) and a depthwise convolutional layer
(Fig. 2c). The pointwise convolutional layer is a 1 × 1 standard convolutional layer, which
is capable of learning correlated feature representations from the previous layer. The depth-
wise convolutional layer can get feature representations of each feature map respectively via
one-to-one learning.

Figure 2: The standard convolutional layer (a) are replaced by two layers: a 1 × 1 pointwise
convolutional layer (b) and a depthwise convoluional layer (c)
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Considering time-series ECG signals are one-dimensional (1D) data, hence, the 1D
convolution method is adopted in this work. To understand the working mechanism of the
proposed PDblock easily, we make a comparison between the PDblock and the standard convo-
lutional layer theoretically. For example, a standard convolutional layer of the CNN which uses
the feature map N with 1 ∗Dk ∗N as the input and generates a feature map M with 1 ∗Dk ∗M,
where 1 ∗ Dk is the length of feature map N and output feature map M, N is the number of
input channels, and M is the number of output channels.

The number of parameters of convolutional kernel F in a standard convolutional layer is
1 ∗DF ∗N ∗M and 1 ∗DF is the size of the convolution kernel, N, M denotes the number of
input channels and output channels as previously defined. Hence, the computational cost of a
standard convolutional layer can be computed as follows.

1 ∗DF ∗N ∗M ∗ 1 ∗Dk. (1)

where the computational cost highly depends on the size of convolution kernel 1 ∗ DF , the
number of input channels N, the number of output channels M, and the length of feature
map 1 ∗ Dk of previous convolutional layer. To reduce the computational cost of the standard
convolutional layer, a convolution block named PDblock is introduced and is comprised of a
pointwise convolutional layer and a depthwise convolutional layer. Pointwise convolutional layer
is applied to cluster correlated feature representation from the input channels and followed by a
depthwise convolutional layer, which maps a single convolution kernel to each input channel of
the previous pointwise convolutional layer. Eq. (2) presents the computational cost of a depthwise
convoultional layer:

1 ∗DF ∗M ∗ 1 ∗Dk, (2)

F denotes the weight parameters of depthwise convolution kernel 1 ∗ DF ∗ M, 1 ∗ DF is the
size of the convolution kernel, M is the number of output channels. Thus, compared with
standard convolution operation, depthwise convolution operation is able to reduce computa-
tional cost efficiently. Pointwise convolution layer can reduce computational cost through adopt-
ing 1 × 1 convolution kernel. The computational cost of the PDblock can be represented as
follows.

M ∗N ∗ 1 ∗Dk+ 1 ∗DF ∗M ∗ 1 ∗Dk, (3)

which is the sum of pointwise convolution operation (left) and depthwise convolution operation
(right). 1 ∗ Dk, 1 ∗ Dk, N, and M denote the length of the input feature map, the length of
the output feature map, the number of input channels, and the number of output channels,
respectively. Compared with a standard convolutional layer, the PDblock can get a reduction of
computational cost as follows.

1 ∗DF ∗M ∗ 1 ∗Dk+M ∗N ∗ 1 ∗Dk

1 ∗DF ∗M ∗N ∗ 1 ∗Dk
= 1
N

+ 1
DF

(4)

If depthwise convolution kernel sizes with 1× 3 or 1× 4 are used for ECG analysis in this
work, reducing 3 to 4 times less computation cist than a standanard convolutional layer.

3.2 Convolutional Neural Network Architecture
In this work, we utilize the PDblock as the backbone to construct the PDNet, as shown in

Fig. 3. It contains an input layer, a convolutional layer, three max-pooling layers, two PDblock
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layers, two fully-connected (dense) layers, and the output layer (softmax layer). The input layer
is used as the input for time-series ECG signals and the output of the softmax layer is used
for multi-classification. Max-pooling layers can reduce the computational cost between two layers
and select useful feature representations. A convolutional layer and two PDblock layers are used
to learn high-level feature representations from original ECG features. Based on learned local
high-level feature representations of the convolutional layer and PDblock layers, we apply two
fully-connected layers to learn the relationship from local high-level feature representations, which
can help the PDNet achieve good classification performance.

Figure 3: The PDNet architecture

Tab. 1 summarizes the specific architecture of the proposed PDNet. In the PDNet, the
first convolutional layer uses convolution kernel size 1× 4 and generates five feature maps after
the convolution operation and the activation operation. Two PDbolck layers convolve with the
same kernel size 1× 1 and 1× 3 and generate 10 and 20 feature maps correspondingly. Every
convolutional layer, followed by a max-pooling layer is able to lower the computational cost
without reducing the performance. Two dense layers have 30 and 20 neurons respectively. The
softmax layer outputs 5 predicted results according to types of arrhythmias.

The activation function is an important factor to affect the performance of deep learn-
ing methods. To achieve good arrhythmia classification performance in this work, we apply
several activation functions like tanh, sigmoid, rectified linear unit, leaky rectified linear unit
(leakyRelu) [43] activation functions to the proposed PDNet model respectively, and the leakyRelu
is adopted as activation function based on the arrhythmia classification performance. Batch
normalization (BN) [44] layer has become an important component of modern CNN models
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due to its powerful function. In this work, we also used it after every convolutional layer for
getting the expected classification performance and accelerating the convergence of the proposed
CNN model.

Table 1: Construction of the proposed CNN model

Layer type Number of feature maps Kernel size Stride

Convolutional layer 5 1× 4 1
Max-pooling layer 1× 2 2

PDblock Pointwise convolutional layer 10 1× 1 1
Depthwise convolutional layer 10 1× 3 1

Max-pooling layer 1× 2 2

PDblock Pointwise convolutional layer 20 1× 1 1
Depthwise convolutional layer 20 1× 3 1

Max-pooling layer 1× 2 2
Dense layer 30
Dense layer 20
Softmax layer 5

3.3 Improved Loss and Adam Optimizer
The training process of the CNN model is implemented by the backpropagation method [45].

Loss function is an important factor for classification performance. For deep learning methods,
it is standard to use cross entropy (CE) loss as loss function and can be expressed as following
equation:

CE=− 1
N

⎡
⎣

N∑
i=1

K∑
j=1

1{y(i) = j} logp(i)
j

⎤
⎦ . (5)

y, p denotes ground truth and predicted probability of each label, respectively, N and
K denote the number of instances and the number of arrhythmia types.

Getting inspiration from [11,46], an improved loss is introduced based on the label replication
method and CE. In the improved loss, we make every hidden layer generate predicted outputs
and compute losses of each output. We use P to represent the sum of losses of each hidden layer
as you can see in Eq. (6):

P= α

n∑
j=1

CEj. (6)

α is a hyper-parameter and set for 0.02 based on the experiment results, n represents the
number of layers and is set at 2, which means that two dense layers all generate error signals by
replicating true labels to them except for softmax layer in the training phase. According to the
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previous introduction, the improved loss (L) is a companion optimization objective function and
can be computed as follows:

L=CEfinal+P. (7)

P denotes the auxiliary loss of hidden layers, and CEfinal denotes the loss of the class-
fication layer. The proposed improved loss function considers the different high-level feature
representation stage, which can make the PDNet learn good feature representations in the
training.

Furthermore, we use Adam [47] optimizer as the optimizer for the proposed CNN, which is
a first-order gradient-based descent optimizer of stochastic objective functions. It is very easy to
implement and work efficiently.

4 Dataset

ECG datasets used in this work are from the public MIT-BIH Arrhythmia database [12]. The
database contains 48-half hour-long ECG records from 47 objects, which sampling rate is 360 Hz.
Two types of ECG sets are collected in this work: set A and set B. Set A with a sampling rate
of 260 Hz and set B with a sampling rate of 360 Hz. 107375 ECG records were extracted from
the MIT-BIH database, and the number of N, S, V, F, and Q is 90592, 2781, 802, 7235, and 5965
respectively. Given real-world applications of arrhythmias detection into consideration, two data
sets of ECG dataset are original data without denoising. Fig. 4 gives the distribution of five types
of non-life-threatening arrhythmias (F, N, Q, S, and V), and the class imbalance as large as 112-
fold between N and F. Hence, to keep the label balanced, the synthetic data strategy is used to
synthesize ECG data. After synthesizing data, the total number of ECG segments including N,
S, V, F, and Q types of arrhythmia is 465000 and all types of heart arrhythmias have the same
number of data. Furthermore, the Z-score method is used to preprocess ECG data, which can
alleviate the amplitude scaling problem in an ECG heartbeat. To verify the performance of the
proposed PDNet, both balanced and imbalanced data sets are used in experiments. Additionally,
a ten-fold cross-validation method is applied to the training and testing, which means 90% of the
ECG data are used for training, the rest is used for testing every time.

Figure 4: The distribution of five types of arrhythmias (N, S, V, F, and Q)
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5 Experiment

5.1 Experiment Setup
All methods are implemented on the TensorFlow platform [48] and python. To verify the per-

formance of the proposed PDNet comprehensively, state-of-the-art convolutional neural networks
were used like AlexNet and MobileNet. The number of convolution kernels of the MobileNet
is the same as the PDNet, and AlexNet uses the same parameter settings as the model in
literature [32], which [32] can achieve good classification performance. Thus, this work follows it to
set similar parameters such as the size of the convolution kernel and the number of convolution
kernels. Other advanced CNN models (VGGNet [49] and GoogleNet [38]) are also used for
comparison. The batch size for the training is set for 64, and we manually set the learning rate at
0.0035 and initialize the weights of the proposed PDNet randomly. Network models are trained
on a server with six Intel Xeon (R) 2.60 GHz (E5-2650) processors and 64 GB RAM. It takes
about four hours to complete ten training epochs for the PDNet, the testing time of PDNet is
in 5 ms, which is very short. However, it can not reflect the real testing time of PDNet, because
we do not deploy it on real applications.

Common evaluation measures like accuracy, sensitivity, and recall (positive predictive value)
are used to evaluate the performance of CNN models. The main task of this work is to
find a good balance between the computational cost and accuracy of CNN models. Parameter
count (PC) is used as an evaluation measure, which is the sum of parameters on convolutional
layers (not including dense layers). Parameter count is an important factor which is related to
computational complexity, memory demanding, and classification performance.

Figure 5: Hyper-parameter selection results of α

5.2 Result Analysis and Discussion
Fig. 5 shows hyper-parameter selection results of α, on set A and the PDNet achieves the

best accuracy of 97.71% when α is set as 0.02. When α is set for 1.0, the model achieves the worst
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performance, because the auxiliary loss dominates the gradient in the training phase. Furthermore,
the value of α is small, which has little effect on the total loss. Hence, it is hard to set the value
of α and we set it for 0.02 in this work.

Tabs. 2 and 3 present the classification performance of Adam optimizer and SGD opti-
mizer based on the PDNet. Adam optimizer outperforms SGD optimizer about 2.11% of
accuracy. SGD optimizer takes five times of epochs than Adam optimizer in the training. Because
Adam optimizer gets better classification performance and requires less training time than SGD
optimizer, thus, Adam optimizer is used as the optimizer for all following experiments.

Table 2: Experimental results of Adam and SGD on set A

Opt Rec Se Acc

Adam 99.34% 99.37% 97.71%
SGD 95.89% 98.57% 95.60%

Table 3: Experimental results of Adam and SGD on set B

Opt Rec Se Acc

Adam 99.36% 99.46% 98.20%
SGD 96.25% 98.89% 95.74%

Table 4: Experimental results of five CNN models on set A

Model Rec Se Acc PC

This work 99.34% 99.37% 97.71% 395
AlexNet 95.80% 97.28% 94.78% 805
MobileNet 95.78% 97.33% 92.96% 345
VGGNet 98.16% 98.85% 96.33% 1535
GoogLeNet 98.99% 99.12% 97.53% 1276

Table 5: Experimental results of five CNN models on set B

Model Rec Se Acc PC

This work 99.36% 99.48% 98.20% 395
AlexNet 95.78% 98.43% 95.49% 805
MobileNet 95.75% 97.98% 93.91% 345
VGGNet 96.93% 98.89% 96.92% 1535
GoogLeNet 99.05% 99.12% 97.98% 1276

According to Tabs. 4 and 5, it can be seen that PDNet and MobileNet have the approximate
number of parameters, but AlexNet, VGGNet, and GoogleNet use two-fold parameters than the
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PDNet at least. The PDNet model achieves 97.71% and 98.20% on accuracy over two sets and
outperforms other CNN models. Although MobileNet uses 10% the number of parameters less
than the PDNet, PDNet improves 4.75% of accuracy than MobileNet. Hence, the PDNet model
trades off better than other CNN models between accuracy and model size. For the length of
ECG signals, it also can be inferred that the length of ECG signals is longer can result in higher
accuracy because long ECG sample contains a complete heartbeat sample of ECG in set B, but
set A only contains partial heartbeat sample in one-second.

Tabs. 6 and 7 show a comparison between the improved loss, CE, and focal loss (FL) on set
A and set B, respectively. The improved loss increases approximately 0.5% of accuracy compared
to FL and CE, which confirms the effectiveness of the improved loss.

Table 6: Experimental results of the improved loss, CE and FL on set A

Loss Rec Se Acc

IL 99.34% 99.37% 97.71%
CE 98.77% 99.45% 97.26%
FL 98.80% 99.36% 97.28%

Table 7: Experimental results of the improved loss, CE and FL on set B

Loss Rec Se Acc

IL 99.36% 99.48% 98.20%
CE 98.77% 99.25% 97.57%
FL 98.83% 99.31% 97.62%

Table 8: Comparison of original and noise free ECGs on five types of arrhythmias

Reference Type Method Acc Rec Se

This work Original CNN 98.20% 99.36% 99.48%
This work Original CNN 97.71% 99.34% 99.37%
[32] Original CNN 93.47% 96.01% 97.87%
[32] Noise free CNN 94.03% 97.86% 96.71%
[7] Noise free CNN 99.00% 98.90% 93.90%
[50] Noise free CNN+LSTM 98.10% 98.70% 97.50%
[51] Noise free LSTM 99.39%
[34] Noise free DNN 93.4%
[35] Noise free CNN-LSTM 99.26%
[52] Noise free LS-SVM 93.76% 99.13% 99.76%
[52] Noise free PCA+NN 94.52% 99.36% 98.61%
[53] Noise free DCT+PCA+PNN 99.58% 99.79% 98.69%
[54] Noise free DCT+PCA+PNN 94.61% 99.73% 94.67%
[15] Noise free SVM 98.39% 99.87% 99.69%
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Tab. 8 presents the results of heart arrhythmia detection on five- class among the PDNet
and previous advanced methods. It shows that the PDNet works better previous CNN models on
original ECG signals. It is obvious that the proposed PDNet can achieve competitive performance
on original ECG dataset compared with other methods on noise-free ECG dataset.

To make the overall classification results of the PDNet model on the balanced datasets
understandable, Figs. 6a and 6b provide the five-classification results of confusion matrices of the
PDNet on dataset A and dataset B. According to Figs. 6a and 6b, the type of F (fusion) achieves
the worst results of recall with 96% and 97% respectively. V (ventricular ectopic) gets the worst
results of sensitivity (precision) with 96% and 97% on set A and set B, respectively.

(a) (b)

Figure 6: Confusiuon matrices for S, N, V, F and Q five types of arrhythmias on balanced dataset
A and B respectively

Table 9: Experimental results of the PDNet model on imbalanced sets

Set Acc Rec Se

Set A 95.95% 79.49% 96.54%
Set B 96.82% 82.38% 98.26%

The PDNet model is capable of achieving excellent classification performance on balanced
datasets, but the class distribution of ECG data is skewed in real applications. Hence, it is impor-
tant and necessary to train CNN models on the imbalanced dataset and achieve classification
results for comparison. Tab. 9 shows the classification performance of the PDNet on imbalanced
datasets. Alhough the PDNet model obtains accuracy with 95.95% and 96.82% on two sets
respectively, it only gets 79.49% and 82.36% on recall, because recall is an important evaluation
measure to verify the classification performance of a method in arrhythmia detection. Figs. 7a
and 7b provide classification performance of each class on imbalanced set A and imbalanced
set B respectively through two confusion matrices. The recalls of F type on two sets are 31%
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and 59%, and S class obtains the same recall with 41% on imbalanced set A and imbalanced
set B respectively as you can see from Fig. 7. The PDNet reduces recall of F class by as much
as 65% and 38% on the imbalanced sets. One explanation for the results is that the number
of F class is the minimum and the classifier easily classifies true F class into other four classes
(N, S, V, Q). In the future, it is necessary to develop methods to improve arrhythmia detection
results on imbalanced ECG datasets, and we also would combine the time-frequency analysis
methods [55,56] with deep learning methods to enhance the stability and interpretability of deep
learning methods in medical fields.

(a) (b)

Figure 7: Confusiuon matrices for S, N, V, F and Q five types of arrhythmias on imbalanced
dataset A and B respectively

6 Conclusion and Future Work

This work presents a convolutional neural network (CNN) named PDNet to detect different
types of heart arrhythmias automatically. We propose a convolutional block called PDblock
based on a pointwise convolution method and a depthwise convolution method. To further
improve the heart arrhythmia detection results, an improved loss function is utilized. The extensive
experiments are conducted on the public MIT-BIH arrhythmia database. The results show that
the proposed methods achieve 97.71% and 98.20% of accuracy on two balanced datasets and
outperform previous state-of-the-art methods. The PDNet also achieves 95.95% and 96.82% on
original imbalanced datasets, which demonstrates that the PDNet is insensitive to the original
ECG signals on MIT-BIH arrhythmia database. Compared with state-of-the-art CNN models,
the PDNet gets a better balance between accuracy and the number of parameters. Hence, the
proposed PDblock model has the potential to be embedded in the ECG-based CAD system on
small intelligent devices, which can be utilized to diagnose heart arrhythmias and reduce subjective
errors of clinicians in the diagnosis.

In the future, we would develop an ECG based CAD system and deploy the proposed PDNet
on it to test the effectiveness of the PDNet based on real-time collected ECG signals through
small intelligent devices.
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