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Abstract: The robust design optimization (RDO) is an effective method to
improve product performance with uncertainty factors. The robust optimal solu-
tion should be not only satisfied the probabilistic constraints but also less sensitive
to the variation of design variables. There are some important issues in RDO, such
as how to judge robustness, deal with multi-objective problem and black-box
situation. In this paper, two criteria are proposed to judge the deterministic opti-
mal solution whether satisfies robustness requirment. The robustness measure
based on maximum entropy is proposed. Weighted sum method is improved to
deal with the objective function, and the basic framework of metamodel assisted
robust optimization is also provided for improving the efficiency. Finally, several
engineering examples are used to verify the advantages.
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1 Introduction

The purpose of engineering optimization is to make the cost of structure as low as possible or make some
properties to achieve optimal state under constraints. Traditional optimization problems are based on
deterministic parameters and model, which are also solved by classical deterministic optimization
methods. However, the deterministic optimal solution may violate the imposed constraints due to the
existence of variations on design variables or cause the system performance (named as the objective
function) to be varied drastically [1]. The uncertainty-based design optimization can overcome the
shortcoming of deterministic optimization which neglects the parameter uncertainty. The uncertainty-
based design optimization mainly contains reliability-based design optimization (RBDO) and robust
design optimization (RDO). The purpose of RBDO is to obtain the optimal solution satisfying the
probabilistic constraints. The robust optimal solution should be not only satisfied the probabilistic
constraints but also less sensitive to variations and tolerances of design variables. The intuitive
comparison chart among three design optimization methods are shown in Fig. 1.

When the optimum has a small perturbation Dx, the fluctuation of objective corresponding to
deterministic design might be too large thus fall outside the feasible region, which leads to the failure of
structure. However, neither RBDO optimum nor RDO optimum exceeds the feasible region. In addition,
RBDO optimum has larger fluctuation than RDO optimum, that is to say, RBDO optimum is more
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sensitive to the variability of design variables than RDO. Therefore, RDO is widely used in the design
optimization field.

Traditional robust design is an efficient tool based on experimental design to improve the product
quality, which was initially proposed by Taguchi [2]. The three stages of robust design include system
design, parameter design and tolerance design. The core of robust design is to improve robustness by
adjusting design parameters reasonably. Vining et al. [3] utilized the dual response approach into
Taguchi design, in order to achieve the design goal with fewer tests and cost during the process of
designing. However, in abovementioned methodologies, the variations of design variables were
simply viewed as changes in an interval, which ignored the probabilistic distributions of variables.
Because of the variables defined in discrete space, the traditional robust design is also difficult to deal
with the constraints.

With the development of computer engineering techniques, probability statistics and optimization
algorithms are introduced into robust design, and RDO based on mathematical model has been gradually
formulated [4,5]. Huang et al. [6] summarized several main issues of RDO problems, containing
robustness assessment, objective function processing, mathematical model and solution strategy.

Several robustness assessments have been proposed, such as moment assessment, quantile, information
entropy [1,7–11]. The most widely applied assessment is the moment assessment, e.g., a combination of
mean and variance. Song [11] used the first four order moments to measure the robustness of objective
function, since only mean and variance cannot accurately describe the statistical characteristics of
response. Quantile is another robustness measure [7]. Quantile contains more information than variance,
and it is only applicable for unimodal probability distribution. In fuzzy RDO problems, Beer et al. [8]
utilized the entropy ratio of input and output to measure robustness.

RDO is not only to make the design objective as best as possible but also to make the optimal solution
insensitive to the disturbance of design parameters. Therefore, RDO is a typical multi-objective and multi-
constraint problem considering the trade-off between objective performance and robustness as well as subject
to probabilistic constraints meanwhile.

For the multi-objective optimization problem [12], weighted sum method can transform multi-objective
optimization into single-objective optimization, which is commonly used in engineering [13]. However, due
to the introduction of decision-maker’s preference, it inevitably brings some errors [14]. Genetic algorithm
(GA) is a representative global optimization method and can directly deal with multi-objective problems to
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Figure 1: The comparison among three design optimization methods. (A) Deterministic optimum; (B)
RBDO optimum; (C) RDO optimum
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obtain Pareto solution [15], which can also effectively deal with highly nonlinear, non-convex,
discontinuous, non-derivative and other complex situations despite its computational burden.

As we all know, the dimension of uncertain parameters is very high in practical engineering. If all the
uncertain parameters are taken into consideration, the computational burden and data storage space will be
too large to accept. Hence, in order to reduce the variables’ dimension, sensitivity analysis (also called
importance analysis) should be employed to distinguish important and unimportant uncertain variables
[16,17]. And then these unimportant uncertainties can be screened out according to the ranking of
sensitivity indices, thus providing useful guidance in respect to RDO problems.

In RDO of complex engineering system, it is difficult to derive the explicit expressions of objective
function and constraints accurately. In order to avoid expensive and time-consuming experiment or
simulation, RDO is supposed to be assisted by metamodel, which can approximate the input-output
relationship. Various techniques have been studied, such as response surface method [18], Kriging [19],
support vector machines [20], artificial neural network [21], etc. A brief introduction of abovementioned
and other metamodels is listed in [22]. Among neural network algorithms, group method of data handling
combined neural network (GMDH-NN) is self-organized network and the polynomial expression of
model output can be obtained. Song et al. [23] modified GMDH-NN method further and utilized it to
estimate variance-based sensitivity indices efficiently.

This paper focuses on some main issues of RDO. The remaining of the paper is organized as follows:
Section 2 reviews the fundamental mathematical models of deterministic design, RBDO and RDO. Two new
criteria are defined to judge the optimal solution whether satisfies robustness in Section 3. A novel robustness
assessment based on maximum entropy is proposed in Section 4. Section 5 improves adaptive weighted sum
method, a kind of multi-objective optimization method, by hyper-plane method. The basic framework of
metamodel assisted robust optimization is provided in Section 6 and several engineering examples are
used to illustrate the results of the proposed RDO in Section 7. Finally, conclusions of this paper are
drawn in Section 8.

2 Review of Design Optimization Problems

A general single-objective deterministic design problem can be given by the following conventional
optimization model,

find d
min f dð Þ
s:t: gi dð Þ � 0 i ¼ 1; 2; � � � ncð Þ;

dL � d � dU ;

8>><
>>: (1)

where d represents the vector of design variables, and dL and dU denote the corresponding lower and upper
bounds of design variables. f dð Þ is the objective function to be minimized, such as the structural weight and
the initial cost. gi dð Þ is the ith inequality constraint function, e.g., displacement constraints, geometric
constraints and so on.

Ignoring the uncertainty of input parameters, the deterministic optimal solution may fall into unfeasible
region due to small perturbations of parameters. So in RBDO, there are two types of variables are considered,
e.g., design variables d and random parameters x. The mathematical model of RBDO is
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find ld
min f ldð Þ
s:t: P gi d; xð Þ � 0ð Þ � P�

fi i ¼ 1; 2; � � � ncð Þ;
lLd � ld � lUd ;

8>><
>>: (2)

where ld denotes the mean vector of design variable vector d, gi (d, x) is the ith constraint function, P �ð Þ is
the probability operator and P�

fi is the superior limit of failure probability.

Admittedly, the RBDO optimum can ensure that structure satisfies the reliability requirements when
considering the uncertainty of constraints, but the sensitivity of RBDO optimum to parameters’
perturbations may be high as well. The robust optimal solution should be not only satisfied the
probabilistic constraints but also less sensitive to variation of design variables, and RDO is also viewed
as reliability-based robust design optimization (RBRDO) [24]. The mathematical optimization model of
RDO is

find ld
min M f ldð Þð Þ
s:t: P gi d; xð Þ � 0ð Þ � P�

fi i ¼ 1; 2; � � � ncð Þ;
lLd � ld � lUd ;

8>><
>>: (3)

where M f ldð Þð Þ means the robustness measures of objective function f dð Þ. For example, robustness has
been widely measured by variance or standard deviation, then the corresponding objective function of
RDO can be written as

min lf dð Þ;rf dð Þ� �
; (4)

which is the combination of first two order statistical moment of original objective f dð Þ.
RBDO as well as RDO are both double loop optimization, including inner reliability assessment loop

and outer design optimization loop. Various approaches have been developed with the aim of mitigating
the unbearable computational cost from double-loop process [25,26], especially from the reliability
assessment of constraints, which are not comprehensively investigated here. Since statistical moments can
also be used to estimate the reliability index, the constraint is approximately written as

lgi � birgi � 0 i ¼ 1; 2; � � � ncð Þ; (5)

or

3 a4gi � 1
� �

a1gi
a2gi

þ a3gi
a21gi
a22gi

� 1

 !
� bi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5a23gi � 9a4gi þ 9
� �

1� a4gi
� �r

� 0 i ¼ 1; 2; � � � ncð Þ; (6)

where βi is admissible reliability index, which is normally chosen as 3 or bigger value, and akgi k ¼ 1; 2; 3; 4ð Þ
is the kth central moment [11]. Obviously, using first four order moments to approximate reliability is more
precise than only using mean and variance. Besides, moments can be efficiently estimated by sparse grids
method, which contributes to alleviating computational burden [27].

3 New Criteria to Judge the Robustness of Optimum

After obtaining the deterministic optimum, we should judge whether it is robust and then decide whether
to carry out RDO. Taking the variances of design variables and random parameters into consideration, two
criteria are proposed to judge the robustness of optimum solution. Criterion 1 is to deal with the objective
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function which is second-order derivative at optimum point, and Criterion 2 is to deal with the objective
function which is second-order non-derivative at optimum point.

Before using these criteria to judge the robustness, it is necessary to standardize all random variables.
For example, general uniform distribution need to be transformed into the interval of [0,1], normal
distribution should be transformed into standard normal distribution, other distribution variables should
be transformed into equivalent normal distribution by using Rackwitz-Fiessler method.

3.1 Criterion 1 (Second-Order Derivative at the Optimum Point)
Curvature can reflect the bending degree of objective function, which can be also regarded as the

fluctuation or variation of response. So when the curvature can be calculated at optimum point of
objective function, its absolute value can be utilized to represent its robustness. For one-dimensional
function f(x), the robustness criterion based on curvature can be written as

Ro ¼ Kj j ¼
1þ f 0 x�ð Þ2
� �3

2

f 00 x�ð Þ

							
							: (7)

For multi-dimensional function f(x), the second-order Taylor expansion in standardized normal space at
optimum point x* can be expressed as [27]

f xð Þ ¼ f ðx�Þ þ αT ðx� x�Þ þ 1

2
x� x�ð ÞTB x� x�ð Þ; (8)

where α ¼ rf x�ð Þ
rf x�ð Þj j and B ¼ r2f x�ð Þ

rf x�ð Þj j. So the average principal curvature is

�Ks ¼ Ks

n� 1
¼

Pn
j¼1

bjj � αTBα

n� 1
; (9)

where bjj (j = 1, 2, ···, n) are the diagonal elements of B and n is the dimension of variables. So the robustness
criterion for multi-dimensional function is

Ro ¼ �Ksj j: (10)

3.2 Criterion 2 (Second-Order Non-Derivative at the Optimum Point)
Since Criterion 1 is not available when objective function does not have the second-order derivative at

optimum point, Criterion 2 is proposed to deal with second-order non-derivative case.

Firstly, consider the variable xk k ¼ 1; 2; � � � nð Þ separately, and set an interval xkL ; xkR½ � which contains
the optimum point x�k . Then divide the interval equally into N parts and calculate the partial derivative
@f xð Þ
@xk

				
xk¼xki

ði ¼ 1; 2;…;NÞ on the midpoint of each small interval. Thereby, the robustness criterion of

kth variable is noted as
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Rok ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

@f xð Þ
@xk

				
xk¼xki

 !2
0
@

1
A

vuuut ; (11)

where the bounds of each interval are set as

xkL ¼ x�k � Dxk ; xkR ¼ x�k þ Dxk ; if x�k is not on the boundary
xkL ¼ x�k ; xkR ¼ x� þ Dxk ; if x�k is on the left boundary
xkL ¼ x�k � Dxk ; xkR ¼ x�k ; if x�k is on the right boundary

8<
: (12)

where Dxk is a preset parameter. For example, Dxk can be equal to 0.1 for standard uniform distribution and
equal to 3 for standard normal distribution (from 3 Sigma criterion). Finally, the biggest one Rok is chosen as
the final value of Criterion 2.

If the criterion is smaller than given threshold value, the deterministic optimal solution can be considered
as a robust solution. Next, there are two examples to illustrate above criteria.

3.3 Illustrative Examples
Example 3.1:

Consider a nonlinear function:

f xð Þ ¼ 1

8
8� 15x2
� �� 6 exp �14þ 15xð Þ sin 15� 15xð Þ � 9,

where x is uniformly distributed at interval [0, 1]. Two minimum points A (0.5330, -9.0098) and B (0.9362,
-9.5556) can be calculated as shown in Fig. 2. The Criterion 1 values are

RoA ¼ 61:2457, RoB ¼ 1680:6944.

It is concluded that point A is more robust than point B. When the threshold is set as 100, point A is
robust and point B is not robust.

A

f(
x)

B

0 0.1 0.2 0.3 0.4 10.5 0.6 0.7 0.8 0.9
x

Figure 2: The minimum points of Example 3.1
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Example 3.2:

Consider a piecewise function:

f xð Þ ¼ �90xþ 50; x � 0:5
50 sinð3x� 1:5Þ þ 5; x > 0:5



.

where x is uniformly distributed at interval [0, 1] and the threshold is set as 100. Because the onlyminimum
point A (0.5, 5) is not derivative, as shown in Fig. 3, the Criterion 2 is used to judge its robustness and the
value is RoA = 122.3460. Thus, point A is not a robust solution.

4 Robustness Assessment Based on Maximum Entropy

As mentioned before, one of the main issue about RDO is its robustness assessment. Robustness
assessments, including moment assessment, quantile assessment, information entropy assessment, have been
studied till now. Moment assessment is most widely used, but only mean and variance cannot accurately
describe the statistical characteristics of response and their weight coefficients are determined by human.
Quantile contains more information than variance, but it is only applicable for unimodal probability
distribution. Entropy assessment will be mainly discussed in this part, whose drawback is huge calculation
cost. Later, a new robust assessment based on maximum entropy will be introduced in detail.

Information entropy can be used to measure the degree of uncertainty, which was firstly proposed by
Shannon [28]. The smaller the degree of uncertainty, the smaller the entropy is. The entropy of a
continuous distribution is defined by

H ¼ �
Z
R
q xð Þ ln q xð Þdx; (13)

where q xð Þ represents probability density function (PDF). Obviously, information entropy can serve as
robustness assessment. However, for a group of random samples, the probability density function cannot
be known in advance, so it needs to be inferred according to statistical characteristics. The approximate
calculation formula of entropy can be obtained

A

x

f(
x)

Figure 3: The minimum point of Example 3.2
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H ¼ �
Z
R
q xð Þ ln q xð Þdx 	 � 1

N

XN
i¼1

ln q xið Þ½ � (14)

According to the large number theorem, it needs a lot of random samples to get accurate entropy, which
is not conducive to application.

Jaynes [29,30] introduced the principal of maximum entropy into statistical decision theory in 1957, i.e.,
there exists a distribution represents the best that can be done with the given information. Since the
minimization of entropy is accordance with the minimization of maximum entropy, robustness assessment
based on maximum entropy can be proposed in RDO.

The typical solution strategy of maximum entropy is to use Lagrange multipliers method and variational
approach under the classical moment constraints.

maxH ¼ � RR q xð Þ ln q xð Þdx
s:t:
R
R x

kq xð Þdx ¼ lk ; k ¼ 1; 2; � � � ;K;R
R q xð Þdx ¼ 1

8<
: (15)

where lk is k-order moment andK is the biggest order. In general cases, first four order moments, i.e., K = 4, are
used as constraints to meet accuracy requirement.

Introduce Lagrange multipliers �k(k = 0,1, ···,K), and then Lagrange function L of Eq. (15) can be
obtained as

L ¼ H xð Þ þ �0

Z
R

q xð Þdx� 1

2
4

3
5þ

XK
k¼1

�k

Z
R

xkq xð Þdx� lk

2
4

3
5: (16)

After obtaining the optimal solution of Lagrange function by unconstrained optimization methods, such
as Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, the PDF conforming to maximum entropy is

q x;�0; �1; � � � ; �Kð Þ ¼ exp �0 þ
XK
k¼1

�kx
k

 !
(17)

with

�0 ¼ � ln

Z
R
exp

XK
k¼1

�kx
k

 !
dx

" #
: (18)

Finally, the maximum entropy is expressed as [31]

maxH ¼ ��0 �
XK
k¼1

�klk : (19)

If the magnitude of samples is too large, the integral of the exponential function in Eq. (18) may be out of
memory by MATLAB, resulting in the solution impossible. Therefore, the expression of PDF can be
converted into Eq. (20) to accelerate the convergence.
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q x;�0; �1; � � � ; �Kð Þ ¼ exp �0 þ
XK
k¼1

�k x� lð Þk
 !

(20)

The proposed robustness assessment based on maximum entropy can not only remain the feature of
using entropy to reflect the uncertainty but also greatly shorten the calculation time compared with
entropy assessment. Meanwhile, it is obvious that Lagrange multipliers in the objective function are
not fixed, which automatically achieves the best with the change of design variables in the process
of robust optimization.

5 Adaptive Weighted Sum Method for RDO

RDO is not only to make the design objective as best as possible, but also to make the optimal solution
insensitive to the disturbance of design parameters. Therefore, RDO is a typical multi-objective optimization
problem. For example, when moment assessment is chose as the robust assessment, mean value and standard
deviation of design objective need to be minimized at the same time. Weighted sum method is widely used to
deal with such problems, but its coefficients are usually determined by designers’ preference. In this section,
an adaptive weighted sum method is proposed.

Weighted sum method is a classical method for multi-objective optimization, which seeks optimal
solution by transforming multiple objectives into an aggregated single objective function. Although there
are some drawbacks, the weighted sum method is still widely used because it is simple to understand and
easy to implement [32].

Choosing mean and variance as the robustness measure and using weighted sum method to deal with the
objective function, the mathematical model of RDO can be written as

min w1
lf
l�f

þ w2
rf
r�f

; (21)

where w1 and w2 represent for weight factors and w1 þ w2 ¼ 1. l�f and r�f are the mean and standard
deviation of objective function at the deterministic optimum considering uncertainty, respectively.
Generally, weight factors are determined by the designers’ preference (e.g., w1 ¼ w2 ¼ 0:5), which might
not be the optimal values. In order to overcome the limitation, a new adaptive weighted sum method is
proposed as follows.

Assume there are m objective functions h1 xð Þ; h2 xð Þ; � � � ; hm xð Þ of a multi-objective optimization
problem, if only one objective function hi xð Þ i ¼ 1; 2; � � � ;mð Þ is considered sequentially, the optimal
solution of each single objective is separately noted as x�i i ¼ 1; 2; � � � ;mð Þ and corresponding objective
value is hi x

�
i

� �
i ¼ 1; 2; � � � ;mð Þ, which can serve as normalization factors in weighted sum method. Then

an optimization model for solving optimal weights is formulated as follows:

find w1;w2; � � � ;wm; a

min R ¼Pm
i¼1

r2i

s:t: 0 � wi � 1
w1 þ w2 þ � � � þ wm ¼ 1

8>>><
>>>:

; (22)
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where

ri ¼ w1
h1 x�i
� �

h1 x�1
� �þ w2

h2 x�i
� �

h2 x�2
� �þ � � � þ wn

hm x�i
� �

hm x�m
� �� a: (23)

The optimization model of Eq. (22) can be solved to obtain the weight coefficients, and then the final
form of optimization objective of adaptive weighted sum method is

min w1
h1 xð Þ
h1 x�1
� �þ w2

h2 xð Þ
h2 x�2
� �þ � � � þ wn

hm xð Þ
hm x�m
� � : (24)

The principle of adaptive weighted sum method is to find an ideal hyper-plane, where each objective
function can be minimized. However, in many practical engineering, we can only find the hyper-plane
with the minimum deviation from ideal one.

6 Robust Design Optimization by Metamodel

Although RDO can be finished by abovementioned procedures, it is hard to conduct RDO in complex
engineering system. Because it is difficult to derive the explicit expressions of objective function and
constraints accurately in such cases. In order to avoid expensive and time-consuming experiment or
simulation, RDO is supposed to be assisted by metamodel, which can approximate the input-output
relationship. In the iterative process of RDO, the Most Probable Point of Inverse Reliability (MPPIR) [7]
is introduced to determine whether update the metamodel.

Sensitivity analysis can be used to rank variables, simplify models, establish priorities for research and
so on. It is widely carried out to distinguish important and unimportant uncertain variables. And then these
unimportant uncertainties can be screened out according to the ranking of sensitivity indices, thus providing
useful guidance in respect to RDO problems.

The flowchart of metamodel assisted RDO is shown in Fig. 4 and main procedures are summarized
as follows.

Step 1. Carry out sensitivity analysis. Sensitivity analysis distinguishes important and unimportant
variables, and then set unimportant variables as constant.

Step 2. Separately build metamodels of objective and constraints.

Step 3. Re-sample and select points in design region to update metamodels.

Step 4. Iterative optimization process of RDO to search the new optimum point.

Step 5. Find the inverse MMP according to target reliability and optimum point. If the inverse MMP
does not satisfy certain constraint, we need repeat Steps 3–5 to build updated metamodels. If all
constraints are satisfied, the whole optimization process will be finished.

7 Examples

Example 7.1: Cantilever beam

A rectangle cross-section cantilever beam is considered, which is shown in Fig. 5. The beam with the
length L is loaded at the tip by vertical load P. The elastic modulus of beam is noted as E. S represents the
random yield strength, and w represents admissible reflection. They are all normally distributed variables and
distribution parameters are listed in Tab. 1. The width a and thickness b of the cross-section are random
design variables with the standard deviation r ¼ 0:1; 0:1½ �T . The optimization objective is to minimize
the cross-section area of the beam. The main failure modes of cantilever beam includes strength failure
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Figure 5: The schematic diagram of cantilever beam

Table 1: The distribution parameters of the random variables in cantilever beam

Variable Distribution type Mean Standard deviation

P (kN) normal 20 2

E (GPa) normal 206 10.3

L (mm) normal 200 1.0

S (Gpa) normal 300 15

w (mm) normal 1 0.005

Y

N

Figure 4: The flowchart of metamodel assisted RDO
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and stiffness failure, which also serve as constraints, and the reliability index of each reliability constraints is
required to satisfy b � 3.

According to mechanical knowledge, the expressions of reliability constraints corresponding to strength
failure and stiffness failure are

g1 dð Þ ¼ 6PL

ab2
� S � 0 (25)

g2 dð Þ ¼ 4PL3

Eab3
� w � 0 (26)

Besides, the size of cantilever beam should satisfy design requirements, which are

1 � b

a
� 2; 20 � a � 40; 40 � b � 55

When the randomness of variables is not considered, the deterministic optimization model is

find d ¼ a; b½ �
min f dð Þ ¼ ab

s:t: g1 dð Þ ¼ 6PL

ab2
� r � 0

g2 dð Þ ¼ 4PL3

Eab3
� w � 0

b� a � 0; b� 2a � 0;
20 � a � 40; 40 � b � 55

8>>>>>>>>><
>>>>>>>>>:

(27)

Then we conduct deterministic optimization, reliability-based design optimization and robust design
optimization with different methods for cantilever beam. The results are shown in Tab. 2. The weight
factors of mean and standard deviation of objective function are separately as 0.0473 and 0.9527 in
RDO model.

Example 7.2: Aircraft cabin floor grid structure

Floor grid structure is an important part of aircraft design, and it can divide the fuselage into passenger
cabin and cargo cabin. The load of structure mainly comes from the weight of passengers, luggage and seats.
Seen from Fig. 6, the floor grid structure includes the floor board, longitudinal track and transverse beam.

Through the design optimization, the quality of floor grid structure can be reduced as much as possible
under the strength and deflection constraints g1 dð Þ and g2 dð Þ. The design variables are the width w and
thickness t of plate and the width b of the longitudinal section of beam, and they are independent normal
variables with coefficient of variation is 0.05. The deterministic optimization model is

Table 2: Optimization results of Example 7.1

a b f(d)

Deterministic optimum 24.9635 49.9270 1246.3539

RBDO 26.9976 53.9951 1457.7375

RDO-Variance 28.5128 53.0211 1511.7802

RDO-Maximum entropy 28.5226 53.7665 1533.5626
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find d ¼ ½w; t; b�
min f dð Þ ¼ bhDwfuselage

w
þ Dtwfuselage

s:t: g1 dð Þ ¼ 3qwD2

4bh2
� rd � 0

g2 dð Þ ¼ k
qw4

Et3
� dallow � 0

0:3 � w � 0:75; 0:005 � b � 0:01; 0:003 � t � 0:02

8>>>>>>>>><
>>>>>>>>>:

(28)

where h is the height of longitudinal section of beam and h = 3b; wfuselage is the width of aircraft fuselage and
wfuselage = 6 m; D is the spacing of transverse beam and taken as 0.75 m; the deflection coefficient k = 0.05;
the uniformly distribution load q is a normal distribution variable q~N (2200, 400) Pa; Young’s modulus E =
69 GPa; the allowable stress rd = 241 MPa; the allowable deflection dallow is 0.005 m. The failure
probabilities of strength and deflection constraints should not exceed 10−5 and the corresponding
reliability index should satisfy b � 4:2649. Then we conduct deterministic optimization, reliability-based
design optimization and robust design optimization with different methods for cantilever beam. The
results are shown in Tab. 3.

Example 7.3: Electric tower structure

An electric tower structure can be simplified as 25-truss structure. All the 25 trusses are divided into six
categories, which are represented by six different colors in Fig. 7. Among them, the modulus of elasticity E6

obeys normal distribution with lE6
¼ 107 Pa; rE6 ¼ 1:5
 106 Pa, and other modulus of elasticity obeys

normal distribution with lE1
¼ � � � ¼ lE5

¼ 107 Pa and rE1 ¼ � � � ¼ rE5 ¼ 2
 105 Pa.

The coordinates of all nodes 1–10 are listed in Tab. 4. Nodes 7–10 at the bottom are fixed, and nodes 1
and 2 are subject to static load, P1y = P2y = P1z = P2z = 107N, and nodes 3 and 6 are subject to random load P3x

= P6x with lP ¼ 500N;rP ¼ 50N.

In order to ensure the strength of structure, the tensile and compressive stress of all trusses σi (i = 1,2,
…,25) shall not exceed 15000 Pa. The design variables are the cross sectional area A1∼A6, and they are
independent normal variables with coefficient of variation is 0.05. Taking the minimum quality of truss
structure as the objective function, the deterministic optimization model is constructed as follows.

find d ¼ A1;A2;A3;A4;A5;A6½ �T
min f dð Þ ¼ 75A1 þ 50

ffiffiffiffiffiffiffiffi
109

p
A2 þ 50

ffiffiffiffiffi
73

p
A3 þ 300A4 þ 100

ffiffiffiffiffiffiffiffi
210

p
A5 þ 50

ffiffiffiffiffiffiffiffi
114

p
A6

s:t: gi dð Þ ¼ ri � 15000 � 0 ði ¼ 1; 2;…; 25Þ
0:005 � A1 � 1; 0:005 � A2 � 1; 2 � A3 � 6:5
0:4 � A4 � 2:5; 0:5 � A5 � 4; 2 � A6 � 10

8>>>><
>>>>:

(29)

Figure 6: The schematic diagram of floor grid structure
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The failure probabilities of strength and deflection constraints should not exceed 10−5 and the
corresponding reliability index should satisfy b � 4:2649.

Figure 7: The schematic diagram of electric tower 25-truss structure

Table 4: Node coordinates of electric tower 25-truss structure

Node x y z Node x y z

1 −37.5 0 200 2 37.5 0 200

3 −37.5 37.5 100 4 37.5 37.5 100

5 37.5 −37.5 100 6 −37.5 −37.5 100

7 −100 100 0 8 100 100 0

9 100 −100 0 10 −100 −100 0

Table 3: Optimization results of Example 7.2

w t b f(d)

Deterministic optimization 5.3944 × 10−1 3.0000 × 10−3 6.1343 × 10−3 1.4442 × 10−2

RBDO 4.3267 × 10−1 3.0000 × 10−3 7.2698 × 10−3 1.5149 × 10−2

RDO-Variance 4.1492 × 10−1 3.0053 × 10−3 7.2330 × 10−3 1.5226 × 10−2

RDO-Maximum entropy 4.2300 × 10−1 3.0001 × 10−3 7.2405 × 10−3 1.5174 × 10−2

396 CMES, 2020, vol.125, no.1



There is no doubt that the calculation burden is huge if the design optimizations only depends on calling
finite element models. In order to mitigate this problem, design optimizations are assisted by metamodel as
mentioned in Section 6. In this example, adaptive Kriging metamodel is used to replace the performance
function of constraints. What’s more, all constraints gi dð Þ ¼ ri � 15000 � 0ði ¼ 1; 2;…; 25Þ can be
transform into one constraint, i.e., g dð Þ ¼ maxðriÞ � 15000 � 0, which can be surrogated by Kriging
model. For comparison, optimization results of example 7.3 by using finite element model and
metamodel are separately listed in Tabs. 5 and 6.

From the optimization results of three engineering examples, it can be found that the deterministic
optimum is at the boundary of constraint condition, and it may fall into the unfeasible region if there is a
little disturbance. That is to say, the structure is on the edge of failure. Considering the volatility of
design and random variables, the structure is very vulnerable to damage. And the RBDO optimum is at
the boundary of probabilistic constraints. In contrast, the robust optimal solution is much more
conservative. It has incomparable significance for the normal performance function and the guarantee of
the core efficiency. Comparing moment assessment with maximum entropy assessment, the RDO optimal
solutions are basically consistent. Also, through Tabs. 5 and 6, it is obviously that RDO assisted by
metamodel saves much calculation time, compared with calling finite element model directly.

Table 5: Optimization results of Example 7.3 (finite element model)

Deterministic
optimization

RBDO RDO-Variance RDO-Maximum
entropy

A1 0.0050 0.0050 0.0050 0.0054

A2 0.0050 0.0050 0.0050 0.0073

A3 2.0000 2.0000 2.0000 2.0021

A4 0.4676 0.5832 1.0446 1.0216

A5 0.5000 0.5000 0.5000 0.5005

A6 2.0000 2.0000 2.0000 2.0055

f (d) 278.9928 282.4631 296.3042 296.1931

Calculation time (s) 88.56 14469.75 27302.50 30180.23

Table 6: Optimization results of Example 7.3 (metamodel)

Deterministic
optimization

RBDO RDO-Variance RDO-Maximum
entropy

A1 0.0050 0.0050 0.0050 0.0050

A2 0.0050 0.0050 0.0050 0.0067

A3 2.0000 2.0000 2.0000 2.0014

A4 0.4213 0.4972 0.9786 1.2652

A5 0.5000 0.5000 0.5000 0.5012

A6 2.0000 2.0000 2.0000 2.0147

f (d) 276.9662 280.8439 293.8759 294.1231

Calculation time (s) 3.42 689.03 1379.42 1984.23
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8 Conclusions

The main issues of RDO are studied, containing robustness assessment, objective function handling,
mathematical models and solution strategies. Firstly, there are two criteria to judge the deterministic
solution whether satisfies robustness. If the criterion values are small, the deterministic optimal solution
can be considered as a robust solution. Secondly, robustness assessment based maximum entropy is
introduced, it can not only remain the feature of using entropy to reflect the uncertainty but also greatly
shorten the calculation time compared with entropy assessment. Thirdly, the RDO multi-objective
optimization is transformed into the single-objective optimization by adaptive weighted sum method,
whose weights are decided by hyper-plane method. Finally, RDO is coupled with sensitivity analysis and
metamodel, which can reduce dimension, reduce the computational load and realize single loop iterative
optimization process. Several engineering examples are used to verify the advantages of improved RDO.
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