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Abstract: Elemental sulfur has been used as a traditional Chinese medicine to treat the late-onset hypogonadism and

impotence without a clarified mechanism for many hundreds of years. In the present study, mice were received sulfur

or distilled water for 35 days by daily intragastric gavage at a dose of 250 mg/kg body weight. Then, the serum

testosterone level and genes associated with testicular testosterone biosynthesis (TTB) were detected. The gut

microbiota was also analyzed by 16S rRNA gene sequencing. Serum testosterone level was significantly increased by

291.1% in sulfur-treated mice. The H2S levels in serum and feces were significantly increased. The expression of genes

associated with TTB including StAR, p450c17, 3β-HSD, and P450scc in testes were significantly upregulated by Sulfur

and NaHS, suggesting that sulfur promotes TTB depending on H2S. In addition, sulfur increased the diversity of gut

microbiota and the abundance of several bacteria associated with sulfur metabolism, including genus Prevotella, which

might be positively associated with serum level of testosterone in boys. Five pathways including bile secretion,

carotenoid biosynthesis, lipid biosynthesis proteins, propanoate metabolism, and biosynthesis of type II polyketide

products, were identified to associate with sulfur. Together, our results suggested that sulfur upregulated testicular

testosterone biosynthesis via H2S, which was associated with alteration of gut microbiota in mice. Our study

highlights a mechanism for the treatment of late-onset hypogonadism and impotence by sulfur.

Introduction

Testosterone deficiency (TD), also known as hypogonadism,
is characterized by decreased serum testosterone, associating
with multiple metabolic diseases, coronary heart diseases,
cancers and male infertility (Buvat et al., 2013; Khera et al.,
2016; Kim and Schlegel, 2008). Bioavailable testosterone was
decreased gradually with aging in adult men (Liu et al.,
2015; Tsujimura et al., 2003), resulting in 5.6% symptomatic
androgen deficiency in men aged 30–79 years old (Araujo et
al., 2007). In general, the production of testosterone by
testicular Leydig cells is controlled by luteinizing hormone
(LH), a tropic hormone released from the pituitary. LH
activates adenylyl cyclase by activating G protein-coupled
receptor and inducing the production of the intracellular
second messenger cAMP, and then activates the PKA

pathway and promotes the expression of key steroidogenic
genes including steroidogenic acute regulatory protein
(StAR) and P450scc. StAR is responsible for intracellular
cholesterol transport into the mitochondria, the rate-
limiting step of testosterone biosynthesis. Transcriptional
upregulation of the StAR gene involves the concerted action
of multiple proteins that bind directly or indirectly to the
cis-elements located in its promoter region (Manna and
Stocco, 2005). One of them is a cAMP-responsive element-
binding protein (CREB), which is activated by
phosphorylation mediated by PKA (Clem et al., 2005;
Manna and Stocco, 2005). During steroidogenesis,
cholesterol is converted to pregnenolone in the
mitochondria by P450scc. Pregnenolone then moves from
the mitochondria into the smooth endoplasmic reticulum
(ER) and is converted to testosterone by several
steroidogenic enzymes, including 3β-HSD, cytochrome P450
17A1 (P450c17) and 17β-hydroxysteroid dehydrogenase
(17β-HSD). These enzymes play important roles in
maintaining the testicular testosterone biosynthesis (TTB)
(Wang et al., 2017; Zirkin and Papadopoulos, 2018).
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Among the factors that affect the steroidogenesis in
Leydig cells, an imbalance between prooxidants and
antioxidants has been widely studied. For example, the
Leydig cells from aged rats produce significantly more
reactive oxygen than the cells from young rats (Chen et al.,
2001). High levels of reactive oxygenic species (ROS) have
been linked with the repression of TTB in human and
different murine models (Ge et al., 2007; Toppari et al.,
2006; Wang et al., 2017). In recent years, the influence of
gut microbiota on human health has been paid more and
more attention. Gut microbiota is closely related to many
diseases, such as aging, inflammatory bowel disease,
colorectal cancer, obesity, and diabetes (De Almeida et al.,
2019; Mailing et al., 2019). Interestingly, gut microbiota
affects TTB, since specific pathogen-free mice have a higher
serum testosterone level and levels of 3β-HSD and p450scc
than in germ-free mice (Al-Asmakh et al., 2014). Early-life
exposure to doxycycline will result in testosterone deficiency
in mice (Hou et al., 2019). However, it remains unclear how
gut microbiota affects steroidogenesis.

The testosterone replacement therapy (TRT) using
exogenous testosterone reversed many of the symptoms of
low testosterone. However, severe side effects were also
observed (Bosland, 2014; Dimopoulou et al., 2016). For
example, recent studies suggest that there may be an
increased risk of cardiovascular disease in older men after
TRT (Finkle et al., 2014; Vigen et al., 2013). TRT is not
recommended in men prostatic cancer and lower urinary
tract symptoms caused by an enlarged prostate (McGill et
al., 2012). Males who desire to maintain fertility are also
advised against the use of TRT because exogenous
testosterone can suppress the hypothalamic-pituitary-
gonadal axis (HPG axis) and result in infertility (McGill et
al., 2012). Thus, drugs for boosting testosterone production
demonstrate great potential for application.

For treating the late-onset hypogonadism (LOH) and
impotence in China, Japan, and other regions of Southeast
Asia, some traditional medicines are often the first choice.
Some extracts that include sulfur have been reported to raise
serum level of testosterone in different murine models
(Chen et al., 2006; Gao et al., 2019; Hsia et al., 2009; Leu et
al., 2011). Elementary sulfur has been used to treat LOH
and impotence for many hundreds of years (Jia, 2008).
However, its mechanism has been unknown. In the present
study, we studied the effect of elementary sulfur on
steroidogenesis in Leydig cells and gut biota in mice. Our
results showed that sulfur significantly upregulates androgen
biosynthesis and H2S generation and increased the diversity
of gut microbiota.

Materials and Methods

Elemental sulfur and animals
Elemental sulfur powder with a purity of ≥99% was purchased
from the Shanghai Chemical Reagent supply station
(Shanghai, China).

Male Kunming mice aged between 6 and 7 weeks (weight
range, 34–37 g) were purchased from Shanghai SLAC
Laboratory Animal Co., Ltd., kept under the controlled
photoperiod conditions (lights on 07:00–19:00) and supplied

with food and sterilized H2O ad libitum. Eighty mice were
randomly divided into control and sulfur-treated groups,
with 40 mice in each group. For control groups, mice were
administered with 0.2 mL distilled water by gavage for
5 weeks, 6 days per week. For sulfur-treated groups, mice
were administered with the suspension of sulfur powder in
0.2 mL distilled water (250 mg/kg mouse weight) by gavage
for 5 weeks, 6 days per week, as used in our previous study
(Duan et al., 2015).

The study was approved by the animal ethics committees
of Shanghai Institute of Planned Parenthood Research.

Measurement of serum testosterone and cytokines
Serum testosterone was determined by the enzyme-linked
immunosorbent assay (ELISA) kit (R&D Systems,
Minneapolis, MN, USA) according to the manufacturer’s
instructions. Interleukin-2 (IL-2), interleukin-4 (IL-4),
interleukin-6 (IL-6) were measured by cytokine bead array
(CBA) Mouse cytokine kit (BD Biosciences, USA) according
to the manufacturer’s instructions.

Immunohistochemistry (IHC)
Testes from mice were collected and immediately fixed in
4% paraformaldehyde (PFA) for immunohistochemistry. To
ensure the reproducibility of the results, samples from ≥3
animals were used. For IHC assay, sections (4–5 μm) were
deparaffinized in xylene and rehydrated in gradient alcohols.
After antigen retrieval, the blocked sections were incubated
with primary antibodies overnight at 4°C. The sections were
incubated with secondary antibodies for 20 min, and then
developed with DAB and counterstained with hematoxylin
(Zeng et al., 2019). Antibodies were diluted as follows: StAR,
3β-HSD, pCREB, at 1:200 (Santa Cruz Biotechnology, USA).

Measurement of hydrogen sulfide
The methylene blue method was used to measure levels of
hydrogen sulfide in plasma and fecal as previously reported
(Shen et al., 2011; Zheng et al., 2012). In addition, 100 μL of
5% zinc acetate solution (pH 5.2) was added into 100 μL of
a serum sample, vortexed vigorously, then 100 μL of 5 mol/L
NaOH solution was added. After centrifuged for 10 min at
4°C, 12000 × g, the supernatant was discarded and mixed
with 100 μL of 5% zinc acetate solution, 0.2% N,N-
dimethyl-p-phenylenediamine sulfate solution and 20%
trichloroacetic acid. For rest samples, 100 μL of 5% zinc
acetate solution (pH 5.2) was added into 10 mg of fecal
sample, homogenized into suspension, then mixed with
100 μL of 0.2% N,N-dimethyl-p-phenylenediamine sulfate
solution and 20% trichloroacetic acid. After centrifuged for
5 min at 4°C, 12000 × g, 200 μL of the supernatant was
mixed with 20 μL of 10% ferric ammonium sulfate solution
for 15 min. The absorbance of the reaction solution was
measured by a spectrophotometer at 665 nm.

Measurement of oxidative stress
Malondialdehyde (MDA), a marker of lipid peroxidation, was
determined with thiobarbituric acid (TBA) according to the
manufacturer’s instructions (Nanjing Jiancheng
Bioengineering Institute, China). Testis were weighed and
immersed into 0.02 mmol/L Tris-HCl (pH 7.4) at the ratio of
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1:10 (mg/mL). Tissue homogenate was centrifuged at 13000
rpm for 15 min, and precipitates were discarded. The
supernatant (0.15 mL) was transferred to a testing tube. The
following steps were performed as described by Liu et al. (2010).

For measurement of superoxide dismutase (SOD) and
GST-Px activity, frozen testes were homogenized in 100
mmol/L Tris-HCl buffer and centrifuged at 10000 rpm for
20 min, and then their activity was respectively determined
using assay kits (Nanjing Jiancheng Bioengineering Institute,
China) and the activity was expressed as units per microgram
of total protein (µ/mg). Total protein content in samples was
analyzed using a bicinchoninic acid protein assay kit.

Treatment of exogenous H2S
NaHS (Sigma, USA) was used as the donor of H2S (Hu et al.,
2015). Testes were obtained frommale Kunming mice aged 8–
10 weeks, and cut into small pieces of 10–20 mm3, and then
incubated in DMEM: F12 (1:1) medium with 10% Fetal
bovine serum with gentamicin (0.02 g/L; Sigma), maintained
in 24-well plates in a humidified atmosphere at 34°C with
5% CO2. Three hours later, 100 or 200 mM NaHS in
DMEM: F12 (1:1) medium was added to the plates. After
treated with NaHS for 24 h, the pieces of testis were
collected for extraction of the total RNA.

Quantitative real‑time PCR
Total RNA was extracted from the testes of control and sulfur-
treated mice with TRIzol reagent (Invitrogen, USA), followed
by RNA precipitation. cDNA was synthesized with a reverse
transcription kit (TaKaRa, Japan). Real-time PCR was
performed using SYBR Premier EX Taq (TaKaRa, Japan).
Genes were amplified with the indicated primers (Tab. 1).
Relative levels of mRNAs were calculated using MX3500pro
software and normalized to the levels of endogenous β-Actin
in the same samples.

Statistical analysis
All statistical data were analyzed with GraphPad Prism
software (version 5, GraphPad Software Inc., CA, USA). The
data were presented as means ± SEM. ANOVA was used.
Statistical significance set: NS, p > 0.05; *p ≤ 0.05; **p ≤

0.01. All the presented results were from at least three
independent experiments.

Genomic DNA extraction, PCR amplification and 16S rRNA
gene sequencing
Bacterial genomic DNA was extracted from each mouse fecal
sample by QIAamp DNA Stool Mini Kit (QIAGEN). The V3-4
region of 16S rRNA genes was amplified with primers 338F
and 806R (Huse et al., 2007) using TransStart Fastpfu DNA
Polymerase (TransGen). The thermocycling steps were as follow
conditions: 95°C for 5 min, 20 cycles of at 95°C for 45 s, 55°C
for 30 s, 72°C for 30 s and a final extension step at 72°C for
10 min. Three PCR amplification repeats of each sample were
performed, then the amplicons were purified with AxyPrep
DNA Gel Extraction kit (AXYGEN) and pooled equivalent after
assessed by spectrophotometry (QuantiFluor-ST, Promega).
2 × 300 bp paired-end sequencing of 16S rRNA gene amplicons
were performed on an Illumina MiSeq instrument.

Bioinformatics and statistical analysis
The assembling of paired FASTQ files was performed using
Mothur (version 1.39.0) (Schloss et al., 2011). Raw assembled
sequences were excluded if it had ambiguous bases or the
length was shorter than 350 bp, the sequences were also
excluded if it was identified as chimeric sequence or
contaminant. The high-quality DNA sequences were grouped
into OTUs (operational taxonomic units) under the threshold
of 97% identity compared to the SILVA reference database
(V119) (Quast et al., 2013). The minimum sample size was the
criteria for data normalization. Community richness, evenness,
and diversity analysis (Shannon, Simpsonenven, ACE, Chao
and Good’s coverage) were performed using Mothur. The
Student’s t-test (with 95% confidence intervals) was used to
determine whether the means of evaluation indices were the
statistical difference, and p < 0.05 was considered as significant
standard. Taxonomy was assigned using the online software
RDP classifier (Wang et al., 2007) at the default parameter
(80% threshold) based on the Ribosomal Database Project
(Cole et al., 2009). Genera and family abundance differences
between samples were analyzed by Metastats (White et al.,
2009). For taxonomy features, the significant differences were
taken with q-value < 1E-5. Differences between normal and
sulfur-fed samples were assessed using Analysis of Molecular
Variance (AMOVA) and Parsimony in Mothur. LEfSe (Segata
et al., 2011) used the Kruskal-Wallis test to detect different
abundance taxa (mainly for genera, p < 0.05) among two
groups and estimate linear discriminant analysis effect size
(LDA score > 2.5). Through normalizing the 16S rRNA copy
numbers, PICRUSt (Langille et al., 2013) was used to predict
the microbiome functions from the KEGG pathways.

Accession numbers
The sequence data have been submitted to the GeneBank
Sequence Read Archive (accession number PRJNA596549).

Results

Sulfur increased serum testosterone level in mice
We previously reported that elemental sulfur repressed the
growth of androgen receptor (AR)-negative prostate cancer

TABLE 1

DNA sequences of primers for qPCR

Gene Primer(5’/3’)

β-actin F: CCTGAAGTACCCCATTGAAC

R: TTCTCTTTGATGTCACGCAC

StAR F: CTCTATGAAGAACTTGTGGACC

R: CTGGTTGATGATTGTCTTCG

p450c17 F: CTTGATACTTACATACGACGGG

R: GCTGGAGAGAGATTCACTATTG

3β-HSD F: CTGTTGTCATCCACACTGCT

R: TGGACTTCTCTCCCCATAAA

P450scc F: AAGACCGAATCGTCCTAAAC

R: CCCCAAATATAACACTGCTG
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cells subcutaneous xeno-transplanted in nude male mice with
much higher efficiency than that was observed in AR-
expressing prostate cancer cells (Duan et al., 2015). One
simple explanation for this discrepancy is that sulfur might
upregulate the androgen signaling pathway. Therefore, we
first investigated the effects of sulfur on serum testosterone
levels of male mice. As a result of treatment with sulfur, the
serum testosterone level reached 7.66 ng/mL, while that of
the control mice remained at 2.63 ng/mL, indicating that
sulfur significantly increased (2.91 fold) the serum
testosterone level (Fig. 1A).

The expression of the genes including StAR, p450c17,
3β-HSD, and p450scc was detected by RT-PCR (Fig. 1B).
We observed all these genes significantly increased in sulfur-
treat mice testis compared with the control group (Fig. 1B),
with StAR increasing 99.8%, p450c17 increasing 174.6%,
3β-HSD increasing 150.9%, and p450scc increasing 131.5%.

The effect of sulfur on TTB was further examined using the
immunostaining assay. The staining of both StAR and 3β-HSD
was restricted in the Leydig cells, while their expressions were
absent in the seminiferous tubules. The results showed that
immunostaining of both StAR and 3β-HSD was obviously
stronger in Sulfur-treat mice testis compared with the control
group (Fig. 1C). Phosphorylation of CREB (pCREB) binds to
the StAR proximal promoter, which is indispensable for the
upregulation of StAR transcription (Clem et al., 2005). The
signal of pCREB was barely detected in the Leydig cells from
the control mice, while a strong signal was present in Leydig
cells of sulfur-treated mice (Fig. 1C), indicating that sulfur
upregulated pCREB. In addition, we did not observe any
significant histological effect of sulfur on seminiferous tubules.
Together, these results demonstrated that treatment with
sulfur raised serum testosterone levels in mice and upregulated
the key genes for TTB.

Association of H2S with effect of sulfur on TTB
H2S is the simplest product generated from elementary sulfur.
Circulating H2S in the human body mainly exists in three

forms including free H2S, HS−, S2− (Shen et al., 2011). To
investigate the metabolism of sulfur in vivo, levels of the
total hydrogen sulfide in serum and feces of mice were
measured. The results showed that the serum level of
hydrogen sulfide in the sulfur-treated group was 10.39
μmol/mL, which was higher by 29.1% than that in the
control group (8.05 μmol/mL) (Fig. 2A). Total sulfide in
the feces of the sulfur-treated group was 406.3 μmol/100
mg, which was 1.43 times higher than in the control
group (283.5 μmol/100 mg) (Fig. 2A). The results
indicated that sulfur was significantly converted into
hydrogen sulfide in vivo.

The levels of reliable oxidative stress markers, including
malondialdehyde (MDA), superoxide dismutase (SOD), and
glutathione peroxidase (GSH-Px), were detected. Sulfur
treatment significantly reduced the testicular level of MDA
by 17.3% (Fig. 2B). In addition, the relative SOD activity
and GSH-Px activity in the testis in sulfur-treated mice were
increased by 26.7% and 35.6% (Fig. 2B), respectively. These
results indicated that sulfur raised the antioxidative
capability in testis.

In the presence of NaHS, the expression of StAR,
p450c17, 3β-HSD, and p450scc were tested. The results
showed all the genes were higher in testis treated with
NaHS (Fig. 2C). The highest upregulation was observed in
3β-HSD, whose expression increased approximately by 3.63
folds in the presence of 200 μM NaHS. These resulted
indicated that hydrogen sulfide upregulated steroidogenesis
in Leydig cells.

IL-6 is a key cytokine responsible for gut inflammation
(Kittana et al., 2018). We detected that the plasma level of
IL-6 increased by 3.21 folds in the sulfur treated group than
the control (Fig. 2D). However, sulfur did not significantly
affect the levels of the other two cytokines, IL-2 and IL-4.

Gut bacterial populations affected by treatment with sulfur
A total of 38 fecal samples were separately collected from
19 mice treated with Sulfur and from 19 controls. A total of

FIGURE 1. Effects of sulfur on
testicular testosterone biosynthesis.
(A) Serum level of testosterone in
male mice-treated with elemental
sulfur. The level of testosterone was
detected by ELISA (n = 36). (B)
Relative expression levels of StAR,
p450scc, 3β-HSD, and p450scc genes
in testis from sulfur-treated mice
(n = 20), measured by qPCR. (C)
Immunohistochemical analysis of
StAR, 3β-HSD, and pCREB in testis
from sulfur-treated mice. The area
with the dashed frame is also
shown with an enlargement.
Photomicrographs represented one
of three independent analyses with a
similar result. Scale bar, 200 μm. The
data are expressed as mean ± SEM.
**p < 0.01; *p < 0.05.
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1,1072,275 (22,628–44,021) 16S rRNA genes from the
38 samples were obtained by high-throughput DNA
sequencing that met quality-filtering requirements. To
normalize data to avoid statistical bias, 22,628 as normalization
size for each sample was chosen for calculation of richness and
diversity indices. Operational taxonomic unit (OTU), the
group of 16S rRNA genes, was set at 97% similarity to
estimate the diversity and richness of the bacterial community.
After 38 samples were classified into two groups, a total of
17,275 OTUs (16,430 in the sulfur-treated group and 13,098 in
the control) were obtained. The Good’s coverage was over 99%
for both sulfur-treated mice and the control group (Tab. 2),
which meant the sequencing depth was sufficient for
microbiota investigation of mice gut with different diets.

Core microbiota in mice gut
Phylogenetic and taxonomic assessments of the 16S rRNA
V3-4 regions revealed the microbiota in the mouse gut.
Using RDP analysis under a threshold of 80%, 99.6% of all
16S rRNA genes could be aligned to 17 phyla, and 93.2%
could be aligned to 80 families, though only 30.8% could be
aligned to 126 genera. At the phylum level, Bacteroidetes
(normal 51.2%, sulfur 53.8%), Firmicutes (normal 45.0%,
sulfur 42.8%) and Proteobacteria (normal 1.83%, sulfur
1.34%) were detected as the dominant phyla in the two
groups of mice, which were also the common phyla in all
the 38 samples.

At the family level, 10 families were major and core
microbiota in both dietary groups (accounting for about 90%
in both dietary groups) (Fig. 3), reflecting that microbiota

was stable at family level despite dietary differences. Among
10 families, Lachnospiraceae and Porphyromonadaceae were
dominant families (>65% of all microbiome).

In 126 identified genera, 29 genera were relatively
abundant of the major genera (>0.1% in at least one type of
dietary group), including Alloprevotella, Barnesiella,
Bacteroides, Alistipes, Clostridium XlVa, Lactobacillus,
Prevotella, Oscillibacter, Helicobacter, and Mucispirillum, etc.,
(Tab. 3). Among major genera, there were 15 ubiquitous
(core) genera that were consistently found across all analyzed
samples and comprised over 20% of total microbiota.

Sulfur induced changes in the bacterial composition of mice gut
Gut bacterial populations in sulfur-treated mice and the
control showed variable richness and high diversity. Based
on the evaluation of OTU, the total estimated bacterial
richness per sample differed between the two groups. The
number of OTUs in sulfur-treated mice was significantly
higher than the controls (p = 0.0001, Tab. 2). Similarly, the
samples collected from sulfur-treated mice contained higher
species richness according to the ACE and Chao indices
(p < 0.001, Tab. 2). While, for the evenness, as measured by
the Simpsoneven calculator, the control samples had more
evenness than the sulfur-fed samples (p = 0.026). Combined
with the richness and evenness, the sulfur raised a relative
diversity, which was assessed by the Shannon index (p =
0.024). Effect of sulfur on microbial membership was also
evidenced by Parsimony and AMOVA (pParsimony < 0.001,
pAMOVA < 0.001), suggesting that sulfur changed the
microbiota compositions of the mice gut.

FIGURE 2. Effect of sulfur on levels of H2S and MDA, the activity of SOD and GSH-Px and interleukins. (A) Level of H2S in serum and fecal
(n = 20). (B) Levels of MDA and activity of SOD and GSH-Px (n = 20). (C) Effect of H2S on expression of StAR, p450scc, 3β-HSD, and p450scc.
The incubated pieces of testis were treated with different concentrations of NaHS for 24 h and then submitted for measurement of the gene
expression by qPCR, as described in Materials and Methods. The data were the average of results from three independent experiments. (D)
Levels of IL-2, IL-4, and IL-6 (n = 20), measured in ELISA assay. The data are expressed as mean ± SEM. **p < 0.01; *p < 0.05.
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In the ten core families, five of them showed a significant
difference between the sulfur-treated group and the control
(Fig. 3). Family Lachnospiraceae, Ruminococcaceae,

Rikenellaceae, and Helicobacteraceae had a relatively lower
abundance in sulfur-treated group, while Lactobacillaceae
had relatively higher abundance in the sulfur-fed microbiota.

TABLE 2

The evaluated microbiota diversity of two dietary groups

Group Sample OTUs Coverage Richness Evenness Diversity

Chao ACE Simpsoneven Shannon

Normal 19 13,098 0.992531 15118.54 15339.03 0.008519 6.301084

Sulfur-treated 19 16,430 0.996374 16894.04 16956.73 0.008824 6.937134

FIGURE 3. Ten major families in normal and sulfur-treated mice gut. The relative abundance was shown as log (reads + 1) for families with false
discovery rate. The q-value (corrected p-value) was computed by Meatstats. Five families were significantly different between the two groups.
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In the control group, about 67.6% of all 16S rRNA genes
were identified at two family levels, which were
Lachnospiraceae (34.1%) and Porphyromonadaceae (33.6%),
but 86.3% of Lachnospiraceae and 85.8% of
Porphyromonadaceae were not identified at the genus level.
Similar results were also present in sulfur-fed diet bacteria,
65.5% of 16S rRNA genes belonged to family
Lachnospiraceae (31.5%), and Porphyromonadaceae
(34.0%), while 87.1% of Lachnospiraceae and 89.5% of
Porphyromonadaceae were not identified at the genus level.
Among major relatively abundant genera, there were
24 genera showing a significant difference between normal
and sulfur-fed dietary microbiota (Tab. 3). We also
performed LEfSe tests (Segata et al., 2011) to detect different
abundance taxa (Fig. 4), and found results were all covered
by Metastats results (Tab. 3).

Identified bacteria associated with sulfur metabolism
Twenty-four genera showed a significant difference between
control and sulfur-treated group (Tab. 3), and eight genera
of which were increased, and the other were reduced in
sulfur-treated mice compared with the controls. Among
them, genus Rhodococcus was enriched in the sulfur-treated
group, with a 26.5-fold increase of richness. Genus
Prevotella increased 1.4-fold in the sulfur-treated group.
Strikingly, serum levels of testosterone in boys were
positively correlated with levels of Prevotella (Nakagawa et
al., 1994). Other bacteria whose richness increased after
treatment with sulfur included genera Intestinimonas,
Dorea, Parasutterella, Clostridium clusters XIVa, and
Lactobacillus.

Other richness increased bacteria after sulfur-fed
included genus Parasutterella, decreased strongly during

TABLE 3

Relatively abundant genus of gut microbiota in different dietary Metastats analysis

Phylum Genus Feature Normal Sulfur-feed q-value
(corrected p-value)

Enriched

Bacteroidetes Barnesiella ubiquitous 3.58% 2.65% <0.001 Control

Bacteroidetes Parabacteroides ubiquitous 0.90% 0.61% <0.001 Control

Bacteroidetes Alloprevotella 6.29% 5.19% <0.001 Control

Bacteroidetes Alistipes ubiquitous 2.58% 1.85% <0.001 Control

Bacteroidetes Rikenella 0.38% 0.31% <0.001 Control

Deferribacteres Mucispirillum 1.05% 0.44% <0.001 Control

Firmicutes Acetatifactor ubiquitous 0.69% 0.39% <0.001 Control

Firmicutes Clostridium_XlVb ubiquitous 0.72% 0.24% <0.001 Control

Firmicutes Eisenbergiella 0.11% 0.03% <0.001 Control

Firmicutes Lachnospiracea_incertae_sedis 0.80% 0.31% <0.001 Control

Firmicutes Roseburia 0.30% 0.06% <0.001 Control

Firmicutes Anaerotruncus ubiquitous 0.09% 0.04% <0.001 Control

Firmicutes Butyricicoccus ubiquitous 0.63% 0.24% <0.001 Control

Firmicutes Oscillibacter ubiquitous 1.33% 1.10% <0.001 Control

Firmicutes Pseudoflavonifractor 0.24% 0.18% <0.001 Control

Proteobacteria Helicobacter ubiquitous 1.15% 0.61% <0.001 Control

Actinobacteria Rhodococcus 0.01% 0.28% <0.001 Sulfur-treated

Firmicutes Dorea 0.02% 0.11% <0.001 Sulfur-treated

Firmicutes Intestinimonas ubiquitous 0.09% 0.19% <0.001 Sulfur-treated

Bacteroidetes Prevotella ubiquitous 1.99% 2.78% <0.001 Sulfur-treated

Proteobacteria Parasutterella 0.19% 0.25% <0.001 Sulfur-treated

Firmicutes Clostridium_XlVa ubiquitous 2.36% 2.91% <0.001 Sulfur-treated

Firmicutes Lactobacillus ubiquitous 2.22% 2.58% <0.001 Sulfur-treated

Tenericutes Mycoplasma 0.00% 0.15% <0.001 Sulfur-treated

Bacteroidetes Bacteroides ubiquitous 3.56% 3.68%

Bacteroidetes Odoribacter 0.30% 0.31%

Bacteroidetes Paraprevotella 0.10% 0.09%

Firmicutes Flavonifractor ubiquitous 0.46% 0.52%

Tenericutes Anaeroplasma 0.08% 0.10%
*The ubiquitous meant the genus was identified in all samples.
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aging, and significantly reduced in patients with colorectal cancer
(Van Der Lugt et al., 2018). Intestinimonas (Klaring et al., 2013)
and Clostridium clusters XIVa (Lopetuso et al., 2013) can
produce butyrate in the mouse intestine. The elevated richness
of Clostridium clusters XIVa is beneficial for the resistance to
allergy and intestinal inflammation in mice (Atarashi et al.,
2011). Lactobacillus, a well-known probiotic bacteria, could
produce volatile sulfur compounds (VSCs), including H2S
(Sreekumar et al., 2009), and could increase serum testosterone
levels and testicular size (Poutahidis et al., 2014).

Functional prediction of normal and sulfur-fed microbiota
We used PICRUSt (Langille et al., 2013) to predict the potential
function of microbiota induced by sulfur fed. 405 KOs were

found to be significantly enriched (FDR < 0.05) between
normal and sulfur-fed groups. Most of these different KOs
(95.1%) were higher in sulfur-fed groups. There was no
significant difference between the two dietary groups at KEGG
level 2 pathways. At KEGG level 3 pathways, five pathways
were identified as significantly higher (p < 0.05) in the sulfur-
treated group (Fig. 5), including bile secretion, carotenoid
biosynthesis, lipid biosynthesis proteins, propanoate
metabolism and biosynthesis of type II polyketide products.

Discussion

Cadmium causes testicular toxicity and inhibits androgen
production in adult male rats, and that concurrent

FIGURE 4. LDA Effect Size (LEfSe)
algorithm was used to identify the
most differentially abundant taxa
between normal and sulfur-feed
dietary groups. (A) Sulfur-enriched
taxa were indicated with a positive
LDA score (green) and taxa
enriched in normal dietary with a
negative score (red). (B) Taxonomic
cladogram obtained from sulfur-
enriched (green) and normal-
enriched (red) taxa.
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administration of diallyl sulfide provides protection against
cadmium-induced testicular toxicity (Sadik, 2008). We
demonstrated that the treatment of sulfur significantly
raised serum testosterone levels of the male mice
approximately by 2.91-fold via upregulating testicular
steroidogenesis in the present study (Figs. 1A and 1B). For
the first time, our study clearly provides a mechanism by
which sulfur, as a traditional Chinese medicine, has been
used to clinically treat LOH and impotence (Jia, 2008). On
the other hand hydrogen sulfide in excess has been
suspected to be detrimental for colonic epithelium energy
metabolism and DNA integrity (Beaumont et al., 2016).
Keeping in line with the literature, our results suggested that
sulfur caused gut inflammatory response, as indicated by a
raised level of IL-6 (Fig. 2D). By contrast, a few studies have
demonstrated a protective anti-inflammatory role of
hydrogen sulfide in lung pathologies (Zhang et al., 2016). It
still needs cautions in evaluating outcomes of the effect of
sulfur and hydrogen sulfide on inflammation, given they are
influenced by multiple factors, including host genetics,
immune cell involvement, and cytokine profiles.

As a gaseous signaling molecule, H2S freely diffuses
across cell membranes in a receptor-independent manner
and activate various cellular targets, exerting many different
biological effects (from cytotoxic effects to cytoprotective
actions) (Carbonero et al., 2012a; Zhang et al., 2018).
Treatment of sulfur significantly raised levels of H2S both in
serum and fecal (Fig. 2A). Addition of NaHS, a well-used
H2S donor, which causes rapid H2S release, upregulated
expression of the genes involved in Leydig cell
steroidogenesis (Fig. 2C). The antioxidant role of H2S has
been most extensively investigated and was thought of as
the major mechanism underlying the effects of H2S (Xie et
al., 2016). Interestingly, the treatment of sulfur significantly
lowered oxidative stress via raising the expression of SOD
and GSH-Px and reducing the level of MDA (Fig. 2B).
Given that oxidative stress is repressive to TTB (Wang et al.,
2017), sulfur may upregulate TTB via the antioxidative role
of H2S. Thus, our study provided evidence supporting the
hypothesis that H2S is the key molecule that mediates
sulfur-associated upregulation of TTB.

H2S has been reported elsewhere to upregulate pCREB
(Sulen et al., 2016). Importantly, we also observed that
sulfur significantly raised pCREB was higher in Leydig cells
(Fig. 1C). pCREB upregulated StAR expression by binding
its promoter and indirectly raises expression of P450c17, 3β-
HSD (Kumar et al., 2018). Moreover, pCREB upregulated
expression of Nrf2, a master regulator of an antioxidant

gene, by binding with its promoter (Yang et al., 2013; Ziady
et al., 2012). Nrf2 plays an important role in Leydig cell
steroidogenesis (Chen et al., 2015). Collectively, the
treatment of sulfur can raise TTB via pCREB-targeted genes.
Currently, it remains unknown how H2S regulates
steroidogenesis in Leydig cells. Considering that protein S-
sulfhydration modulates a few important cellular functions,
including reducing oxidative stress, as an important
downstream event in H2S signaling (Paul and Snyder, 2012),
it is worth studying whether the protein posttranslational
modification can alter the activity of the proteins that
participate Leydig cell steroidogenesis.

H2S plays important role in inflammatory bowel disease
(IBD), including Crohn’s disease (CD) and ulcerative colitis
(UC), which afflicts 0.1–0.5% of individuals in western
countries (Carbonero et al., 2012a). IL-6 is a key cytokine
responsible for gut inflammation (Kittana et al., 2018). We
detected that the plasma level of IL-6 increased by 3.21-fold
in the sulfur treated group compared with the control.
However, sulfur did not significantly affect the levels of the
other two cytokines IL-2 and IL-4. The results suggested
that sulfur induced gut inflammatory response.

Treatment of sulfur extensively altered gut microbiota,
highlighting the potential of the gut microbiota as a
pharmaceutical target of sulfur. Accumulating evidence has
revealed that gut microbiota can regulate TTB (Al-Asmakh
et al., 2014; Hou et al., 2019; Tian et al., 2019). For example,
early life exposure in mice to doxycycline resulted in
testosterone deficiency, while supplementation of some
probiotics increased serum level of testosterone (Poutahidis
et al., 2014; Tian et al., 2019). However, the mechanisms
underlying the results have still been elusive. Our
aforementioned results strongly suggested the role of H2S in
Leydig cell steroidogenesis. Sulfur-reducing bacteria (SRB)
represent the greatest source of H2S in the body, and gut-
derived H2S can produce systemic effects (Tomasova et al.,
2016). Although mammals have not been reported to
express the enzymes that can directly metabolize elemental
sulfur, some species of SRB, which are ubiquitous members
in the mammalian colon (Carbonero et al., 2012b), can
grow with elemental sulfur and reduce sulfite, dithionite,
thiosulfate and elemental sulfur under anaerobic conditions,
eventually generating H2S (Anantharaman et al., 2018;
Teigen et al., 2019). Importantly, we detected that an SRB
genus Desulfovibrio increased approximately by three folds
after treatment with sulfur, consistent with the hypothesis
that gut-derived H2S makes an important contribution in
raised TTB in sulfur-treated mice. Interestingly, genus

FIGURE 5. Prediction of metabolic contributions of sulfur-feed microbiota using PICRUSt.
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Desulfovibrio is the main SRB in the human colon (Rey et al.,
2013). In addition, Lactobacillus, a well-known probiotic
bacteria, can produce volatile sulfur compounds including
H2S (Sreekumar et al., 2009), and increase serum
testosterone levels in mice (Poutahidis et al., 2014). Our
analysis showed that treatment with sulfur also significantly
raised richness of Lactobacillus (Tab. 3). The serum level of
testosterone in boys was reported to be positively correlated
with levels of some Prevotella species (Nakagawa et al.,
1994). The abundance of Prevotella has been found to be a
marker in the ecosystem of biota in the people with healthy
living (Jeffery and O’toole, 2013), and was also raised by
sulfur. Interestingly Prevotella can also produce a high level
of H2S (Basic et al., 2015; Ye et al., 2019). Taken together,
our study suggests that gut biota can raise Leydig cell
steroidogenesis via H2S.

However, our study did not exclude other mechanisms
by which sulfur upregulated steroidogenesis. Noteworthy,
our analysis showed that five pathways and 405 kinds of
genes were changed in sulfur-treated mice, including the
raised abundance of genes encoding catalase/peroxidase,
which played an antioxidative role in sulfur-treated mice.
Carotenoid biosynthesis was one of the five pathways, which
was highly enriched in sulfur-treated mice. For example, the
abundance of Rhodococcus, which can synthesize carotenoid
(Barone et al., 2018), was raised by 26.5-fold by treatment
with sulfur (Tab. 3). Carotenoids are natural antioxidants,
having anti-apoptotic and anti-inflammatory properties, and
it is responsible for the integrity of cell membranes and
activating antioxidants and phase II enzymes such as
glutathione-S-transferases (Kaulmann and Bohn, 2014;
Walczak-Jedrzejowska et al., 2013). In addition, the
abundance of probiotic Lactobacillus, the oral
administration of which improved systemic antioxidant
capacity and stimulated intestinal immune response in a
piglet model (Li et al., 2019), was also upregulated by sulfur.
Butyrate is another antioxidative chemical, which can
counterbalance the age-related microbiota dysbiosis, and
exhibit anti-inflammatory (Mathew et al., 2014), and is
considered to have a health-promoting role (Louis and Flint,
2009). Three butyrate-producing genera were also elevated
after treatment with sulfur. They genus Dorea, which is
highly abundant in the healthy human gut (Anand et al.,
2016), genus Intestinimonas (Klaring et al., 2013), and
Clostridium cluster XIVa (Lopetuso et al., 2013). Elderly
individuals have a reduced abundance of Clostridium cluster
XIVa when compared to younger individuals (Jeffery and
O’toole, 2013), consistent with its antioxidative role.
Collectively, these results highlight the presumable positive
consequences of enrichment of these genera in the
generation and maintenance of optimal antioxidative status
in sulfur-treated mice.

Aging is associated with pronounced changes in gut
microbiota composition (Van Der Lugt et al., 2018). The
relative abundance of genus Parasutterella was increased
after sulfur-treatment (Tab. 3), whose relative abundance
decreased strongly during aging, and significantly reduced in
patients with colorectal cancer (Van Der Lugt et al., 2018).
By contrast, both Lachnospiracea_incertae_sedis (Vital et al.,
2015) and Parabacteroides (Claesson et al., 2011) were

reported to be upregulated with aging, while sulfur
significantly reduced their richness. These results are not
surprising if considering sulfur can raise antioxidative
activity, which is favorable to healthy elderly. The above
healthy role of sulfur was further revealed via its effects on
age-associated microbiota.

Nevertheless, the current study still has a limitation, since
the association between gut microbiota and testosterone rise
caused by sulfur is still unclear. In this study, we used both
control and sulfur administrated mice to compare the
testicular testosterone biosynthesis. In subsequent studies,
we will consider feeding germ-free mice with sulfur to see
whether the testosterone level rise and validate the role of
gut microbiota. Furthermore, it has not been reported
whether endogenous H2S is important for TTB. Given that
aging is associated with a reduced level of H2S in different
models (Mun et al., 2019; Perridon et al., 2016; Zhan et al.,
2018) and with gradually-falling plasma testosterone in male
mammals, one of the tasks for the future is to approach the
association of plasma H2S levels with LOH. With clear
evidence that the human colonic mucosa is persistently
colonized by SRB, the beneficial vs. toxic effects of sulfur
need to be delineated, in order to avoid adverse reactions
caused by H2S in some special circumstances.

In summary, we demonstrated that treatment with
elemental sulfur raised levels of serum testosterone in male
mice. The mechanisms include upregulated levels of H2S
and downregulated oxidative stress, which probably resulted
from an extensively altered gut microbiota. Our study will
probably promote a wider application of sulfur in the
treatment of LOH and impotence. Our study also indicated
the potential of some H2S-releasing chemicals such as
GYY4137 could be used for clinical treatment of LOH.
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