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1 INTRODUCTION 
VISITING museums is a popular activity among 

student groups. In Taiwan, students are usually 

divided into multiple groups based on their 

preferences and arrive at the museum at the same 

time. With an advanced appointment, a guide will be 

scheduled for each exhibition room to show the 

groups around exhibits. To enhance the visiting 

quality, the visiting routes of groups are commonly 

arranged to avoid congestion or queuing such that all 

groups can depart from the museum together.  

In 2007, Chou and Lin (2007) first studied a 

museum visitor routing problem (MVRP) for multiple 

groups in which each group had to visit all exhibition 

rooms with a minimized makespan. They showed that 

MVRP is NP-hard and solved it by using a simulated 

annealing (SA) approach. Moreover, Yu et al. (2010) 

solved the MVRP through a SA approach with a 

neighborhood search and compared numerical results 

with those by other evolutionary approaches, 

including SA, genetic algorithm (GA), and ant colony 

optimization approach. 

In this study, we consider a generalized MVRP, 

which is called Generalized MVRP with the 

consideration of Preferences and Congestion (herein 

referred as GMVRP-PC). The new GMVRP-PC is 

more practical and differs from MVRP because of the 

following reasons: 

(1) GMVRP-PC assumes that each group may have 

various must-see and select-see rooms. That is, 

each group has to visit its own must-see exhibition 

rooms and a given number of its own select-see 

exhibition rooms only. However, MVRP assumes 

that all groups have to visit all exhibition rooms.  

(2) GMVRP-PC assumes that each group may have 

different interests for exhibition rooms and can set 

its own must-see and select-see rooms. However, 

MVRP assumes that all groups have to visit all 

exhibition rooms without considering the group’s 

special preference. 

As the MVRP, the objective of GMVRP-PC aims 

to minimize the makespan, that is, to minimize the 

maximal completion time of groups to avoid 

congestion. In 2015, Hsieh and You (2017) introduced 

a multiple-type MVRP (MT-MVRP) in which the 

exhibition rooms in a museum are classified into 

must-see and select-see exhibition rooms. However, 

the new GMVRP-PC generalizes and differs from 

MT-MVRP because of the following reasons: 

(1) GMVRP-PC assumes that all groups may have 

different must-see exhibition rooms based on their 

preferences but MT-MVRP assumes that all 

groups have the same must-see exhibition rooms.  

(2) GMVRP-PC assumes that all groups may have 

multiple various candidate sets of select-see rooms 

based on their preferences but MT-MVRP 

assumes that all groups have only one identical 

candidate set of select-see rooms. 

ABSTRACT 

In this study we present a generalized museum visitor routing problem 
considering the preferences and congestion of multiple groups with each group 
having its own must-see and select-see exhibition rooms based on their 
preferences in exhibits. The problem aims to minimize the makespan of all 
groups. An effective encoding scheme is proposed to simultaneously determine 
the scheduling of exhibition rooms for all groups and an immune-based 
algorithm (IBA) is developed. Numerical results, compared with those of a 
genetic algorithm and particle swarm optimization, on a museum in Taiwan are 
reported and discussed to show the performance of the IBA. 
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group of science

group of art 

group of language 

Must-see  

{2 | 3,4}

Select-see 1 

{2 | 1,2,6}

Select-see 2 

{2 | 5,7,8}

Must-see  

{3 | 1,3,4}

Select-see 1 

{3 | 2,5,6,7,8}

Must-see  

{1 | 4}

Select-see 1 

{1 | 1,7}

Select-see 2 

{2 | 2,5,8}

Select-see 3 

{2 | 3,6,7}

(visit 6 rooms)

(visit 6 rooms)

(visit 6 rooms)

Figure 1. Example of GMVRP-PC.   

Figure 1 illustrates an example of GMVRP-PC in 

which three groups in a school, namely, science, art, 

and language groups, have different must-see 

exhibition rooms and multiple various candidate sets 

of select-see rooms. As shown in Figure 1, {k | x(1), 

x(2),…, x(n)} denotes selecting k rooms from the 

candidate set of {x(1), x(2),…, x(n)}. Therefore, in 

Figure 1, the science group has to visit two must-see 

exhibition room {3, 4}, two select-see exhibition 

rooms from the candidate set of {1, 2, 6} and two 

select-see exhibition rooms from the candidate set of 

{5, 7, 8}. 

MVRP can be treated as an open-shop scheduling 

problem (OSSP), which implies that it is NP-hard 

(Chou and Lin, 2007). In the past, various approaches 

have been proposed to solve OSSPs, and they are 

briefly summarized in Table 1. More details of 

approaches for solving OSSPs are found in the 

excellent survey paper by Çaliş and Bulkan (2015). 

For solving MVRP, Chou and Lin (2007) and Yu et al. 

(2010) proposed SA and neighborhood approaches. 

However, the main disadvantage of SA is that it may 

be extremely slow and consumes time for solving a 

complex problem. Consequently, SA has not been 

widely applied for complicated engineering problems 

(Henderson et al., 2003). The considered GMVRP-PC 

generalizes MVRP and is a complicated optimization 

problem. Therefore, in this study, we have not adopted 

SA to solve the GMVRP-PC. 

In the past, several artificial intelligence algorithms 

have been proposed to solve optimization problems. 

Mirjalili and Lewis (2016) have surveyed more than 

10 novel optimization algorithms. Recently, immune-

based algorithm (IBA), which was firstly proposed by 

Jerne (1973), has attracted more attention than most of 

the other metaheuristic methods due to its several 

successful applications, for example, Basu (2011). The 

evolutionary scheme of IBA is similar to that of GA 

except for the memory mechanisms. With the memory 

mechanisms, IBA can obtain more distinct optimal 

solutions. In addition, Particle Swarm Optimization 

(PSO) and GA can be the most popular evolutionary 

algorithms in the literature due to their success in 

different types of optimization problems, for example, 

Erchiqui (2018), Tasan and Tunali (2008), Srinivas 

and Patnaik (1994), AlRashidi and El-Hawary (2009), 

and Lin et al. (2017). 

In this study, we focus on the main purpose of 

presenting a new GMVRP-PC and a novel encoding 

scheme embedded in IBA to effectively solve 

GMVRP-PC. The presented encoding scheme can 

simultaneously determine the scheduling of must-see 

and select-see exhibition rooms for all the groups. In 

addition, numerical results by IBA on a museum in 

Taiwan are reported and compared with those by GA 

and PSO. 

2 GMVRP-PC 

2.1 Notations 
n the number of groups 

m the number of exhibition rooms 

Mi the set of must-see exhibition rooms for group i, 

Mi{1, 2,…, m}, 1in 

Table 1. Related references of OSSP. 

Authors Year Approach  Remarks 

Adiri and Aizikowitz (1989) 1989 polynomial time algorithm special structure of OSSP 
Fiala (1983) 1983 polynomial time algorithm special structure of OSSP 
Dorndorf et al. (2001) 2001 branch-and-bound method time consuming 
Gueret and Prins (1998) 1998 approximation algorithm approximation algorithm 
Brasel et al. (1993) 1993 insertion algorithm approximation algorithm 
Liaw (1998) 1998 recursive algorithm approximation algorithm 
Taillard (1993) 1993 genetic algorithm evolutionary algorithm 
Fang et al. (1994) 1994 genetic algorithm evolutionary algorithm 
Prin (2000) 2000 genetic algorithm evolutionary algorithm 
Liaw (1999a) 1999 simulated annealing evolutionary algorithm 
Liaw (1999b) 1999 tabu search evolutionary algorithm 
Panahi and Tavakkoli-Moghaddam (2011) 2011 ant colony optimization evolutionary algorithm 
Huang and Lin (2011) 2011 bee colony optimization evolutionary algorithm 
Liu and Ong (2004) 2004 hybrid algorithm evolutionary algorithm 
Roemer (2006) 2006 theory complexity for special OSSP 
Kononov (2012) 2012 theory complexity for special OSSP 
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mi the number of must-see exhibition rooms for 

group i, 1in 

ui the number of candidate sets of select-see 

exhibition rooms for group i, 1in 

Sip the p-th candidate set of select-see exhibition 

rooms for group i, Sip{1, 2,…, m}, 

MiSip=,SipSiq=, pq, 1pui, 1qui,

1in 

sip the number of selected exhibition rooms from 

the p-th candidate set for group i, sip|Sip|m, 

1pui, 1in 

vik the time required to visit exhibition room k for 

group i, 1in, 1km 

thk the time required to move from exhibition room 

h to exhibition room k, hk, 1hm, 1km 

t0k the moving time from the entrance to exhibition 

room k, 1km 

tk0 the moving time from exhibition room k to the 

exit, 1km 

ci0 the completion time of visit for group i, 1in 

2.2 Assumptions 
(1) n groups are intended to visit a museum with m 

exhibition rooms. 

(2) All groups arrive at the museum at the same time 

and have to depart from the museum together.  

(3) Group i has to visit mi (must-see) + si1 (select-

see) + si2 (select-see)+…+siui (select-see) 

exhibition rooms. For a GMVRP-PC, Mi, mi, Sip 

and sip are given based on the group’s 

preference. 

(4) The routing sequence of the exhibition rooms for 

all groups has no restrictions. 

(5) Each exhibition room can contain one group 

only at a time, that is, one tour guide in each 

exhibition room. 

(6) The visit of a group in each room cannot be 

interrupted. 

(7) The GMVRP-PC aims to simultaneously 

determine the following: 

(a) the select-see exhibition rooms from each 

corresponding candidate set of select-see 

rooms for each group,  

(b) the routing sequence of the exhibition 

rooms for all of the groups, including the 

must-see and select-see rooms.  

2.3 Properties 
The properties of GMVRP-PC are shown below. 

Property 2.1. The GMVRP-PC generalizes the 

conventional MVRP. 

Proof. If mi+si1+si2+... +siui=m for all 1in, then each 

group has to visit all of the exhibition rooms. Thus, 

GMVRP-PC leads to the conventional MVRP, which 

further implies that GMVRP-PC is also an NP-hard 

problem. 

Step 1

Yes

Randomly generate an initial population of strings

Evaluate fitness value for each individual

Select the best k individuals

Clone the best k individuals by crossover and mutation 

(a) Evaluate the fitness values for the new individuals

(b) Select the superior individuals in the memory set 

(c) Update the memory set with the superior individuals

  and eliminate too similar individuals  

Satisfy stop criterion ?

Report optimal solution

Step 5

Step 4

Step 3

Step 2

Step 7

Step 6
No

Figure 2. Main steps of IBA. 

Property 2.2.The considered GMVRP-PC generalizes 

the MT-MVRP.   

Proof. If Mi= Mj, ui= uj=1, and si1= sj1 for 1in, 

1jn, ij, then each group has the same muse-see 

exhibition rooms and has to select the same number 

of select-see exhibition rooms from the identical 

candidate set of select-see rooms. As such, GMVRP-

PC leads to MT-MVRP. 

3 METHODOLOGY 
THE considered GMVRP-PC is an NP-hard 

problem (Property 2.1), and its objective is to 

minimize the maximal makespan of all groups, that 

is., min max ci0, 1in. Therefore, instead of solving 

GMVRP-PC through a mathematical programming 

approach, we focus on the multiple main purposes of 

this study: (a) present a novel encoding scheme to 

convert any random permutation of a sequence of 

integers into a feasible solution of GMVRP-PC, (b) 

embed the encoding scheme in IBA to solve 

GMVRP-PC, and (c) compare numerical results of a 

museum in Taiwan with those by GA and PSO to 

show the effectiveness of the adopted IBA approach. 

To shorten the paragraph of this paper, the main steps 

of IBA are introduced in Section 3.1 and the main 

steps of GA and PSO are referred to Srinivas and 

Patnaik (1994), Lim (2014), Michalewicz (1994), 

AlRashidi and El-Hawary (2009), and Kennedy and 

Eberhart (1995) 

3.1 IBA 
The main steps of IBA are illustrated in Figure 2 

and they are similar to those of Hsieh and You 

(2014). IBA is similar to GA except for the memory 

mechanism, that is, Step 5(c) in Figure 2. Next, to 

shorten the paragraph, we refer to Weissman and 

Cooper (1993) and Al-Enezi et al. (2010) for the 

details of IBA and its mechanism, and we briefly 
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describe the basic operation of memory mechanism 

of IBA below. 

To keep the diversity of solution for GMVRP-PC, 

IBA updates the memory set of solutions by replacing 

the inferior ones with the superior ones for each 

iteration. However, unlike GA, IBA deletes highly 

similar solutions even though their objectives are 

good. The similarity of two solutions are computed 

by fij(t)=||xi(t)-xj(t)||, where ||xi(t)-xj(t)|| is the 

Euclidean distance of two solutions xi and xj at 

iteration t. Specifically, if fij(t)δ, δ is a given 

threshold value, then xi and xj are too similar. In this 

study, we set δ=0 in IBA, that is, all solutions in the 

memory set are different. 

3.2 New encoding scheme 
In this section, we present the main steps of the 

new encoding scheme for simultaneously 

determining the sequence of the exhibition rooms for 

all groups, including the must-see and select-see 

exhibition rooms. In the encoding scheme, we 

convert a random permutation of {1, 2,…, N} with 

the operator of mod to represent a feasible routing 

sequence of exhibition rooms for all groups, where N 

is the total number of exhibition rooms visited for all 

groups, including the must-see and select-see 

exhibition rooms. 

The main steps of the encoding scheme are as 

follows: 

Step 0. R=, given Mi, Sip and sip, 1in, 1pui. 

Step 1. Generate a random permutation of {1, 2,…, 

N}, termed T, where N = (mi+si1+si2+…+siui) 

is the total number of rooms visited for all 

groups, including the must-see and select-see 

exhibition rooms. 

Step 2. Based on the total number of exhibition 

rooms for each group, divide T into groups 

with T=(T11T12 …
1 1iuT 

)…(Tn1Tn2

…
1inuT 
). 

Step 3. Construct a table as Table 5. Specifically, for 

each i, 1in, execute the following steps in 

(a)-(b). 

(a) Let w be the order of Ti1 and R=Ti1(w). 

(b) (i) For all p, 1pui, do (ii). 

(ii) Let w be the first number of Ti,p+1. Add 

the {(w mod |Sip|)+1}
th
 number in set

Sip to its corresponding location in R; 

delete it from set Sip, that is, R(index) = 

the {(w mod |Sip|)+1}
th
 number in set

Sip.. Delete w from Ti,p+1, and delete 

R(index) from Sip. Repeat (ii) until 

Ti,p+1=. 

Step 4. Follow the sequence of T, from 1 to N, and its 

corresponding value in R to construct the 

routing for each group. 

The main computation of the above encoding 

scheme is on the order operation of Ti1 and the mod 

operation in Step 3. In Step 3, for each i, 1in, the 

complexity of the worst case for the order operation 

of Ti1 is O(m
2
) and the complexity of the worst case

for the mod operation is O(m). Therefore, the 

complexity of the worst case of the proposed 

encoding scheme is O(nm
2
). It further implies that the 

computational complexity of the scheme is 

polynomial. An example of the presented encoding 

scheme is shown in Section 3.3. 

Entrance

Room 5

Room 1

Room 3

Room 2

2 2

1

2

Room 4

Room 6

Exit

32

2

2

3

2

2

Figure 3. Network for the example of GMVRP-PC. 

Table 2.  Moving time between exhibition rooms, entrance, 
and exit (example). 

Moving 
Time (thk) 

Room 

1 2 3 4 5 6 

Room 1 - 2 2 4 4 6 
Room 2 2 -- 4 2 6 4 
Room 3 2 4 -- 2 2 4 
Room 4 4 2 2 -- 4 2 
Room 5 4 6 2 4 -- 3 
Room 6 6 4 4 2 3 -- 

Entrance (t0k) 3 5 1 3 3 5 
Exit (tk0) 5 3 4 2 5 2 

Table 3.  Visiting time (vik) of the group (example). 

Visiting 
time 

Room 

1 2 3 4 5 6 

Group 1 6 8 5 6 4 8 
Group 2 6 7 5 4 6 6 
Group 3 5 6 7 3 6 7 
Group 4 4 6 6 6 5 6 
Group 5 7 6 5 8 5 4 
Group 6 5 6 6 8 5 7 
Group 7 5 4 6 6 4 8 
Group 8 5 4 6 6 5 6 

Table 4.  Exhibition rooms (example). 

Room Must-See Select-See 1 Select-See 2 
Group 1 {2 | 1,2} {1 | 3,4} {1 | 5,6} 
Group 2 {1 | 2} {2 | 1,3,4} {1 | 5,6} 
Group 3 {2 | 2,3} {1 | 1,5} {1 | 4,6} 
Group 4 {2 | 2,5} {1 | 1,4} {1 | 3,6} 
Group 5 {1 | 2} {2 | 1,3,4} {1 | 5,6} 
Group 6 {2 | 1,2} {1 | 3,4} {1 | 5,6} 
Group 7 

Exit
{1 | 2} {1 | 1,4} {2 | 3,5,6} 

Group 8 {2 | 2,3} {1 | 1,5} {1 | 4,6} 

{k |x(1),…,x(n)} indicates selecting k rooms from x(1),…,x(n). 
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Table 5.  Encoding scheme (example). 

Group(G) 1 2 3 4 

Room M S11 S12 M S21 S22 M S31 S32 M S41 S42 

Type T11 T12 T13 T21 T22 T23 T31 T32 T33 T41 T42 T43 

Index (I) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
T 26 6 25 10 21 14 11 28 2 23 13 12 15 18 31 24 
R 2 1 4 5 2 4 3 5 2 3 5 4 2 5 4 3 

Group(G) 5 6 7 8 

Room M S51 S52 M S61 S62 M S71 S72 M S81 S82 

Type T51 T52 T53 T61 T62 T63 T71 T72 T73 T81 T82 T83 

Index (I) 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 
T 22 1 20 4 8 5 19 29 16 27 32 3 30 17 9 7 
R 2 3 1 5 2 1 4 6 2 4 6 5 3 2 5 6 

M=must-see, Si1=Candidate set 1 of select-see rooms, Si2=Candidate set 2 of select-see rooms for group i.  

Figure 4. Gantt chart for the example (  moving time, entrance/exit time).  

3.3 Example 
Assume that eight groups visit six exhibition 

rooms (i.e., n=8 and m=6) in a small museum. The 

exhibition rooms are illustrated in Figure 3, and the 

moving and visiting times for the groups are shown 

in Tables 2 and 3. Suppose that all groups have to 

visit one set of must-see exhibition rooms and two 

sets of select-see exhibition rooms, which are 

illustrated in Table 4. For example, Group 1 has to 

visit must-see rooms {1, 2}, one select-see room 

from candidate set {3, 4}, and one select-see room 

from candidate set {5, 6}. 

As each group has to visit 4 rooms, N=32(=8×4). 

Suppose that T=26-6-25-10-21-14-11-28-2-23-13-12-

15-18-31-24-22-1-20-4-8-5-19-29-16-27-32-3-30-17-

9-7 is a random permutation of 1 to 32. Following the 

steps in Section 3.2, we have Table 5. On the basis of 

Table 5, we obtain the routing sequence to construct 

its Gantt chart: 

G53-G32-G75-G55-G61-G11-G86-G62-G85-G15-G23-G34-

G35-G24-G42-G72-G82-G45-G64-G51-G22-G52-G33-G43-

G14-G12-G74-G25-G66-G83-G44-G76 

where Gij denotes that group i visits exhibition room 

j. That is, in the Gantt chart, we assign Group 5 to

visit Exhibition Room 3 first and then assign Group 3 

to visit Exhibition Room 2 next, and so on. Note that: 

(1) In this example, Group 1 visits Rooms 2, 1, 4, and 

5; Group 2 visits Rooms 2, 4, 3, and 5; Group 3 

visits Rooms 2, 3, 5, and 4; Group 4 visits Rooms 

2, 5, 4, and 3, and so on. The Gantt chart for this 

routing sequence is illustrated in Figure 4 in 

which a-Gi denotes that group i is the a-th 

scheduled assignment in the routing sequence.  

(2) The solution shown in Figure 4 is the global 

optimum solution for this example, because (i) 

Room 2 is a must-see exhibition room for all 

groups and (ii) the sum of visiting time of all 

groups for Room 2 and the entrance/exit time is 

(8 + 7 + 6 + 6 + 6 + 6 + 4 + 4)+(5 + 3)=55, which 

is identical to that presented in Figure 4. 

The step-by-step encoding processes of the 

example in Section 3.3 are shown in Appendix. 
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4 NUMERICAL RESULTS AND DISCUSSIONS 

4.1 Test problems and experimental results 
IN this study, we test the proposed IBA for 

solving 12 instances of Taipei Fine Arts Museum 

(TFAM) in Taiwan. The plan of the museum is 

illustrated in Figure 5. Four types of group are 

established in terms of size, namely, small group, 

medium group, large group, and super-large group. 

The moving time from entrance to the exhibition 

rooms and exit and the visiting time of each group for 

exhibition room are listed in Tables 6 and 7. As 

assumed, the larger group takes longer time to move 

and visit.  

In this study, to analyze the performance of the 

proposed approach, we vary the number of the must-

see and select-see exhibition rooms for the museum, 

such that the percentages of the rooms visited by the 

groups range from 50% to 100%. The considered 

GMVRP-PC leads to the conventional MVRP when 

the percentage of rooms visited by the groups is 

100%. More details of the 12 test instances are 

summarized in Table 8. 

For each test instance, we executed IBA 50 times. 

Hence, the total number of trials in this study was 

600 (12 instances × 50 times) for IBA. To compare 

the results of the IBA, we also apply GA and PSO to 

solve each instance. In the experiments, based upon 

our test experience, the parameters of IBA and GA 

were set as follows: population=300, iteration=1000, 

crossover=0.8, and mutation= 0.1; the parameters of 

PSO were set as follows: population=300, iteration 

=1000, crossover=0.8, mutation=0.1, c1=1.49445 and 

c2=1.2. In addition, three algorithms will stop in 

advance if no improvement in objective value is 

observed up to 500 iterations.  

The three algorithms were coded in MATLAB. 

All numerical results were computed on a PC with an 

Intel(R) Core(TM) i5-4570 CPU3.2GHz RAM 4GB. 

Numerical results are reported in Tables 9 to 10, 

including the best, average, standard deviation, 95% 

confidence interval and CPU time of solutions for all 

algorithms. 

Figure 5. TFAM, Taiwan. 

Table 6.  Visiting time of the group for Instances 1-6 of TFAM (15 groups, 12 rooms). 

Time Group A B C D E F G H I J K L 

Small 
Group 

G1 9.0 12.5 10.3 10.0 13.7 16.6 16.5 14.4 15.9 15.7 14.7 13.6 
G2 8.9 12.1 10.1 10.3 13.5 17.0 16.9 14.6 15.6 15.9 14.5 13.5 
G3 8.8 12.2 10.2 10.3 13.5 16.5 16.8 14.8 15.8 15.4 14.8 13.4 
G4 9.0 12.6 10.4 10.1 13.6 16.8 16.7 14.5 15.8 15.6 14.6 13.7 
G5 9.2 12.3 10.3 10.2 13.3 16.9 16.5 14.3 15.7 15.5 14.7 13.2 

Medium 
Group 

G6 10.0 13.5 11.2 11.3 14.4 18.4 18.1 15.6 17.2 16.8 15.8 14.5 
G7 9.9 13.3 10.9 11.0 14.7 18.5 18.2 15.8 17.3 16.7 16.0 14.8 
G8 10.0 13.4 10.8 11.2 14.4 18.5 18.3 15.9 17.1 16.9 15.8 14.7 
G9 9.7 13.6 11.0 10.9 14.6 18.4 18.6 15.8 16.9 17.2 15.7 14.5 
G10 9.8 13.4 10.9 11.2 14.9 18.6 18.1 16.0 17.2 17.1 15.6 14.8 

Large 
Group 

G11 10.9 14.5 12.2 12.0 16.0 19.6 19.7 17.0 18.2 18.4 17.4 16.0 
G12 10.6 14.6 11.8 12.2 16.1 19.5 19.9 17.2 18.4 18.5 17.0 15.9 
G13 10.8 14.7 11.9 12.0 15.9 19.9 19.8 17.1 18.4 18.2 17.2 15.7 
G14 10.5 14.5 12.1 11.7 16.0 19.9 19.6 17.3 18.3 18.6 17.3 16.1 
G15 10.8 14.8 12.0 11.9 15.7 19.8 20.0 17.4 18.2 18.3 17.4 15.6 
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Table 7.  Visiting and moving times of the group for Instances 7-12 of TFAM (20 groups, 12 rooms). 

Time Group A B C D E F G H I J K L 

Small 
Group 

G1 8.9 12.4 10.2 10.4 13.3 16.8 17.0 14.5 15.5 15.7 14.6 13.4 
G2 9.1 12.6 10.1 10.3 13.4 16.5 16.8 14.6 15.6 15.9 14.3 13.6 
G3 9.0 12.2 10.0 9.9 13.2 17.0 16.6 14.7 15.8 15.9 14.5 13.7 
G4 8.8 12.5 10.4 10.2 13.6 16.6 16.5 14.6 15.7 15.6 14.5 13.5 
G5 9.1 12.2 10.1 10.2 13.4 16.5 16.9 14.7 15.6 15.8 14.3 13.4 

Medium 
Group 

G6 9.8 13.2 11.1 10.9 14.5 18.2 18.4 15.7 17.0 17.2 15.8 14.4 
G7 10.1 13.5 11.0 11.2 14.9 18.5 18.3 16.1 17.1 17.0 15.7 14.8 
G8 10.0 13.4 11.3 10.8 14.4 18.3 18.1 16.0 16.9 17.3 16.1 14.5 
G9 10.1 13.7 11.2 11.0 14.7 18.0 18.5 15.9 17.2 16.8 15.9 14.8 
G10 9.9 13.5 10.8 11.3 14.8 18.3 18.2 16.0 17.1 16.9 15.6 14.9 

Large 
Group 

G11 10.8 14.5 12.0 12.2 15.9 20.0 19.6 17.4 18.2 18.5 17.1 15.8 
G12 10.9 14.8 11.7 11.8 15.8 19.8 20.1 17.3 18.6 18.4 17.4 15.7 
G13 10.9 14.4 11.9 12.1 16.0 19.7 19.8 17.2 18.7 18.4 17.3 15.9 
G14 10.7 14.5 12.1 11.9 15.7 19.6 19.7 17.4 18.4 18.6 17.0 15.8 
G15 10.8 14.3 11.8 12.0 15.6 19.9 19.6 17.2 18.6 18.7 17.3 15.9 

Super 
Large 
Group 

G16 11.6 15.6 12.7 13.0 17.3 21.1 21.3 18.5 19.9 19.6 18.6 17.0 
G17 11.5 15.9 13.1 12.8 17.2 21.0 21.4 18.7 19.8 19.7 18.3 16.9 
G18 11.7 15.7 12.9 12.7 17.1 21.5 21.1 18.4 19.7 19.6 18.5 17.2 
G19 11.6 15.9 12.8 13.0 16.9 21.4 21.2 18.6 20.1 20.0 18.4 16.9 
G20 11.5 15.8 13.0 12.8 17.0 21.2 21.4 18.5 19.8 19.7 18.6 17.3 

Table 8.  Test instances. 

n Group-Size Instance 
Room 
(A) 

Must-See Select-See % 
(B+C)/A NRS(B) Room NRS(C) Group Candidate sets of Room 

15 
5 Small 
5 Medium 
5 Large 

1 12 2 FG 4 

1-5 {1|AE} {2|BCDHI} {1|JKL} 

50% 6-10 {2|ABCDE} {1|HI} {1|JKL} 

11-15 {1|ABCDE} {1|HI} {2|JKL} 

2 12 2 FG 5 

1-5 {1|AE} {3|BCDHI} {1|JKL} 

58% 6-10 {2|ABCDE} {1|HI} {2|JKL} 

11-15 {2|ABCDE} {1|HI} {2|JKL} 

3 12 3 FGJ 5 

1-5 {1|AE} {2|BCD} {2|HIKL} 

66% 6-10 {1|AE} {1|BCD} {3|HIKL} 

11-15 {1|AE} {3|BCDHI} {1|KL} 

4 12 3 FGJ 6 

1-5 {1|AE} {2|BCD} {3|HIKL} 

75% 6-10 {1|AE} {2|BCD} {3|HIKL} 

11-15 {1|AE} {4|BCDHI} {1|KL} 

5 12 4 FGJK 6 1-15 {4|ABCDE} {2|HIL} 83% 

6 12 4 FGJK 8 1-15 {8|ABCDEHIL} 100% 

20 

5 Small 
5 Medium 
5 Large 
5 Super-L 

7 12 2 FG 4 

1-5 {1|AE} {2|BCDHI} {1|JKL} 

50% 
6-10 {2|ABCDE} {1|HI} {1|JKL} 

11-15 {1|ABCDE} {1|HI} {2|JKL} 

16-20 {1|AE} {1|BCDHI} {2|JKL} 

8 12 2 FG 5 

1-5 {1|AE} {3|BCDHI} {1|JKL} 

58% 
6-10 {2|ABCDE} {1|HI} {2|JKL} 

11-15 {2|ABCDE} {1|HI} {2|JKL} 

16-20 {1|AE} {2|BCDHI} {2|JKL} 

9 12 3 FGJ 5 

1-5 {1|AE} {2|BCD} {2|HIKL} 

66% 
6-10 {1|AE} {1|BCD} {3|HIKL} 

11-15 {1|AE} {3|BCDHI} {1|KL} 

16-20 {1|AE} {3|BCDHI} {1|KL} 

10 12 3 FGJ 6 

1-5 {1|AE} {2|BCD} {3|HIKL} 

75% 
6-10 {1|AE} {2|BCD} {3|HIKL} 

11-15 {1|AE} {4|BCDHI} {1|KL} 

16-20 {1|AE} {4|BCDHI} {1|KL} 

11 12 4 FGJK 6 1-20 {1|AE} {5|BCDHIL} 83% 

12 12 4 FGJK 8 1-20 {8|ABCDEHIL} 100% 

NRS=Number of Rooms Selected, where {k |x(1), x(2),…,x(n)} denotes selecting k rooms from x(1),x(2),…,x(n). 
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Table 9.  Numerical results of three algorithms (50 experiments). 

I % IA GA PSO Gap 
visit (Min Avg Std CPU) (Min Avg Std CPU) (Min Avg Std CPU) IA GA PSO 

1 50% 278.1 278.1 0.00 3116.1 278.1 278.1 0.00 944.6 278.1 278.1 0.00 373.4 0 0 0 
2 58% 278.1 278.1 0.00 3337.6 278.1 278.1 0.10 1077.4 278.1 280.2 2.70 610.7 0 0 0 
3 66% 278.1 278.1 0.00 3900.3 278.1 279.9 3.41 1445.1 289.1 306.9 9.44 625.4 0 0 0.04 
4 75% 278.1 278.3 0.70 4521.0 278.1 281.4 7.60 2197.7 305.6 333.9 11.15 689.7 0 0 0.1 
5 83% 278.1 279.3 1.83 5294.2 278.1 286.0 14.84 2416.6 344.6 364.4 11.45 683.7 0 0 0.24 
6 100% 304.3 314.3 5.67 4284.2 309.9 322.0 17.06 2926.1 402.2 434.1 14.37 720.3 0 0.02 0.32 
7 50% 383.3 383.3 0.00 4010.1 383.3 383.3 0.00 1173.4 383.3 383.3 0.00 467.6 0 0 0 
8 58% 383.3 383.3 0.00 4602.2 383.3 383.3 0.00 1458.8 383.3 384.0 1.49 785.7 0 0 0 
9 66% 383.3 383.3 0.00 5152.2 383.3 384.6 4.84 1859.5 384.6 412.6 11.79 916.8 0 0 0 
10 75% 383.3 383.3 0.00 5847.1 383.3 384.5 3.33 2420.9 407.9 439.0 10.74 789.5 0 0 0.06 

11 83% 383.3 383.4 0.50 7369.0 383.3 386.2 7.30 3315.0 446.8 483.1 13.00 978.8 0 0 0.17 
12 100% 387.9 403.5 7.56 6076.0 385.8 411.7 18.80 3869.9 530.3 559.6 14.52 1063.7 0.01 0 0.37 
I: Instance; Gap: (Min of A – best of three algorithms) / best of three algorithms, A=IBA, GA, PSO. 

Table 10.  Summarized of times for confidence interval, best solutions, p-values for three algorithms (50 experiments). 

I % 95% Confidence Interval Best Solution (times) P-value 

visit IA GA PSO IA GA PSO (1) (2) (3) 

1 50% (278.10, 278.10) (278.10, 278.10) (278.10, 278.10) 278.1(50) 278.1(50) 278.1(50) * * * 
2 58% (278.10, 278.10) (277.90, 278.30) (274.91, 285.49) 278.1(50) 278.1(48) 278.1(18)  ** ** 

3 66% (278.10, 278.10) (273.22, 286.58) (288.40, 325.40) 278.1(50) 278.1(30) 289.1(01) ** ** ** 
4 75% (276.93, 279.67) (266.50, 296.30) (312.05, 355.75) 278.1(45) 278.1(39) 305.6(01) ** ** ** 
5 83% (275.71, 282.89) (256.91, 315.09) (341.96, 386.84) 278.1(25) 278.1(12) 344.6(01) ** ** ** 
6 100% (303.19, 325.41) (288.56, 355.44) (405.93, 462.27) 304.3(01) 309.9(01) 402.2(01) ** ** ** 
7 50% (383.30, 383.30) (383.30, 383.30) (383.30, 383.30) 383.3(50) 383.3(50) 383.3(50) * * * 
8 58% (383.30, 383.30) (383.30, 383.30) (381.08, 386.92) 383.3(50) 383.3(50) 383.3(37) * ** ** 
9 66% (383.30, 383.30) (375.11, 394.09) (389.49, 435.71) 383.3(50) 383.3(43) 384.6(01) ** ** ** 
10 75% (383.30, 383.30) (377.97, 391.03) (417.95, 460.05) 383.3(50) 383.3(39) 407.9(01) ** ** ** 
11 83% (382.42, 384.38) (371.89, 400.51) (457.62, 508.58) 383.3(45) 383.3(31) 446.8(01) ** ** ** 
12 100% (388.68, 418.32) (374.85, 448.55) (531.14, 588.06) 387.9(01) 385.8(01) 530.3(01) ** ** ** 

(1)IBA vs GA, (2)IBA vs PSO, (3)GA vs PSO, *All solutions are identical, ** p-value<0.05,  p-value0.05.  

4.2 Discussions 
Table 9 and Table 10 show that: 

(1) For each test instance, with an increase in the 

number of exhibition rooms visited, the best 

completion time of the groups increases in a 

stair-type format. For example, in Table 9, the 

makespan is 278.1 and 304.3 by IBA for 

Instance 2 and Instance 6, respectively. This 

finding implies that the completion time does not 

necessarily increase with the increase of 

percentage of room visited.  

(2) For each instance, the standard deviation of the 

50 solutions by IBA for the 12 instances is low, 

even reaching to zero. This finding implies that 

the adopted IBA is stable enough to solve the 

GMVRP-PC. For example, in Table 9, seven 

instances with zero standard deviation in 

solutions are shown. 

(3) For each instance, the 95% confidence intervals 

of solutions for IBA are superior to those of GA, 

and PSO is worse to GA. For example, Table 10 

shows that the 95% confidence intervals of 

Instance 6 for IBA, GA, and PSO are (303.19, 

325.41), (288.56, 355.44), and (405.93, 462.27), 

respectively. This finding implies that IBA is 

more stable than GA and PSO for GMVRP-PC. 

(4) For each instance, with an increase in the 

number of exhibition rooms visited, the CPU 

time of obtaining the solution is stable or slightly 

increases. For example, in Table 9, the CPU time 

of Instances 1 to 12 is between 3116.1 and 

7369.0 for IBA. Similar results for GA and PSO 

were obtained. In addition, Table 9 shows that 

PSO is faster than GA, and IBA is slower than 

GA. 

(5) For Instances 1-5 and 7-11, the best solutions by 

IBA and GA are all identical. However, for 

Instance 6, IBA (304.3) is superior to GA (309.9) 

and PSO (402.2).  

(6) The best solutions by IBA and GA are near to 

the global optimum solution for test instances. 

For example, in Instance 11, as Room G is a 

must-see exhibition room for all groups and it is 

a dominated room (with the largest visiting time), 

the total visit time and entrance/exit time of all 

groups for Room G is (17 + 16.8 +…+ 21.4) + 

1.4 (entrance) + 1.4 (exit) = 383.3, which is a 

lower bound of makespan for this instance. If all 

groups have to visit a specific room and its 

visiting time is larger than that of other rooms, 
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then the room is a dominated room. Table 9 

shows that the best solution by IBA and GA is 

383.3, which implies that this solution is the 

global optimum solution for the instance. This 

finding further indicates that IBA and GA are 

reliable for solving the considered GMVRP-PC. 

(7) Table 10 summarizes the number of best 

solutions achieved by the three algorithms in 50 

trials. For example, in Instance 5, IBA has 25 

times with an objective value of 278.1, GA 

achieves 12 times with an objective value of 

278.1, and PSO has 1 time with an objective 

value of 344.6. This finding implies that IBA is 

superior to GA and GA is superior to PSO. 

To further analyze the performance of IBA, GA, 

and PSO algorithms for each test instance, based on 

the 50 trials, we used the following statistical 

hypothesis to test: 

H0: V(A)=V(B), 

H1: V(A)V(B), 

where V(A) and V(B) denote the average makespans 

by using algorithms A and B, A, B{IBA, GA, PSO}, 

A≠B. The corresponding p-values of the statistical 

hypothesis are summarized in Table 10, which also 

shows the following:  

(1) Except for Instance 2 (with p-value 0.0797), IBA 

outperforms GA for the other instances.  

(2) IBA outperforms PSO for all 12 instances. 

(3) GA outperforms PSO for all 12 instances. 

5 CONCLUSIONS 
(1) WE have introduced a new GMVRP-PC that 

involves a combination of exhibition rooms and 

the routing of groups. The GMVRP-PC considers 

the various/multiple interests of groups for must-

see and select-see exhibition rooms that MVRP 

and GMVRP ignored. 

(2) We have derived the properties of the GMVRP-

PC. That is, the presented GMVRP-PC 

generalizes OSSP, MVRP, and MT-MVRP.  

(3) We have presented a novel encoding scheme to 

simultaneously determine the scheduling of the 

must-see and select-see exhibition rooms for all 

groups. Three algorithms, namely, IBA, GA, 

andPSO, have also been developed to solve the 

GMVRP-PC.  

(4) We have reported and discussed the numerical 

results of a museum in Taiwan and shown the 

effectiveness of the proposed approaches. Among 

the 12 instances, IBA and GA achieve the best 

solutions for 11 instances, whereas PSO only 5 

instances. 

(5) IBA is worse to GA for one instance with 1% and 

GA is worse to IBA for one instance with 2%. 

In the future, other artificial intelligence 

algorithms may be applied for solving the GMVRP-

PC. Other special types of museum routing problem, 

for example, museum routing problem with multiple 

guides, may also be considered. 

6 APPENDIX 
THE step-by-step processes of the encoding 

procedure for the example in Section 3.3 are shown 

below. 

Step 0. R=. M1={1,2}, S11={3,4}, S12={5,6}, m1=2, 

s11=1, s12=1, u1=2; M2={2}, S21={1,3,4}, S22={5,6}, 

m2=1, s21=2, s22=1, u2=2;M3={2,3}, S31={1,5}, S32={4, 

6}, m3=2, s31=1, s32=1, u3=2;M4={2,5}, S41={1,4}, 

S42={3,6}, m4=2, s41=1, s42=1, u4=2;M5={2}, S51={1,3, 

4}, S52={5,6}, m5=1, s51=2, s52=1, u5=2; M6={1,2}, 

S61={3,4}, S62={5,6}, m6=2, s61=1, s62=1, u6=2; M7 

={2}, S71={1,4}, S72={3,5,6}, m7=1, s71=1, s72=2, 

u7=2; M8={2,3}, S81={1,5}, S82={4,6}, m8=2, s81=1, 

s82=1, u8=2. 

Step 1. Since each group has to visit 4 rooms, 

N=32(=8×4). Suppose that T=26-6-25-10-21-14-11-

28-2-23-13-12-15-18-31-24-22-1-20-4-8-5-19-29-16-

27-32-3-30-17-9-7 is a random permutation of 1 to 

32.  

Step 2. As shown in Table 5, divide T into 3×n=24 

sub-groups with T=(T11T12T13) …  (T81T82 

T83), where, T11={26,6}, T12={25}, T13={10}…, T81 

={30,17}, T82={9} and T83={7}. 

Step 3. i=1. 

(a) Since 26>6, w=order of {26,6}=(2,1). Thus the 

corresponding R of T11 in M1(={1,2}) is R(1)=2 

and R(2)=1. 

(b) (i) p=1, (ii) w=the 1
st
 number of T12(={25}). 

Since {(w mod |Sip|)+1}={(25 mod 2)+1}=2, 

the 2
nd

 number in S11(={3,4}) is 4. R(3)=4.

(i) p=2, (ii) w= the 1
st
 number of T13(={10}). 

Since {(w mod |Sip|)+1}={(10 mod 2)+1}=1, 

the 1
st
 number in S12(={5,6}) is 5. R(4)=5.

Repeat the similar processes for i=2, 3, 4, 5, 6, 7, 8. 

Step 4: The completed sequence R is shown in Table 

5. Following the sequence of T from 1 to 32, we may

construct the following routing sequence of rooms by 

using G and R:  

G53-G32-G75-G55-G61-G11-G86-G62-G85-G15-G23-G34-

G35-G24-G42-G72-G82-G45-G64-G51-G22-G52-G33-G43-

G14-G12-G74-G25-G66-G83-G44-G76 

where Gij denotes that group i visits exhibition room 

j. This routing sequence of rooms can be further used

to construct a Gantt chart for all groups. That is, in 

the Gantt chart of Figure 4, we assign Group 5 to visit 

Exhibition Room 3 first; then assign Group 3 to visit 

Exhibition Room 2 next, and so on. 
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