
Intelligent Automation And Soft Computing, 2020
Vol. 26, no. 4, 725–733
DOI: 10.32604/iasc.2020.010106

Aysh@iu.edu.jo CONTACT Aysh Alhroob

The Genetic Algorithm and Binary Search Technique in the Program Path
Coverage for Improving Software Testing Using Big Data

Aysh Alhroob1, Wael Alzyadat2, Ayad Tareq Imam1, Ghaith M. Jaradat3

1Faculty of Information Technology, Isra University, Amman, Jordan
2Faculty of Science and Information Technology, Al-Zaytoonah University, Amman, Jordan
3Faculty of Computer Science and Information Technology, Jerash University, Jerash, Jordan

KEYWORDS: Genetic algorithm, binary search, big data, path coverage, test data, software testing.

1 INTRODUCTION
SOFTWARE Engineering (SE) is a systematic

approach that maintains the engineering methods to

restrain the process of software development and thus

providing authentic work of software on the real

environment. As software systems were developed,

which is a continued tendency in the next decade,

these systems are usually handling huge amounts of

data or complex data that conformed with the

definition of Big Data (BD). All industries including

banking automobile, avionics, telecommunications,

hospitals, pharmacy, oil and many other industries

intended to produce BD and the implemented software

of these systems are dealing with a huge amount of

input data (Chen, et al., 2014).

Holding data, data investigates, data transfer,

visualization, search, developing privacy of

information and storage of data are the main hurdles in

BD (Pethuru j, et al., 2015).

The significance of BD is that it is so huge to the

point that it cannot be practically contained in any

frame, spatially and temporally to attain high

expectations. One of the BD characteristics is the

volume, which deals with the scale of data. The BD's

primary attribute is volume, which can be quantified

by counting records, files, tables or transactions.

Thus, BD is viewed as a phenomenon that should

be considered while developing a software system to

avoid errors occurring while using the system in real

life. BD can be of great assistance while developing a

software system, especially in the software testing

activity of the SE. Software Engineering encompasses

an activities set, which are requirements of

engineering, designs, implementation, testing and

management (Alhroob, et al., 2018). One of the most

ABSTRACT

Software program testing is the procedure of exercising a software component
with a selected set of test cases as a way to discover defects and assess
quality. Using software testing automation, especially the generating of testing
data increases the effectiveness and efficiency of software testing as a whole.
Instead of creating testing data from scratch, Big Data (BD) offers an important
source of testing data. Although it is a good source, there is a need to select a
proper set of testing data for the sake of selecting an optimal sub-domain input
values from the BD. To refine the efficiency of software testing, this paper
proposes a hybrid Genetic Algorithm and Binary Search (BSGA) technique that
is used for detecting the error-prone path in a program. The BSGA combines
the Genetic Algorithm (GA) with the Binary Search (BS) algorithm that uses the
BD as input values for the program path coverage, and thus enhances the
software testing. The BSGA represents a robust nonlinear search technique
and a better quality solution, which therefore results in a cost reduction in the
software testing industry. The experiments show that the results approved the
impact of using the BS to enhance the performance of the GA, in terms of
finding optimal test cases and test data for the input Big Data domain values.
Whereas, these results minimize the cost of testing.

726 ALHROOB, ALZYADAT, IMAM, and JARADAT

important activities is the software testing activity that

affects the software development costs.

Software testing is a software development activity

that is used to facilitate and develop the correction,

completion, reliability, quality, and security of a

developed software system. The possible cost-savings

from controlling the software bugs at the stage of the

software development cycle instead of other stages

had been predicted at exactly forty billion dollars by

the National Institute of Standards and Technology

(NIST). The amount highlights that the present steps

of testing are worthy, hence, removing errors and bugs

from the software may be an essential job that results

in a considerable income. Software testing automation,

especially the generating of testing data increases the

effectiveness and efficiency of software testing.

Instead of creating testing data from scratch, BD offers

an important source of testing data.

Although it is a good source, there is a need to

select a proper set of testing data for the sake of

selecting optimal sub-domain input values from the

BD. This paper proposes a Binary Search Genetic

Algorithm (BSGA) that makes use of the data flow

dependencies to look for the data, which satisfies

certain criteria among the most requested data.

This paper is organized as follows: Section 1

establishes the need for the GABS coverage of testing

and to cover the research area. Section 2 shows the

manifest of the state of the art in terms of the data flow

analysis. Section 3 explains the data flow analysis.

Section 4 shows the overall proposed approach in

detail. Section 5 shows the implementation of the

proposed algorithm using examples of small as well as

larger precisions and analyses the results and finds the

comparison by calculating the efficiency. Section 6,

the conclusion and prospects of this algorithm are

explained.

2 STATE OF THE ART
THE software testing design phase specifies the

number of test cases that are based on the case of a test

generating strategy. However, it is a simple view to

estimate the number of test cases instead of calculating

the test case number (Naik & Tripathy, 2008)

(Chavarría-Báez, et al., 2013). This status achieved

attention as old as the work of the demanded test cases

of a system. A system that estimates the quantity by

the developed tools in which this amount represents

the quantity of the necessary path of the whole

program to satisfy the criterion. Somehow, this work

used the counting approach of the way that is possible

and is generated by using the property of backtracking

of the Prolog programming language (Bieman &

Schultz, 1989).

An approach for maintaining the path of the test

and estimating of the number of test cases was

suggested by (Beizer, 1990) (Naik & Tripathy, 2008)

(Chavarría-Báez, et al., 2013). In this approach, the

program that is to be tested is to be divided into

numbers and blocks, which are to be gone through

while processing the program. This approach

encompasses the following steps:

 Define the function points (FPs).

 Divide the type of test (Functional,

Performance/Stress, Interoperability, and security)

to be used.

 Map the function points to the testing types (FPs).

For every FP, the test techniques are specified

(BVAEP), Tables Decision, and State Transition.

 Show a maintained table, which contains a rough

approximation of the number of test cases for every

FP having its testing techniques (FP vs. Testing

Techniques vs. estimated No. of Test Cases).

 Make a difference between the data of this table

with the Historical Data.

Where every FP represents a node and the approach

in sequence at the edge between these pairs of nodes

(FPs). This approach creates many ways of testing,

especially the reasonable cost of this software. Such

situations required time to increase the performance of

the testing. It has been confirmed that selecting the

optimal path of the test can be a wise solution for

decreasing the time of testing. While accepting the

coverage of the percentage, selecting the best way to

classify an optimization problem was done.

An example of the efforts for calculating the test is

the method of synthesis, which utilizes the calculus

refinement to define the abstraction rules that are used

to calculate the later test case scenarios from the

project's requirements (Rauf & A. Aleisa, 2015).

The Genetic Algorithm (GA) based method to

select a set of test cases, is illustrated in Figure 1, and

was proposed by (Whitten, 1998). This method uses

the GA to select a set of test cases to be used in the

testing of the software program.

This procedure showed implicit challenges that

were revealed later by other researchers, which

represents the Generalized Crossing (GC) procedure as

a solution for optimizing the block sequences. This

GC procedure, which was presented by (Chaudhary &

Agrawal, 2015), is an iterative procedure of

backtracking. The author of this task claimed that this

procedure performed better than the GA based one.

Another modification to the GA based approach for

generating testing data was combining the data flow

dependencies with the GA to cover the location where

a value for a variable is stored in memory (Def) and a

location where a variable's value is accessed (Use)

(DU) for the search data. This approach, which was

proposed by (Girgis, 2005) yields new testing data

from a previously generated testing data that were

evaluated based on the effectiveness of the testing data

and searched by the evolving new data generations by

the GA. This approach is used for generating test data

to the programs with /without procedures and loops.

INTELLIGENT AUTOMATION AND SOFT COMPUTING 727

Figure 1. The Genetic Algorithm (GA) based Method to Select a
Set of Test Cases (Whitten, 1998)

The GA is used to apply the sequential test method

that evaluates the efficiency by the Mutation

investigation (Odili, et al., 2018). Using the research

case without the driver train, the proposed algorithm

was being tested. The author suggested that for the

investigation, the research could be used by the GA,

still it may be used efficiently if there is a huge

number of sequential possible investigations (Yousef,

et al., 2015).

Authors (Jiang, et al., 2018) produced a novel

evolutionary-based approach that achieved generating

investigated data for all coverage of explanation-use.

In the start, the DU path's subset, through which

coverage adequacy can be ensured, is calculated by an

algorithm of reduction for the whole path of the DU,

then an investigated data is created by applying the

GA for a subset path of the DU.

The earlier path based on the coverage-investigated

data is created by the proposed achievement by

(Mishra, et al., 2019), and onward this is applied to

wrap all presented mutants for a particular program in

an analysis. The applied method can enhance the

effective testing by deleting the test redundant data

gained from the testing path in the conditions of an

improved score of mutation and matrix of the fault

analysis, which is used to refine the residency data and

identical mutants (Mishra, et al., 2019).

This work results in a procedure to minimize the

number of GA generations, which is the BD related

increasing time problem, which is the handling that is

needed for performing the system analysis,

particularly from the BD’s investigated data values

that are being derived.

3 THE DATA FLOW ANALYSIS
THE proposed technique labels all-use cases and

therefore the data flow analysis procedure is

considered as a solution. First, some descriptions are

employed for labelling the system under testing. Early,

some explanations are hired for the system labels

under the testing.

The CF (control flow) usually focuses by

mentioning a graph with a set of edges and a set of

nodes. Every node focuses on a group of sequential

statements that create a primary block. The CF, among

the nodes, is being handover. A path is a sequential set

of nodes paired by the edges. A whole path can be a

path for the first node that is the start node and with

the last node. Figure 3 represents the graph flow of the

program instance, which is shown in Figure 2.

In a program analysis of the data flow paring

among the variable references and definitions

(Pradhan, et al., 2019), nodes are associated with the

DU. Table 1 listed all DU for each Node or Edge

derived from the example code in Figure 2. Also, this

repeats the information in Figure 3, the information is

simply repeated, but properly. Further, the same edges

information is contained in Table 1.

Figure 2. Example Program (Ammann & Offutt, 2016).

The paths of the DU are listed for every CGF in

Table 2. If a DU-pair has two ways or more for the

same use, and on multiple rows, they are recorded

with subways that end with the same nodes.

Automatically done by these analyses. e.g. , [1, 2, 3, 5

] (length) is essentially toured by any test that tours

the du-path [1, 2, 3, 5, 6, 7], as [1, 2, 3, 5] and is a

prefix of [1, 2, 3, 5, 6, 7]. That is why the path that is

relative to a double path to the test path shows that the

touring team does not reflect the sub-sequential table.

728 ALHROOB, ALZYADAT, IMAM, and JARADAT

Since the prolonged DU route can be infeasible, the

prefix is not. One must be a bit cautious with this

optimization, and another path can cover and repeat

the path of the Prefix. That is why unique paths are

shown in Table 3 and the coverage of every variable

path is represented.

Figure 3. The Flow Graph of the Example Program.

4 THE OVERALL APPROACH
IN this work, the use of the BSGA input variables

of the input numbers, paths of the DU and the domain

and precision of every variable input are as achieve

inputs. Further, the parameters of the GA are the

maximum number of generations (max numb gen), the

population size (pop size), mutation and crossover.

The concerns with the test case set, are the set of the

DU paths that are covered by every case test.

It is decided that the system of instrumentation and

the paths of the DU was projected in (Girgis, 2005).

The main steps showed in Figure 4 are the main steps

that are accomplished to create the test cases for the

big data input. This access represents two stages;

select the required able sub-domain between the full

measurements of the BD domain with the help of the

binary search algorithm in this stage, which aims to

minimizing the time of searching investigated research

making a comparison with the full length of the big

data input. The second one is to explain the paths of

the DU as displayed in Table 3 and then the

percentage of the coverage is concluded. The mutation

operator of the investigated data and the DU crossover

operators prove every chromosome coverage of the

paths.

Table 1. The Defs and Uses at Each Node in the CFG (Control

Flow Graph).

Node Def Use Edge Use

1 Sum,

numbers,

and

length

numbers (1, 2)

2 I (2, 3)

3 (3, 4) { i, length }

4 Sum and

i

numbers,

i, and

sum

(4, 3)

5 med,mea

n,varsum

and i

length,

numbers,

and sum

(3, 5) { i, length }

6 (5, 6)

7 Varsum

and i

varsum,

numbers, i

and mean

(6, 7) { i, length }

8 Var and

sd

varsum,

var, mean,

length,

med, var

and sd

(7, 6)

(6, 8) { i, length }

4.1 Select Desirable Sub-Domain
A chromosome is a binary vector that represents

the variable x for every input data. The domain range

and precision are used to determine the vector size. Let

us consider a program k, input x1…xk, and Di = [ai,bi]

represents each variable domain. To achieve such

accuracy, every domain of every variable Di should be

into (bi- ai) · 10
di
 = size ranges.

A binary string of the length
 ; for

every vector test data is shown, the first m1bits map

into a value from the range [ai, bi] of variable xi, the

last group of mk bits map into a value from the range

of [ak, bk] of variable xk. Such as, a program has one

input x, where 50 ≤x ≤100, and the precision is 3

decimal places. The x domain has a length of 50. The

accurate range implies [50, 100] and should be divided

into at least 50 · 1000 equal size ranges.

As an earlier part of the chromosome, 2
18

< 50000

≤2
19

 needs 19 bits. Let us have two variables (x,y) and

y for representation requires 15 bits. The final length

of a chromosome is then m = 19+15=34 bits; code x

will have the first 19 bits and code y will have the

remaining 15 bits.

INTELLIGENT AUTOMATION AND SOFT COMPUTING 729

Table 2. The DU-paths for Each Variable of the CFG.

Variable
DU

Pairs
DU Paths Prefix?

numbers (1,5)

(1,4)

 (1,7)

[1→ 2→ 3→ 5]

[1→ 2→ 3→ 4]

[1→2→ 3→ 5→

6→ 7]

Yes

Length (1,5)

(1, 8)

(1, (3,4))

(1, (3,5))

(1, (6,7))

(1, (6,8))

[1→ 2→ 3→ 5]

[1→ 2→ 3→ 5→

6→ 8]

[1→ 2→ 3→ 4]

[1→ 2→ 3→ 5]

[1→ 2→ 3→ 5→

6→ 7]

[1→ 2→ 3→ 5→

6→ 8]

Yes

Yes

Yes

Yes

Yes

Med (5, 8) [5→ 6→ 8] Yes

Var (8,8) -

Sd (8,8) -

Sum (1,4)

(1,5)

(4,4)

(4,5)

[1→ 2→ 3→ 4]

[1→ 2→ 3→ 5]

4→ 3→ 4]

[4→ 3→ 5]

Yes

Yes

Mean (5, 7)

(5, 8)

[5→ 6→ 7]

[5→ 6→ 8]

Yes

Yes

Varsum (5, 7)

(5, 8)

(7, 7)

(7, 8)

[5→ 6→ 7]

[5→ 6→ 8]

[7→ 6→ 7]

[7→ 6→ 8]

Yes

Yes

I (2, 4)

(2, (3,4))

(2, (3,5))

(4, 4)

(4, (3,4))

(4, (3,5))

(5, 7)

(5, (6,7))

(5, (6,8))

(7, 7)

(7, (6,7))

(7, (6,8))

[2→ 3→ 4]

[2→ 3→ 4]

[2→ 3→ 5]

[4→ 3→ 4]

[4→ 3→ 4]

[4→ 3→ 5]

[5→ 6→ 7]

[5→ 6→ 7]

[5→ 6→ 8]

[7→ 6→ 7]

[7→ 6→ 7]

[7→ 6→ 8]

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

An output from a set of input variables (a

chromosome) is generated by a cost function. In some

appropriate fashion, the object is to manage the output.

By finding an accurate value for the variables input,

we do all this without understanding during the

selecting limit of the marks of students. The (85-100)

rank of excellence and other marks are being ignored

and the excellent rank is (50-84). The difference is

between the perfect marks limit and the actual student

marks. If the variable of the input is the range among

(84-100) and that having the highest marks, will be

awarded. In this situation, the function's cost is the

result of the experiments from the resolved limit than

examination of the whole marks among (50-100).

Therefore, we observe that finalizing the accurate cost

of function and selection, which type of variables to

are entirely relative to utilize. The fitness terms are

broadly used to assign the output of the work targeted

in the literature of the GA. For minimizing the

variable's input, a proposed algorithm is used to

choose the accurate input limits as displayed in these

steps:

Table 3. The DU Unique Paths.

DU Paths

[1→ 2→ 3→ 4], [1→ 2→ 3→ 5→ 6→ 7]

[1→ 2→ 3→ 5→ 6→ 8]

[4→ 3→ 4], [4→ 3→ 5]

[7→ 6→ 7], [7→ 6→ 8]

[5→ 6→ 7], [5→ 6→ 8]

[2→ 3→ 4], [2→ 3→ 5]

Figure 4. The BSGA Approach.

730 ALHROOB, ALZYADAT, IMAM, and JARADAT

Step1: Enter variable range A.

Step2: Produce the values among the variable based

type range.

Step3: Find Least Index L =0 # first Index.

Step4 Find Last Index R=n-1 # Last Index

While L ≠ R {

M= floor ((L+R)/2)

If Cf=0 { #where, Cf=Pw-Ew;

Inc=M

Return Inc

Inc++

Else If ∆C=0 {

dec=M

Return dec

Dec--

Else

L=M+1

}

}

If L=R and ∆C≠0 {

R=M-1

}

Where;

Pw

Ew= no.of covered Edges/Total number of Edges.

As in (Rylander, et al., 2001), the time of

convergence is exponential and the linear of the

different coverage with the length of a chromosome is

done. The actual experiment in (Rylander, et al., 2001)

had in an approximate convergence of 3*|b(x)| (in the

binary of x, 3 times the length). While the

chromosome itself increased at lg(x), this results in

that the convergence is in O (lg(x)). As a

Consequence, it is a small derived representation to

make it possible, and we can maintain from a couple

of experiments as documented, shows evidence that

the complexity of the GA of a maximum of 1’s is €

O(lg(x)). Further, if the size of the chromosome is not

too large, the change in the length chromosome has the

same generation numbers. However, using the large

variables limit reasoning runtime exponential with the

overpowering population probability sizes up to µ ≤ n

1/
8−ε

 for a few arbitrary small constant ε and problem

size n (Oliveto & Witt, 2015). The applied BSGA

minimizes the bits of a number that are represented to

use in every chromosome variable as shown in the

following example:

Assume that a and b are two variables used to

choose the great investigated situation by choosing

suitable values of input for everyone, where 0 ≤a

≤100, and 1 ≤b ≤4 are the needed accuracy, which is 4

decimal places for every variable. The variable’s

domain of a has the length of 100; the accurate need

means that the range [0,100] should be separated into

at least 100.10000 equal ranges of size. This implies

that 20 bits are needed as a 1
st
 chromosome’s part.

Although, variable y requires 16 bits for the 2
nd

chromosome's part. The chromosome’s total length is

20+16=36.

Let us examine a parent chromosome example:

P1: 100000011010100001110001110001011110

P2: 100110011000100001111101010001010111

Assume the numbers a’s sub-limit (e.g. 90-100)

and numbers b’s sub-limit (e.g. 3-4) are the suitable

inputs. The GABS conclude that the chromosome is a

minimized length and sub-range. Respectively, a

variable requires 10.10000 (17 bits), and the b variable

requires 1.10000 (14 bits) embedded of 100.10000 and

4.10000 respectively. Currently, the chromosome’s

total length is 17+14=31.

4.2 Using the GA to Select Optimal Test Cases
Later decreasing the BD domain's volume range in

the initial sub-section, the Optimal Test Cases is used

by the GA between all possible test studies that could

be performed to reduce the period of the testing time.

The coverage paths of the DU is an impact of choosing

those investigating the study, and the percentage of the

high coverage based as the target.

The mutation and crossover procedures are used to

develop the chances of the path’s coverage of the DU,

which results improvement or non-reflected by the

percentage of the coverage path of the DU. In this

stage, each TC (test case) has been developed after the

Mutation and Crossover has been calculated to be

attached to the lists of test cases or not. The GA

evaluates each fitness value TC by the program

performing with the TC as the input and listing the

paths of the DU in the program that are performed by

this investigation study. Equation 1 evaluates the value

of fitness TCw for each chromosome TCi (i = 1, ….,

pop_size):

(1)

The TCw is the only return from the GA problem.

An investigated study, which is indicated by

chromosome TCi which is an active reflection if TCiw>

0.

5 THE EXPERIMENTAL RESULTS
IN the experiments, a group of ranges of the 3-

variance domain for the values to be the input is being

used as follows: From 1 to 10, and from 1 to 100, then

from 1 to 1000 with two and four precisions. Figure 2

shows the efficient expected achievement is used to be

demonstrated by the two variables, (length and

number). While the other variables are under control

by the input data form the length and number. The

number of variables affects the GA numbers and

generations of the BSGA exponentially. The used

parameters of the GA were: maxgen = 100.000, pc =

0.7 and pm = 0.15.

INTELLIGENT AUTOMATION AND SOFT COMPUTING 731

Figure 5 shows the number of GA generations is

reduced by using the Binary Search as a purity

technique to select a sub-domain of the original values

of the BD domain range. In the Big Data, the domain

length can be very lengthy. That is why the number of

values of the input is considered, which proposes a

high amount of generations of the GA to search the

excellent Test Cases.

All experiment conclusions show the effect of the

finalizing input sub-domain despite the coverage paths

of the DU.

Figure 5. The Experiment Results.

Figure 6 shows the experiment results from the

scale of the Logarithmic, because of the assumption of

using huge values in the BD and return to the

skewness near the lengthy values. The conclusion

represents the percentage and gap between the two

achievements, although the BSGA is a smaller amount

of generation. Figure 5 shows the relationship among

the chromosome generation number and the length as

the perspective to the logarithm and the BSGA’s

importance in the usage to restrain the rising

generation's number associated with the increasing

length of a chromosome.

6 CONCLUSION
THE proposed BSGA is directed by the data flow

dependencies in the code to obtain test data for all DU

criterion. The proposed approach in this work accepts

the BD input values, the domain range of the values,

the program, and the DU paths to be covered. The BD

Volume is one of the problems that is covered in this

work in terms of testing. Accordingly, the cost of

testing is minimized due to the timelessness of the

testing.

Figure 6. The Results Logarithmic Scale.

The results of the experiments showed that the

proposed BSGA was effectively used to minimize the

number of iterations compared to the GA to find the

optimal test cases for the BD input values. On the

other hand, the BSGA shows no large effect in terms

of minimizing the number of the GA iterations while

the data is not big.

7 REFERENCES
Alhroob, A., Imam, A. T. & Al-Heisa, R., 2018. The

use of artificial neural networks for extracting

actions and actors from requirements document.

Information and Software Technology, Volume

101, pp. 1-15.

Ammann, P. & Offutt, J., 2016. Introduction to

software testing. Cambridge: Cambridge

University Press.

Beizer, B., 1990. Software Testing Techniques. NY,

USA: Van Nostrand Reinhold.

Bieman, J. M. & Schultz, J. L., 1989. Estimating the

Number of Test Cases Required to Satisfy the All-

du-paths Testing Criterion. Key West, Florida,

USA, ACM, pp. 179-186.

Chaudhary, R. & Agrawal, A. P., 2015. Regression

Test Case Selection for MultiObjective

Optimization Using Metaheuristics. International

Journal of Information Technology and Computer

Science, pp. 50-56.

Chavarría-Báez, L., Li, X. & Palma-Orozco, R., 2013.

Estimating the Number of Test Cases for Active

1 to
10

1 to
10

1 to
100

1 to
100

1 to
100

0

1 to
100

0

Precision 2 4 2 4 2 4

No.BSGA
Generation

s.
3 7 15 49 139 422

No.GA
Generation

s.
3 8 22 75 205 720

2 4 2 4 2 4
49

139

422

75

205

720

0

100

200

300

400

500

600

700

800

2
4

2
4

2
4 3

7
15

49

139

422

3
8

22

75

205
720

1

10

100

1000

1 to 10 1 to 10 1 to 100 1 to 100 1 to
1000

1 to
1000

Precision

No.BSGA Generations.

No.GA Generations.

http://en.wikipedia.org/wiki/Skewness

732 ALHROOB, ALZYADAT, IMAM, and JARADAT

Rule Validation. Mexico City, Mexico, Springer-

Verlag Berlin Heidelberg, p. 120–131.

Chen, M., Mao, S. & Liu, Y., 2014. Big data: A

survey. Mobile networks and applications, 19(2),

pp. 171-209.

Girgis, M. R., 2005. Automatic Test Data Generation

for Data Flow Testing Using a Genetic Algorithm.

Journal of Universal Computer Science, 11(6), pp.

898-915.

Jiang, S., Chen, J., Zhang, Y., Qian, J., Wang, R. &

Xue, M., 2018. Evolutionary approach to

generating test data for data flow test. Software

Engineering, 12(4), pp. 318-323.

Mishra, D. B., Mishra, R., Acharya, A. A. & Das, K.

N., 2019. Test Data Generation for Mutation

Testing Using Genetic Algorithm. In: Soft

Computing for Problem Solving. Singapore:

Springer, pp. 857-867.

Naik, K. & Tripathy, P., 2008. Software Testing and

Quality Assurance: Theory and Practice.

Hoboken, New Jersey: Wiley.

Odili, J. B., Kahar, M. N. M., Noraziah, A., Zarina,

M. & Haq, R Ul 2018. Performance Analyses of

Nature-inspired Algorithms on the Traveling

Salesman’s Problems for Strategic Management.

Intelligent Automation & Soft Computing, 24(4),

pp. 759-769.

Oliveto, P. S. & Witt, C., 2015. Improved time

complexity analysis of the simple genetic

algorithm. Theoretical Computer Science, Volume

605, pp. 21-41.

Pethuru j, R., Anupama, R., Dhivya, N. & Siddhartha,

D., 2015. Big and Fast Data Analytics Yearning

for High-Performance Computing. NewYork: s.n.

Pradhan, S., Ray, M. & Patnaik, S., 2019. Coverage

Criteria for State-Based Testing: A Systematic

Review. International Journal of Information

Technology Project Management (IJITPM), 10(1),

pp. 1-20.

Rauf, A. & A. Aleisa, E., 2015. PSO based automated

test coverage analysis of event-driven systems.

Intelligent Automation & Soft Computing, 21(4),

pp. 491-502.

Rylander, B., Soule, T. & Foster, J., 2001.

Computational complexity, genetic programming,

and implications. Lake Como, Italy, Springer, pp.

348--360.

Whitten, T. G., 1998. Method and computer program

product for generating a computer program

product test that includes an optimized set of

computer program product test cases, and method

for selecting same. USA, Patent No. 5,805,795.

Yousef, N., Altarwaneh, H. & Alhroob, A., 2015. Best

Test Cases Selection Approach Using Genetic

Algorithm. Computer and Information Science,

8(1), pp. 1-15.

8 NOTES ON CONTRIBUTORS

Aysh M. Alhroob is an Associate

Professor of software engineering

at Isra University, Jordan. Aysh

received his PhD from the

University of Bradford, UK. 2010.

Aysh joined Isra University in

Jordan as an Assistant Professor in

the Faculty of Information

Technology, Software Engineering Department 2011.

Dr Aysh has a number of published papers in various

Computer Science and Software Engineering topics in

international journals and conferences. In addition,

Aysh has published his first book in software testing,

2010.

Wael Alzyadat is an Assistant

Professor at the Software

engineering department, Al-

Zaytoonah University of Jordan.

Wael received his PhD degree in

Software Engineering from

Universiti Putra Malaysia. Dr

Wael published over 20 articles in

international journals, the research interest includes

several domains area.

Email: wael.alzyadat@ zuj.edu.jo

Ayad Tareq Imam is an Associate

Prof. at Al-Isra University /

Amman / Jordan. Dr Ayad

received his PhD degree in

Computer Science from De

Montfort University, Leicester, UK

in 2010. Dr Ayad has a number of

published papers in various

Computer Science and Software Engineering topics.

Dr Ayad is a reviewer in a number of international

journals and conferences of Computer and Information

related areas.

Email: alzobaydi_ayad@iu.edu.jo

Ghaith M. Jaradat is an

Associate Professor in the

Department of Computer Science,

Faculty of Computer Science and

Information Technology, at Jerash

University, Jordan. His research

interests are mainly directed to

Metaheuristics and Combinatorial

Optimization Problems including Course and Exam

Timetabling, Vehicle Routing, Travelling Salesman,

Knapsack, and Nurse Rostering Problems. He received

his bachelor's degree from the Computer Science

Department at Jerash University in 2004. He received

his master's degree from Intelligent Systems

Department at Utara University in Malaysia in 2007.

INTELLIGENT AUTOMATION AND SOFT COMPUTING 733

He received his Ph.D. in Intelligent Research

algorithms - Computer Science from the National

University of Malaysia in April 2012. He has

published a number of high-quality research papers in

international journals and conferences.

Email: g.jaradat@jpu.edu.jo

