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Abstract: To explore the inherent characteristics of combustion-induced heat
transfer in a flat flame furnace, a sophisticated hybrid method is introduced by
combining a computer-based tomography (CT)-algebraic iterative algorithm and
Tunable Diode Laser Absorption Spectroscopy (TDLAS). This technique is used
to analyze the distribution of vapor concentration and furnace temperature. It is
shown that by using this strategy a variety of details can be obtained, which would
otherwise be out of reach.
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1 Introduction

Along with the continuous consumption of fossil energy worldwide, the available natural resources are
constantly decreasing; thus, increasing the utilization and development of fossil energy resources are
receiving wide attention globally [1,2]. In China, it is particularly critical due to its large population.
Although the total resources are abundant in China, the per capita possession is much lower than the
world average levels. Therefore, China has also increased the specific development and utilization of
fossil energy resources [3]. Combustion is the major manifestation of fossil energy. At present, the
research on heat transfer during the combustion of fossil energy is at an early stage. The major research
direction is focused on the control and management of combustion efficiency, which is from the macro
perspective. However, there is no in-depth study on the characteristics of the heat transfer in combustion
of fossil resources from the micro perspective, which is a significant research direction [4]. Through the
research on the combustion heat transfer of fossil energy, the efficiency of fossil energy, such as coal, can
be greatly improved. Not only can it save resources but also significantly reduce pollution to the global
environment. Through continuous research and development, the heat transfer of fossil energy during
combustion will be widely applied for daily purposes in the future. Whether for the military, aerospace,
industrial, or daily purposes, the use of combustion energy can become the driving force for processing
and production [5,6]. Research on the microscopic characteristics of the combustion heat transfer of fossil
energy requires sustained high-level talents and economic investment to achieve excellent results [7]. At
present, there are many problems involved in utilizing fossil energy resources, such as instability, safety,

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Fluid Dynamics & Materials Processing
DOI:10.32604/fdmp.2020.09565

Article

echT PressScience

mailto:<author-notes><corresp id=
http://dx.doi.org/10.32604/fdmp.2020.09565
http://dx.doi.org/10.32604/fdmp.2020.09565


and low efficiency. These difficulties currently hinder the in-depth utilization of fossil energy resources [8].
Some researchers have used direct absorption spectrum time division multiplexing technology and tunable
diode laser absorption spectroscopy (TDLAS) technology to measure the temperature and component
concentration of flat flame furnace, and achieved good experimental results [9,10]. Therefore, this study
considers the advantages and disadvantages of traditional resource utilization. The two-dimensional
reconstruction of the distribution of combustion temperature and concentration of fossil energy in flat
flame furnace is carried out by using the hybrid method of computed tomography (CT)-algebraic iteration
algorithm and TDLAS. The qualitative and quantitative analysis of the distribution results of combustion
temperature and concentration of fossil energy is realized.

In this study, a two-dimensional reconstruction of vapor concentration and furnace temperature in the
surface combustion of a flat flame furnace is analyzed and researched by constructing a hybrid method
based on CT-algebraic iterative algorithm and TDLAS. Based on the hybrid method of the CT-algebraic
iterative algorithm and TDLAS, the data and distribution laws of the concentration and temperature
control of the flat flame furnace are investigated. At present, the two-dimensional reconstruction of the
combustion process of flat flame furnace is more focused on the exploration of a single reconstruction
method, based on this, CT algebraic iterative algorithm and TDLAS algorithm are fused innovatively in
experiment. The purpose of study is to provide some experimental support for the follow-up study of the
algebraic iterative algorithm of CT and the further study of the combustion process of the flat flame furnace.

2 Methodology

2.1 Measurement Principles
In this experiment, TDLAS temperature concentration measurement principle and algebraic iterative

reconstruction method are combined to measure the temperature and water vapor concentration of flat
flame furnace. The purpose is to reconstruct the temperature field and water vapor concentration
distribution in combustion area. The Beer-Lambert Law: The principle of tunable semiconductor laser
absorption spectroscopy is based on the Beer-Lambert Law, i.e.,

It vð Þ
I0 vð Þ¼ exp �kvLð Þ (1)

where I0 vð Þ is the incident light intensity (mW), and It vð Þ is the transmitted light intensity (mW). kv is the
absorption coefficient, L is the length of light through the medium.

kv ¼ pxabsSi Tð Þ�v (2)

where P is the total static pressure (atm) of the mixed gas, and xabs is the volume concentration of the
absorbed gas. Si Tð Þ and �v denote the line strength and area normalized line function of molecular
transition spectrum of matter. According to Eqs. (1) and (2), the absorbance A vð Þ and integral absorbance
A can be obtained as follows:

A vð Þ ¼ In
I0
It

� �
(3)

Ai ¼
Z

In
I0
It

� �
dv ¼ pxabsSi Tð ÞL (4)

where the integral absorbance Ai can be expressed as the product of the gas absorption coefficient av and the
absorption path length L; thus:
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av ¼ pxabsSi Tð ÞL (5)

For a specific gas and selected spectral line, the line strength S (T) is only temperature-dependent, which
can be expressed as:

S Tð Þ ¼ S T0ð ÞQ T0ð Þ
Q Tð Þ

T0

T
exp � hcE00

k

1

T
� 1

T0

� �� �
� 1� exp

�hcv0
kT

� �� �
1� exp

�hcv0
kT0

� �� ��1

(6)

where S T0ð Þ is the line strength of the absorption spectral line to be measured at the reference temperature T0,
while Q(T) and Q(T0) are the partition functions of the measured gas T and T0, respectively. E00 represents
low-level energy, h is Planck’s constant, and k is Boltzmann’s constant.

2.2 Measurement Principles of TDLAS Temperature and Concentration
The absorption line strength ratio method usually selects two absorption lines of the same gas molecule,

and the internal partition function Q (T) can be eliminated by the absorption line strength ratio, thereby:

R Tð Þ ¼ S1 Tð Þ
S2 Tð Þ ¼

S1 T0ð Þ
S2 T0ð Þ exp � hc

k
E1

00�E2
00ð Þ 1

T
� 1

T0

� �� �
1� exp

�hcv01
kT

� �� �
1� exp

�hcv02
kT0

� �� ��1

(7)

For the case where the absorption line is not very different in wavelength, the ratio of the stimulated
radiation correction term in the ratio is Approximately 1, which is usually ignored and simplified as:

R Tð Þ ¼ S1 Tð Þ
S2 Tð Þ ¼

S1 T0ð Þ
S2 T0ð Þ exp � hc

k
E1

00�E2
00ð Þ 1

T
� 1

T0

� �� �
(8)

Therefore, the line strength ratio is a function of the temperature T, and T can be deduced by measuring
R. Substituting T into the equation to find the line strength at the corresponding temperature, the water vapor
concentration can be obtained.

2.3 CT Reconstruction Algorithm-Algebraic Iterative Algorithm
The ARTalgorithm discussed in this study is a kind of critical CT algorithm. Its essence is to solve linear

equations, and the number of unknowns in the equations is greater than the number of equations [11,12]. By
adding prior information and constraints, the suitable solutions to the equations are searched, and the
principle of absorption spectroscopy is shown in Fig. 1.

The flow of the CT-algebra iterative algorithm is shown in Fig. 2. It is mainly reflected in the following
aspects. The first is to reprocess the area to be reconstructed, and the core is to make it discrete into grids with
a certain resolution [13]. The second is to reconstruct the projection equations of all rays and have all the
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Figure 1: Principle of absorption spectroscopy
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equations be mixed according to certain rules, forming a characteristic linear equation. Each mixed equation
contains the attenuation coefficient of the equation [14]. The third is to re-assign values for the grids that are
discretely set in the first step. Then, the numerical calculation of each projection is performed according to the
re-assigned value, which must be strict [15]. The fourth is to calculate the difference between the real value
and the projection value according to the projection results obtained by the first projection calculation
equation. Then, the values that have been obtained are re-corrected according to the iterative equation of
CT algebra to obtain the accurate grid values. The fifth is to calculate the equation and bring it into the
next projection according to the corrected and calculated gray value [16]. Afterward, the same operation
steps are performed according to the fourth step, and the last projection equation is continued to complete
the entire iteration process. The next step is to start the loop operation. The second iteration process is
started from the first projection equation. After several loop iterations, the difference between the values
of the adjacent grids is very small. Thus, the calculation step is completed to obtain the result value of
the linear equation [17]. It is the flow of the entire CT-algebraic iterative algorithm. The real process is

The distribution of initial absorption coefficient a,
pressure P, projection coefficient matrix LLQ and

given iteration step size lambda

The integral absorbance a of each absorption peak,
i.e. the projection value, is obtained as the input

value of the iterative formula

Take these parameters into the iteration formula
for calculation, and complete the iteration after M

rays

Iterative new absorption coefficient

Whether convergence
conditions are met

Output the absorption coefficient of two absorption
lines, and calculate the outlet strength ratio R by

ratio method

Temperature T calculated from R value

YES

NO

Figure 2: Flowchart of CT-algebraic iterative algorithm
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strictly prohibited and efficient. The obtained results need to go through countless iterations before the
expected results are obtained. Based on relevant data and information, this study has performed various
processes and manipulations of the CT-algebra iterative algorithm, including redesigning and improving
the smoothing criterion, adding non-negative numerical identification and modification, and performing
self-corrections and updates of the relaxation factor of the algorithm. Such operations improve not only
the stability of the algorithm but also the accuracy and speed of the operation, thereby increasing the
rationality of the operation of the equation [18].

The basic principle of CT: According to the Beer-Lambert absorption law in TDLAS technology, when a
laser with an intensity of I0 is irradiated on a gas medium with an attenuation coefficient of u, after passing
the distance l, if the output light intensity is set to lt, the relationship between the incident light and the
incident light is:

It ¼ I0e
�ul (9)

If the density across the medium is non-uniform, the path l needs to be discretized, and fn is the
discretization attenuation coefficient. At this time, the projection p in a certain direction is defined as:

p ¼ f 1 þ f 2 þ f 3 þ f 4…::þ f nð ÞDl ¼
Xn
i¼1

f iDl ¼ In
T0

T
(10)

when Dl tends to infinite hours, the above equation can be written in the integral form:

p ¼
Z
l

f lð Þdl (11)

It represents the projection of the attenuation coefficient f (l) along the l direction. If the projection data p
at different angles and positions is known, the attenuation coefficient f(l) can be inferred through a series of
projection values by a reconstruction algorithm. This process is called image reconstruction, i.e., CT. A
typical experimental setup of the fixed wavelength direct absorption method is shown in Fig. 3, which is
extended to the field of laser absorption spectroscopy. If the integral absorption rate at the selected
absorption line and different position angles is obtained in the experiment, the two-dimensional
distribution of combustion temperature and concentration can be measured by the reconstruction algorithm.
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Figure 3: Typical experimental setup of fixed wavelength direct absorption method
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2.4 Algorithm Reconstruction
To obtain a two-dimensional distribution image of combustion temperature and concentration, the

reconstruction area is first divided into J(J=MXN) grids. Meanwhile, the gas parameters, such as
temperature, pressure, and concentration, inside the grid are considered to be uniform. When a certain
laser beam i passes through the target area, the integral absorbance of the absorption line with the center
frequency vi can be discretized as:

Avi;i ¼
XN
n¼1

XM
m¼1

PXS Tð Þ½ �
vi; m;nð Þ

Li; m;nð Þ ¼
XN
n¼1

XM
m¼1

a
vi; m;nð Þ

Li; m;nð Þ (12)

The above equation is also called the gas absorption equation, where I is the total number of laser beams,
m and n are respectively the row and column indexes of the image matrix MXN, and the algorithm optical
path is shown in Fig. 4.

When the reconstruction area is scanned by multiple beams at multiple angles and directions, each laser
beam has the described projection equation, which is a linear function of pressure, concentration, line
intensity, and optical path. By combining these equations, a linear system of equations is obtained, as
shown in the following equation:

A1¼L1; 1;1ð Þa 1;1ð ÞþL2; 1;2ð Þa 1;2ð Þþ…þL1; m;nð Þa m;nð Þþ…:þL1; M;Nð Þa M;Nð Þ
A2¼L2; 1;1ð Þa 1;1ð ÞþL2; 1;2ð Þa 1;2ð Þþ…þL2; m;nð Þa m;nð Þþ…:þL2; M;Nð Þa M;Nð Þ
Ai¼Li; 1;1ð Þa 1;1ð ÞþLi; 1;2ð Þa 1;2ð Þþ…þLi; m;nð Þa m;nð Þþ…:þLi; M;Nð Þa M;Nð Þ

8<
: (13)

2.5 Temperature and Concentration Reconstruction under Numerical Simulation
The schematic diagram of the flat flame furnace one-dimensional test system is shown in Fig. 5. Before

the experiment, numerical simulation calculations are performed. The reconstruction area is a square with
equal length and width, which is divided into 36 grids with an area of 6 × 6. The laser beam has 8 rays
in the horizontal and vertical directions. The temperature distribution along the two assumed original
grids is 900 k in the middle 9 grids, and the vapor concentration is 0.2. The temperature in the outer
16 grids is 600 k, and the vapor concentration is 0.2. After statistical analysis of the data, the maximum
deviation between the temperature reconstruction result and the original temperature distribution is

1

M

2 N

Li,(m,n)

Figure 4: Optical path of the algorithm
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0.93%, while the maximum deviation between the vapor concentration reconstruction result and the original
concentration distribution is 0.71%, in which the corresponding noise is also added for reconstruction.

In terms of CT-algebraic iterative algorithms, its functions are rich and powerful. It not only achieves the
reconstruction and setting of projection equations but also has high efficiency and accuracy, which is critical
for practical applications [19]. However, for the projection reconstruction equations with high-scoring
requirements, the entire iterative calculation process is huge, the time is long, and the accuracy of the
results will also be affected. Due to such a problem, this study has improved and processed the algorithm
to propose a matrix method for coefficient calculation with a relatively fast calculation speed, which
simplifies and organizes the traditional coefficient calculation process and greatly reduces the engineering
volume and time of the operation [20]. Based on relevant data and information, this study has performed
various processes and manipulations of the CT-algebra iterative algorithm, including redesigning and
improving the smoothing criterion, adding non-negative numerical identification and modification, and
performing self-corrections and updates of the relaxation factor of the algorithm. Through such
operations, not only the stability of the algorithm is improved, but also the accuracy and speed of the
operation. Multiple pixels of the grid are processed and modified. Regarding the reconstruction process of
the water vapor concentration of the flame furnace, the previously lagging With the method of rebuilding
the temperature and then obtaining the results, the method was abandoned, and a new multiple iteration
process was used to directly reconstruct the water vapor concentration and build the process [21]. The
results obtained through this method are accurate and reliable. Then, the algorithm for verification and
improvement is directly transferred to the reconstruction process of the double peaks. The results
obtained are also accurate and reliable. In the process of improving and researching the accuracy [22].

2.6 Reconstruction Accuracy Analysis
The results of the combustion field distribution reconstruction are affected by a variety of factors, among

which the most significant include the number of projection directions, the number of projected rays, and the
size of the noise circle [23]. The quality of image reconstruction can be evaluated by relevant criteria. The
impact of different factors on the quality of image reconstruction is mainly determined, and the optimal
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Figure 5: Schematic diagram of the one-dimensional test system for flat flame furnace
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reconstruction scheme is given to obtain the optimal reconstruction results. Analysis of the impact of the
number of projection directions on the reconstruction accuracy: To evaluate the quality of image
reconstruction, the difference between the reconstructed image and the original image is used to evaluate
the reconstruction effect. Three error evaluation criteria are given here, i.e.,

Normalized mean square distance criterion D:

D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPJ
j¼1

rj�oj
� �2

PJ
j¼1

oj�o
� �2

vuuuuuut (14)

Normalized absolute distance criterion R:

D ¼

PJ
j¼1

oj�rj
		 		
PJ
j¼1

oj

(15)

Normalized percent error:

error ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPJ
j¼1

rj�oj
oj

� �2

J2

vuuut
(16)

where oj and rj represent the pixel values of pixel j in the original field distribution and the reconstructed field
distribution, o indicates the average of the original image pixel values, respectively, and the image matrix has
a total of J pixels. The significance of each criterion parameter is different. The normalized mean square
criterion represents a large reconstruction deviation at a small number of points. The normalized absolute
distance criterion represents a large number of points that produce small errors. The importance of large
errors is not emphasized. The normalized percent error reflects the reconstruction bias produced by each
pixel on average. A typical scanning wavelength direct absorption spectroscopy technology experimental
system is shown in Fig. 6.

2.7 Introduction to the Experimental System
Hardware composition: The hardware components used in the experiment include rotating stage,

translation stage, DFB laser, laser drive, self-focusing lens fiber collimator, fiber beam splitter, fiber
combiner, photodetector, amplifier circuit board, time division multiplexed circuit board, etalon, and data
acquisition and processing system [24]. The two-dimensional reconstruction system of the combustion
flow field based on TDLAS technology is shown in Fig. 7.

Software program design: Before setting up a combustion flow field experimental measurement
system, the acquisition program and the spectral data processing software are written in Labview. The
options mainly include data acquisition average times, sampling rate, sampling length, channel settings,
save path, and signal display [25].
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3 Results and Discussion

3.1 The Influence of the Number of Parallel Rays in One View on the Reconstruction Accuracy
The effect of the number of parallel rays on the reconstruction accuracy in a single angle of view: The

number of parallel rays in a single angle of view has a significant effect on the environment for
reconstruction. Therefore, the number of projections is set to 20 and remains unchanged. The number of
set parallel light is circulated from 11 to 30 according to a certain difference; then, the value of the
reconstruction result is calculated and analyzed under different settings to determine whether its accuracy

Absorbing medium

Etalon

Data acquisition 
and processing 

system
Laser controller Signal generator

detector

detector

Laser

Figure 6: Typical scanning wavelength direct absorption spectroscopy technology experimental system

Signalgenerator

Combiner 1  

Combiner 2  

Dataacquisition Etalon Collimator

Detector

splitterCombiner

2X1 1x2

Fiber
coupler

Figure 7: Two-dimensional reconstruction system of combustion flow field based on TDLAS technology
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is affected and whether it can meet the needs. As shown in the obtained numerical results, with the
continuous increase in the number of parallel lights, the furnace temperature distribution and the vapor
concentration distribution are analyzed to reconstruct the process. The results show that whether it is the
judgment index mean square distance, absolute distance, or percentage error, it shows a slowly decreasing
process, i.e., as the number of parallel rays increases, the accuracy of the reconstruction is greatly
affected, and the accuracy value is decreasing. The influence of noise on the reconstruction accuracy is
quite significant. Therefore, the number of projections is set to 20 and remains unchanged. The number
of set different noise levels is circulated from 11 to 30 according to a certain difference; then, the value of
the reconstruction result is calculated and analyzed under different settings to determine whether its
accuracy is affected and whether it can meet the needs. As shown in the obtained numerical results, with
the continuous increase in the noise, the furnace temperature distribution and the vapor concentration
distribution are analyzed to reconstruct the process. The results show that whether it is the
judgment index mean square distance, absolute distance, or percentage error, it shows a slowly decreasing
process, i.e., as the noise increases, the accuracy of the reconstruction is greatly affected, and the
accuracy value is decreasing.

3.2 Two-dimensional Reconstruction Results of Temperature and Concentration of Combustion Heat

Transfer on Flat Flame Furnace Surface
The average temperature measured along the X and Y directions based on the two-line method is shown

in Fig. 8. As shown in the data and trend graphs in the figure, the measured temperature results at the
boundary of the flat flame furnace are either on the X-axis or the Y-axis, which are lower than the
temperature of the central position of the furnace. Also, the measurement temperatures of the central
positions are relatively stable and close to each other. The temperature of the eighth detection optical path
in the X-axis direction is slightly higher. Therefore, based on the TDLAS technology and CT-algebraic
iterative reconstruction algorithm, the measurement of the surface combustion heat temperature of a flat
flame furnace is consistent with the actual results, and the performance is stable and prominent.

To eliminate the accidental error and calculate the projection data, the average value is obtained through
multiple measurements. Before rotating the rotary table, continuously measure and save multiple sets of data
of five signals in this state, then rotate the rotary table for 90 degrees anticlockwise, and repeat the above
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Figure 8: Average temperature measured along the X and Y directions based on the two-line method
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measurement. The rotating time of the rotary table is about 10 seconds, and it takes 3 minutes to collect and
process 10 laser signals twice. Fig. 9 shows the integral absorbance data of three signals in the vertical
direction for a period without rotation, in which the data points with too large fluctuation are eliminated.
As shown in the data and the trend graphs in the figure, the integral absorbance of the 3 sets of data has
remained basically stable, while the fluctuation has basically remained within a certain range. It also
shows the measurement positions of different levels and different optical paths. The algebraic iterative
reconstruction algorithm based on TDLAS technology and CT is suitable for the measurement of
combustion heat transfer on the surface of a flat flame furnace. The data is authentic and reliable.

The accurate values of reconstructed temperature and concentration are shown in Fig. 10. As shown in
the data and trends in the figure, the TDLAS technology and CT-algebraic iterative reconstruction algorithm
designed and discussed in this study can obtain clear and accurate measurement data for the vapor
concentration and temperature in the flat flame furnace. The results are consistent with the real data laws.
The temperature in the center of the furnace is relatively high, the temperature in the boundary area is
relatively low, and the rate of change in the concentration is similar. By performing a two-dimensional
reconstruction of the combustion heat transfer temperature and concentration on the surface of a flat
flame furnace, the characteristics of the heat transfer can be more fully understood.
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4 Conclusion

This study analyzes and explores the two-dimensional reconstruction of vapor concentration and furnace
temperature in the surface combustion of the flat flame furnace by constructing a hybrid method based on the
CT-algebraic iterative algorithm and TDLAS. The research results show that the two-dimensional
reconstruction of the furnace temperature and vapor concentration of the flat flame furnace based on the
hybrid method of CT-algebraic iterative algorithm and TDLAS has a significant impact. The analysis of
the temperature and concentration through the monitoring of the optical path reveals basically consistent
laws. The temperature and concentration in the central position are relatively high, while the temperature
and concentration in the boundary area are relatively low. Besides, the transition from the center to the
boundary is relatively uniform, while the temperature in the central area is relatively stable. This study
also has some deficiencies in the research process, which are mainly caused by the fact that the
conclusions obtained by the two-dimensional reconstruction simulation of furnace temperature and
concentration for the hybrid method of CT-algebraic iterative algorithm and TDLAS are more from the
experimental and theoretical stages. There will be many factors and problems of the operations under
actual application conditions. Since this study is in the experimental stage, many external factors are
ignored, and the results may be slightly less convincing. Nevertheless, this study has provided a useful
reference for the investigation of the two-dimensional reconstruction of combustion qualitatively.

Funding Statement: The author(s) received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
1. Jiang, G., He, H., Yan, J., Xie, P. (2018). Multiscale convolutional neural networks for fault diagnosis of wind

turbine gearbox. IEEE Transactions on Industrial Electronics, 66(4), 3196–3207. DOI 10.1109/
TIE.2018.2844805.

2. Ding, R., Zhou, X., Zhang, R., Lu, W. (2020). Research on the measurement and countermeasure of coal
overcapacity in China: based on panel data of 25 provinces in China. Energy Engineering, 117(1), 27–39. DOI
10.32604/EE.2020.010418.

3. Peeters, C., Guillaume, P., Helsen, J. (2018). Vibration-based bearing fault detection for operations and
maintenance cost reduction in wind energy. Renewable Energy, 116(PT.B), 74–87. DOI 10.1016/j.
renene.2017.01.056.

4. Ziaja, A., Antoniadou, I., Barszcz, T., Staszewski, W. J., Worden, K. (2016). Fault detection in rolling element
bearings using wavelet-based variance analysis and novelty detection. Journal of Vibration and Control, 22(2),
396–411. DOI 10.1177/1077546314532859.

5. Chen, J., Pan, J., Li, Z., Zi, Y., Chen, X. (2016). Generator bearing fault diagnosis for wind turbine via empirical
wavelet transform using measured vibration signals. Renewable Energy, 89(6), 80–92. DOI 10.1016/j.
renene.2015.12.010.

6. Jalali, H., Abbassi, H. (2020). Analysis of the influence of viscosity and thermal conductivity on heat transfer by
Al2O3-water nanofluid. Fluid Dynamics & Materials Processing, 16(2), 181–198. DOI 10.32604/
fdmp.2020.07804.

7. Cao, M. N., Qiu, Y. M., Feng, Y. H., Wang, H., Li, D. (2016). Study of wind turbine fault diagnosis based on
unscented kalman filter and SCADA data. Energies, 9(10), 847. DOI 10.3390/en9100847.

8. Uma Maheswari, R. U., Umamaheswari, R. (2017). Trends in non-stationary signal processing techniques applied
to vibration analysis of wind turbine drive train–a contemporary survey. Mechanical Systems and Signal
Processing, 85(6), 296–311. DOI 10.1016/j.ymssp.2016.07.046.

9. Astolfi, D., Scappaticci, L., Terzi, L. (2017). Fault diagnosis of wind turbine gearboxes through temperature and
vibration data. International Journal of Renewable Energy Research, 7(2), 965–976.

868 FDMP, 2020, vol.16, no.5

http://dx.doi.org/10.1109/TIE.2018.2844805
http://dx.doi.org/10.1109/TIE.2018.2844805
http://dx.doi.org/10.32604/EE.2020.010418
http://dx.doi.org/10.1016/j.renene.2017.01.056
http://dx.doi.org/10.1016/j.renene.2017.01.056
http://dx.doi.org/10.1177/1077546314532859
http://dx.doi.org/10.1016/j.renene.2015.12.010
http://dx.doi.org/10.1016/j.renene.2015.12.010
http://dx.doi.org/10.32604/fdmp.2020.07804
http://dx.doi.org/10.32604/fdmp.2020.07804
http://dx.doi.org/10.3390/en9100847
http://dx.doi.org/10.1016/j.ymssp.2016.07.046


10. Zhao, H., Liu, H., Hu, W., Yan, X. (2018). Anomaly detection and fault analysis of wind turbine components based
on deep learning network. Renewable Energy, 127(8), 825–834. DOI 10.1016/j.renene.2018.05.024.

11. Zhang, W., Qiu, Y., Infield, D., Feng, Y., Sun, J. (2016). Applying thermophysics for wind turbine drivetrain fault
diagnosis using SCADA data. IET Renewable Power Generation, 10(5), 661–668. DOI 10.1049/iet-
rpg.2015.0160.

12. Romero, A., Soua, S., Gan, T. H., Wang, B. (2018). Condition monitoring of a wind turbine drive train based on its
power dependant vibrations. Renewable Energy, 123(10), 817–827. DOI 10.1016/j.renene.2017.07.086.

13. Kandukuri, S. T., Klausen, A., Karimi, H. R., Robbersmyr, K. G. (2016). A review of diagnostics and prognostics
of low-speed machinery towards wind turbine farm-level health management. Renewable and Sustainable Energy
Reviews, 53(13), 697–708. DOI 10.1016/j.rser.2015.08.061.

14. Bangalore, P., Letzgus, S., Karlsson, D., Patriksson, M. (2017). An artificial neural network-based condition
monitoring method for wind turbines, with application to the monitoring of the gearbox. Wind Energy, 20(8),
1421–1438. DOI 10.1002/we.2102.

15. Hang, J., Zhang, J., Cheng, M. (2016). Application of multi-class fuzzy support vector machine classifier for fault
diagnosis of wind turbine. Fuzzy Sets and Systems, 297(18), 128–140. DOI 10.1016/j.fss.2015.07.005.

16. Guo, J., Lu, S. L., Zhai, C., He, Q. B. (2018). Automatic bearing fault diagnosis of permanent magnet synchronous
generators in wind turbines subjected to noise interference.Measurement Science and Technology, 29(2), 0250002.

17. Gonzalez, E., Gonzalez, E., Reder, M., Melero, J. J. (2016). SCADA alarms processing for wind turbine
component failure detection. Journal of Physics: Conference Series, 753(7), 072019. DOI 10.1088/1742-6596/
753/7/072019.

18. Chen, F., Fu, Z., Yang, Z. (2017). Research on intelligent fault identification technology of wind turbine supported
by fault knowledge base. Modelling, Measurement and Control A, 90(1), 1–15. DOI 10.18280/mmc_a.900101.

19. Tautz-Weinert, J., Watson, S. J. (2017). Using SCADA data for wind turbine condition monitoring–a review. IET
Renewable Power Generation, 11(4), 382–394. DOI 10.1049/iet-rpg.2016.0248.

20. Li, Z., Jiang, Y., Hu, C., Peng, Z. (2017). Difference equation based empirical mode decomposition with
application to separation enhancement of multi-fault vibration signals. Journal of Difference Equations and
Applications, 23(1–2), 457–467. DOI 10.1080/10236198.2016.1254206.

21. Jin, X., Gan, Y., Ju, W., Yang, X., Han, H. (2016). Research on wind turbine safety analysis: failure analysis,
reliability analysis, and risk assessment. Environmental Progress & Sustainable Energy, 35(6), 1848–1861.
DOI 10.1002/ep.12413.

22. Georg, H., Matthias, R. (2018). Deep Learning for fault detection in wind turbines. Renewable and Sustainable
Energy Reviews, 98(11), 189–198. DOI 10.1016/j.rser.2018.09.012.

23. Triveni, M., Panua, R. (2018). Numerical study of natural convection in a right triangular enclosure with sinusoidal
hot wall and different configurations of cold walls. Fluid Dynamics and Materials Processing, 14(1), 1–21.

24. Dandani, M., Lepiller, V., Abderrahmane, G., Désévaux, P. (2018). Numerical visualizations of mixing
enhancement in a 2D supersonic ejector. Fluid Dynamics and Materials Processing, 14(1), 23–37.

25. Neffah, Z., Kahalerras, H., Fersadou, B. (2018). Heat and mass transfer of a non-newtonian fluid flow in an
anisotropic porous channel with chemical surface reaction. Fluid Dynamics and Materials Processing, 14(1),
39–56.

FDMP, 2020, vol.16, no.5 869

http://dx.doi.org/10.1016/j.renene.2018.05.024
http://dx.doi.org/10.1049/iet-rpg.2015.0160
http://dx.doi.org/10.1049/iet-rpg.2015.0160
http://dx.doi.org/10.1016/j.renene.2017.07.086
http://dx.doi.org/10.1016/j.rser.2015.08.061
http://dx.doi.org/10.1002/we.2102
http://dx.doi.org/10.1016/j.fss.2015.07.005
http://dx.doi.org/10.1088/1742-6596/753/7/072019
http://dx.doi.org/10.1088/1742-6596/753/7/072019
http://dx.doi.org/10.18280/mmc_a.900101
http://dx.doi.org/10.1049/iet-rpg.2016.0248
http://dx.doi.org/10.1080/10236198.2016.1254206
http://dx.doi.org/10.1002/ep.12413
http://dx.doi.org/10.1016/j.rser.2018.09.012

	Two-Dimensional Reconstruction of Heat Transfer in a Flat Flame Furnace through Computer-Based Tomography and Tunable-Diode-Laser Absorption Spectroscopy ...
	Introduction
	Methodology
	Results and Discussion
	Conclusion
	References


