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Abstract: In this research, the dynamics of wet spray nozzles with different geo-
metries, used to accelerate shotcrete, are investigated on the basis of a suitable
three-dimensional mathematical model and related numerical method. Simula-
tions have been conducted in the frame of the SIMPLEC algorithm. The k-ε
turbulence model has been used to account for turbulent effects. The study shows
that when the angle of the convergent section is less than 3°, it has a scarce effect
on the dynamics of the jet of shotcrete; with the increase of the convergence
angle, the shotcrete jet velocity decreases and the nozzle wear increases; when this
angle is greater than 6°, the concrete outlet jet velocity is very small and the noz-
zle can easily be blocked. Experimental results are in good agreement with the
outcomes of the numerical simulations, which indicates that the used approach
is reliable.

Keywords: Shotcrete; wet spraying nozzle; turbulence flow; convergence angle;
numerical simulation

1 Introduction

Shotcrete or sprayed concrete, a cement-based mixture projected pneumatically in high velocities [1], is
often used in various constructions, such as mine tunnels, railway and highway tunnels, and water
conservancy culverts [2–4]. The flexibility of shotcrete makes it an effective alternative to conventional
concrete in rock support, tunnel lining, and concrete repair. For example, the pneumatic projection allows
shotcrete to be applied quickly on the uneven substrate surfaces, acting as excavation stabilization and
arch lining in mines [5]. There is a problem of uneven injection and large amount of dust on the shotcrete
construction site. Ulvestad et al. [6] ever indicated that mean exposures to total dust and respirable dust
in shotcrete were significantly higher than in drillers (13.6, 3.4 mg/m3 and 3.6, 1.2 mg/m3). Georg et al.
[7,8] compared the exposure situation of shotcrete dust in heading face between Swiss road tunnel and
Munich subway tunnel with similar shotcrete and ventilation, results showed that the average fine dust
concentration of road tunnel (13.2 mg/m3) and subway tunnel (11.6 mg/m3) was still higher in fact, what
is more, the peak of dust concentration during shotcrete can reach up to more than 100 mg/m3 for the
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road tunnel and up to 70 mg/m3 for the subway tunnel. Praml et al. [9,10] measured dust concentration
during the shotcrete in amine tunnel construction site. Results showed that the fine dust concentration
were 4.2 mg/m3 for mixer operator and 11.6 mg/m3 for nozzleman. The peak loads of dust concentration
can reach up to five times the mean value. These problems not only waste valuable wet spray materials,
generate a large amount of dust, damage the support strength, reduce work efficiency, but also pose a
threat to the health and safety of workers.

Currently, when it comes to shotcrete, a large amount of researches pay their attention on the
pumpability and shootability of fresh concrete [11–13] or the mechanism of sprayed concrete [14,15].
Chen et al. [16] summarized the technologies for reducing cement dust during shotcrete from new
process, new apparatus to new materials, as well as the pathological damage of cement dust. Zeng et al.
[17] indicated that the magnetized water can enhance the strength of shotcrete by 10% or so, and reduce
the dust density by 50% in comparison with the ordinary shotcrete. The rebound rate of shotcrete mixed
with magnetized water is greatly improved compared with that of the ordinary water shotcrete.

At present, there are few researches on the structure of wet spray nozzles, and in those researches the
range of nozzle convergence angle is large lacking certain certainty, which has a great effect on the
performance of nozzle [18]. This paper studies the effect of the shrinkage angle of the wet sprayer’s
nozzle on the uniformity of concrete injection and the reduction of dust through theoretical analysis,
numerical calculation and experimental research. Based on the numerical calculation results, the specimen
is made. The correctness of the numerical simulation results is verified in the experimental research and
then applied to engineering practice.

2 Analysis and Calculation of Concrete Motion in Nozzle

2.1 Wet Sprayer Working Principle and Structure Characteristics of Nozzle
The construction of wet shotcrete refers to a process in which cement, water and aggregates are fully

stirred in a certain proportion in blender, then pumped or air-conveyed to the nozzles, and finally, the
concrete is accelerated with compressed air at the nozzle [19,20]. The nozzle as the concrete exit is
essential to the whole machine. In order to improve the technology and product quality of the wet
sprayer, it is necessary to study the influence of the nozzle structure on the concrete flow in the nozzle.
The nozzle is composed of convergent section, mixed core, air-induction ring, and connection snap ring,
as shown in Fig. 1, In practice, the compressed air and the accelerating agent enter the nozzle from the
air induction ring (part 2 in Fig. 1). The concrete is pushed to the straight pipe (part 1) through the
alternate delivery cylinder, and fully and evenly mixed in the material-gas mixing core (part 3) with high
pressured air entering through the air induction ring (part 2). The suspended concrete particles pass
through the front convergent section (part 5) and are sprayed from the outlet (part 6) to the sprayed
surface, completing the entire concrete spraying operation.

Figure 1: Diagram of nozzle structure
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2.2 Mathematical Formulation
According to the working principle of the wet sprayer, the concrete mass is accelerated in the nozzle by

the compressed air, and run in an axially-accelerated manner in the suspended state. At the same time, there is
a circumferential rotational motion [21,22]. That is to say, the concrete mass is in a spiral motion in space and
the axial and tangential forces are complex in the spraying process. However, the gravity and the levitation
force balance each other in the vertical direction during the horizontal spray of concrete particles. The
tangential force in the circumferential direction only produces a tangential rotational motion, without any
effect on the axial movement of the concrete. Thus, the tangential force can be ignored when analyzing
the axial movement of the concrete. The forces acting on the concrete mass mainly include the axial flow
thrust FR and the frictional resistance T of the nozzle inner wall. Fig. 2 briefly illustrates the forces on the
concrete mass in horizontal pipes in dl section [23,24].

Airflow thrust Eq. (1):

FR ¼ CsAsqa
ðva � vsÞ2

2
(1)

where Cs refers to the flow resistance coefficient; As is the total frontal area of concrete particle mass in dl section,
m2; qa is the air density, kg/m

3; va, the air velocity, m/s; vs, the transportation speed for concrete mass, m/s.

Pipe wall resistance Eq. (2):

T ¼ DPlA ¼ �s
dl

D
qn

v2s
2
A (2)

where λs refers to the resistance coefficient of concrete mass, and A is the cross section area.

Since:

qn ¼
qms
Avs

(3)

Cs ¼ Cnð vn
va � vs

Þk (4)

According to the previous analysis, the airflow resistance of the shotcrete particles is within the Newton
resistance zone, i.e., K = 0, thus it can be obtained:

Cn ¼ g
qms
vs

dl=ðAsqa
v2n
2
Þ (5)

Figure 2: Force and motion diagram of concrete particle mass in horizontal conical tube
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Namely:

FR ¼ g
qms
vs

gdlðva � vs
vn

Þ2�k (6)

T ¼ g
qms
vs

dl
�sv2s
2gD

(7)

According to Newton’s second law: Ms
dvs
dt

¼ FR � T cos
h
2
, and combined it with Eq. (2):

1

g

dvs
dt

¼ ðva � vs
vn

Þ2 � �sv2s
2gDðhÞ (8)

where vn stands for the suspension velocity, m/s; λs, flow resistance coefficient; D, inner diameter of the
nozzle, mm; and θ, convergence angle of the convergent section, °.

The Eq. (8) is the differential equation of the motion of concrete mass in horizontal nozzle, which
reflects the change of actual velocity of the concrete with time in the spraying process, that is, with the
increase of time, the actual velocity of the concrete mass will accelerate from pumping speed to stable
speed. The factors which affect the spray velocity of concrete include the convergence angle θ of the
nozzle’s convergent section, the suspension velocity vn of the concrete mass, the airflow velocity va, and
the flow resistance coefficient λs of the concrete mass. Among them, the convergence angle of the
convergent section of the nozzle is crucial to the spray velocity of the concrete mass. The motion of the
concrete flow in the nozzle can be described in this way. The concrete mass is pumped into the nozzle
inlet, and under the action of high-pressure wind, the decelerating acceleration movement is performed.
When the material mass acceleration is zero, the energy exchange between high pressure air and concrete
mass ends. At that moment, the concrete mass gains the highest speed, and the material mass is in
evenness motion.

The material mass can be considered to be an incompressible fluid due to neglecting the compressibility
effects. The governing equations for the flow in the nozzle can be written as follow:

Continuity equation

r � v ¼ 0 (9)

Momentum equation

q
@ui
@s

þ q
@ uiuj
� �

@xi
¼ � @p

@xi
þ @sij

@xj
þ qgi þ Fi (10)

where q is the fluid density, kg
�
m3; ui; uj are the fluid velocity of the unit body at the i and j direction

respectively, m/s; p is the static pressure, Pa; sij is the stress tensor, Pa; qgi are the gravitational body
force, N

�
m3; Fi is a momentum source term, N

�
m3. In the calculation area, no external force is involved,

thus the momentum source term Fi ¼ 0.

3 Modeling and Numerical Simulation of Wet Sprayer Nozzle

3.1 Numerical Simulation and Boundary Condition
After the mesh is generated in ICEM®, the computational fluid dynamics (CFD) software ANSYS

FLUENT® is used for numerical simulation. The whole nozzle is set up as a system of three-dimensional,
incompressible, viscous, and turbulent flow with steady calculation. This research only focuses on the
movement of the working medium, excluding the temperature change of the working medium, the
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hydration reaction of the cement, and the change of the internal energy of the working medium. All the
components of the nozzle are rigid, ignoring the deformation caused by the interaction between the solid
wall forming the flow area and the working medium. The discretization scheme of the governing equation
is first-order upwind scheme. SIMPLE solver is used to solve Pressure-Velocity Coupling. The Pressure
Interpolation uses PRESTO! Scheme [25,26]. The max iteration number is 4000, and the convergence is
assumed with all residues less than 10−5.

The Operating environment is 101325 Pa; density of concrete particles is 2500 kg/m3; concrete dynamic
viscosity is 32 N·s/m2; water-cement ratio is 0.48; thermal conductivity is 1.28W/m°C; specific heat capacity
is 970 J/(kg·K). The RNG k-εmodel is more reliable and accurate than the standard k-εmodel. What’s more,
since the high-pressure air supply process of the concrete pile mass is in the square area of turbulent flow
resistance and the turbulence is a fully developed strong turbulent turbulence with large intensity, the
RNG k-ε model is more suitable. Therefore, this study used the RNG k-ε turbulent model to resolve the
flow equations [27,28].

Concrete inlet conditions is adjustable where the velocity boundary condition can be implemented.
Considering the actual conditions of the wet sprayer, the spray capacity of wet sprayer is 7 m3/h, and
concrete flow direction is perpendicular to the nozzle inlet cross section, i.e., uy = uz = 0, uint_concrete =
ux=7/πD1

2, where D1 refers to the nozzle inlet cross section. The hydraulic diameter is 64 mm. The air
inlet boundary conditions, considering the practical operating conditions, are selected as the pressure inlet
pressure_inlet. The air flow direction is perpendicular to the air inlet section of the nozzle mixing
chamber, i.e., uy = ux = 0, uint_air = ux. The field work wind pressure is 0.5 MPa [29], while the hydraulic
diameter is 6 mm. The nozzle outlet boundary conditions are selected to be free outlet Outflow. The fluid
Reynolds number and turbulence intensity can be solved with Re = uintρd/γ and I = 0.16 (Re)−1/8.

3.2 Geometry Model and Mesh Model of Nozzle Calculation Area
3.2.1 Geometry Model

The nozzle model is composed of a front convergent section, a middle mixing core, an air-induction ring,
and a connecting ring, as shown in Fig. 1. The main parameters are listed in Tab. 1.

3.2.2 Mesh Independence Study
The quality of mesh has great effects on the speed and accuracy of the simulation. The model adopts a

hexahedral core meshing format at the inlet of the concrete and the outlet of the mixed fluid to improve the
accuracy of meshing. Due to the presence of 20 high-pressure air inlets in the intermediate mixing chamber,
the model structure is complex. Therefore, an unstructured grid division format is used to ensure a reasonable
balance between calculation accuracy and computational resources. The computational domain mesh and
mesh quality are presented in Fig. 3.

Table 1: Nozzle structure parameters

Nozzle parameters Nozzle parameters

Concrete inlet diameter D1(mm) 64 Nozzle length L1(mm) 595

Concrete outlet diameter D2 (mm) 45 Convergence angle of convergent section θ(°) 4

Air inlet diameter D3(mm) 6 × 20 Straight pipe of concrete inlet L3(mm) 164

Air inlet declination β(°) 30 Straight pipe of concrete outlet L4(mm) 100
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The mesh independence of the model has been studied. The Max element of size 0.0010 m, 0.0015 m,
0.0020 m, 0.0025 m and 0.0030 m has been selected respectively for meshing, according to the meshing
pattern mentioned above. When the cell size is 0.0030 m, the total of 738665 grid points are used to
mesh the entire geometry. When the cell size is 0.0020, the total number of grid points is 1454508. When
the cell size is 0.0010, the number of that is 2855213. Given that mean velocity of the outlet is an
important comprehensive parameter, the mean velocity is chosen as the evaluation index. As shown in
Fig. 4, when the number of grid points is more than 1.4 million, the rate of change of mean velocity is
less than 0.5%. In this paper, the cell size is 0.0020 m. A total of 1454508 grid points are used to mesh
the entire geometry.

4 The Effect of Convergency Angle on Wet Nozzle Performance

4.1 Numerical Calculation Results
In this study, modelling and numerical calculations were conducted with the convergency angles of

convergent sections of 3°, 4°, 5°, 6°, and 7° respectively. Fig. 5 shows the flow velocity isogram when
the convergency angle of convergent section θ is 4°.

Figure 3: Diagrams of three mesh generation

Figure 4: Mean velocity and grid number
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In the x = −0.595 outlet section, 11 collection points were selected in the Y-axis direction in an isometric
way within the flow field boundary (−0.0225 m–0.0225 m), as shown in Fig. 6.

4.2 Analysis of Resultant Velocity of Outlet Section
Under the condition that the air pressure of the wet sprayer and the pumping pressure of the concrete are

constant, the greater the outlet velocity of the concrete jet is, the less energy consumption of the contact
between the concrete mass and the inner wall surface of the nozzle, and the small the wear of the nozzle
will be. The average speed of the outlet section U (Eq. (11)) is regarded as an assessment index for the
analysis of the outlet section velocity field, in the analysis of the average velocity of outlet section

U ¼ 1

N

XN

i¼1

Ui (11)

where Ui refers to the velocity of collection points in outlet section, m/s; and U is the mean velocity of
collection points in outlet section, m/s.

Tab. 2 presents the mean velocity values of the outlet section collection points with various convergency
angles of different nozzle models.

Import the mean data into Origin9® to fit the data curve, as shown in Fig. 7. It can be seen that when the
convergence angle of the convergent section is less than 3°, it can be considered that the concrete mass is
transported in an approximately equal straight pipe, and the concrete outlet speed does not change much;

Figure 5: Velocity isogram on Y = 0 cross section

Figure 6: Collection points schematic diagram of x = 0.595 cross section
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when the convergence angle of convergent section is greater than 6°, the concrete transport velocity is very
small and the nozzles are easily blocked.

4.3 Analysis of Volume Fraction of Concrete Phase in Outlet Section
The distribution of the volume fraction of the concrete phase at the outlet of the nozzle is an important

factor for judging the mixing effect of the nozzle structure on the mixed fluid. A reasonable distribution of the
volume fraction of the concrete phase reflects the good mixing effect of the mixed fluid. In the past, the
judgment of the mixing effect of the shotcrete flow can only be expressed indirectly based on the
rebound rate of the sprayed wall surface. Through numerical simulation software analysis, the volume
fraction of the concrete phase at the nozzle outlet of the mixed fluid is shown in Fig. 8.

Table 2: Mean velocity of outlet section collection points of different nozzle models

Convergence angle (°)

3 4 5 6 7

Mean velocity (m/s) 40.64 37.70 36.47 35.40 19.66

Figure 7: Mean velocity fitting curve of outlet section of different nozzle models

Figure 8: Volume fraction of the concrete phase in the outlet section x = −0.595 of different nozzle models
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In order to objectively reflect the degree of mixing, both the standard deviation and the mean value are
taken into account.

1. The degree of dispersion represents the ratio of the standard deviation to the measured mean value.
The percentage expression is

R ¼ S

�x
� 100% (12)

where S refers to the Standard deviation; and �x is the arithmetic mean of volume fraction.

2. Evenness represents the degree to which a set of measurements approaches the mean value of the
measurements. The mathematical expression is

H ¼ 1� R (13)

The essence of dispersion and evenness is same, but just two different perspectives.

The analysis of the volume fraction of the concrete phase in the outlet section shows that both high
concentration of concrete and low concentration fluctuation along the center of the nozzle are required in
construction. Thus, suitable statistics to characterize this comprehensive evaluation index is necessary.

Define the comprehensive evaluation index Q as the product of the evenness and the measured
mean values:

Q ¼ �x� H (14)

From Tab. 3, it can be seen that the best sample of the outlet section concrete spray evenness is the model
with the convergence angle of 6° in the convergent section.

5 Experimental Study on Spraying Force Distribution Test of Shotcrete

5.1 Test System
Due to the limitation of test conditions, it is very difficult to directly measure the mixing quality of the

concrete flow in the nozzle. Therefore, this study employed the method of measuring the impact force of the
water jet flow abrasive on the object to indirectly determine the quality of the jet, and set up a shotcrete
impact force distribution test system. Based on the field conditions of wet shotcrete as shown in Fig. 9,
an effective concrete spray force distribution test scheme is proposed by using LabVIEW® to curve the
input and output characteristics of the sensor, and analyzing and processing the test data [30].

Table 3: Concrete phase volume fraction analysis of outlet section

No. Convergence angle (°) Mean values (%) Standard deviation (%) Q value

1 3 3.82 1.08 2.73 × 10−2

2 4 4.10 1.16 2.94 × 10−2

3 5 4.24 1.24 3.00 × 10−2

4 6 4.40 1.34 3.05 × 10−2

5 7 6.48 3.45 3.03 × 10−2
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5.2 Sensor Layout
In order to measure the distribution of shotcrete impact force, a force transducer array system was

designed. According to the characteristics of the central symmetrical structure of the shotcrete impact
diffuse surface, taking into account the reduction of the test cost, 11 pressure transmitter collection points
were arranged along a horizontal axis (−500 mm–500 mm) at a distance of 1000 mm × 1000 mm, as
shown in Fig. 10, and fixed with nuts and the gaps were sealed with caulking glue. Collection points
were evenly represented. The pressure transmitters in the array were numbered according to the distance
from the centre of the bottom plate for the convenience of following test. From left to right, they were
grouped by 0–10 in turn. The positions of 11 collection points in the coordinate system are No. 0
(−500, 0), No. 1 (−400, 0), No. 2 (−300, 0), No. 3 (−200, 0), No. 4 (−100, 0), No. 5 (0,0), No. 6 (100,0),
No. 7 (200,0), No. 8 (300,0) No. 9 (400, 0), and No. 10 (500, 0).

Fig. 11 shows the assembly of the shotcrete test platform.

5.3 Nozzle Models Production and Testing
According to the previous analysis, the nozzle models with convergence angles of 4°, 5°, and 6° were

fabricated as shown in Fig. 12, and field tests were conducted.

Fig. 13 shows the site of field test of shotcrete impact force test system.

Figure 9: Typical shotcrete spray

1000 mm

X

Y

0 1 2 3 4 6 7 8 9 105

Figure 10: Sensor array distribution diagram
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Setting LabVIEW, the sampling frequency is 1000, which means that it is collected 1000 times per
second. Since the output signal of the transmitter is 0–5 V and the range is 0.5 MPa, the output pressure
and voltage conversion formula is shown as Eq. (15).

Pout ¼ Vout

5
� 0:5MPa (15)

Multiple groups of test data have been obtained by replacing the convergent section to obtain. The test
data are shown in Tab. 4.

Figure 11: Assembly of the Shotcrete test platform

Figure 12: Nozzle models

Figure 13: Field test
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The processed mean data was imported into Origin9® for data curve fitting, the results being
showed in Fig. 14.

The distribution rule of the fitting curve is consistent with that of the volume fraction curve of the
concrete phase of the nozzle outlet section shown in Fig. 8.

Based on the above analysis, Q values of nozzle models with different convergence angles in the
convergent section were calculated, as showing in Tab. 5.

By calculating Q value of the comprehensive evaluation index, the nozzle model with convergence
angle of 6° in convergent section and Q value of more than 5° and 4° has the best performed, which is
consistent with the theoretical analysis and numerical calculation results. The nozzle model with the
convergence angle of 6° in convergent section has good shotcrete evenness and the test results is satisfactory.

Table 4: Mean values of test data of convergent section of different nozzle models

Collection point Nozzle models (MPa)

4° 5° 6°

0 0.028224 0.029224 0.030264

1 0.030221 0.031171 0.032261

2 0.030931 0.031531 0.033331

3 0.032158 0.031898 0.035608

4 0.043221 0.044251 0.047961

5 0.051641 0.055231 0.059191

6 0.042998 0.045978 0.047088

7 0.032117 0.033807 0.034387

8 0.030873 0.031863 0.032123

9 0.029206 0.030226 0.030316

10 0.028128 0.029318 0.029398

Figure 14: Mean test data curve of convergent section of different nozzle models
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6 Conclusion

In this study, the combination of numerical calculation and experimental research was employed to study
the effect of the nozzle’s convergence angle on the spraying performance of the concrete. According to the
numerical calculation results, nozzle models were produced, and the shotcrete distribution test system was
established to verify the numerical simulation, which then was applied to engineering practice. The study
shows that when the convergence angle of the convergent section is less than 3°, the convergence angle
has little effect on the shotcrete mass; with the increase of the convergence angle, the shotcrete mass jet
velocity decreases and the nozzle wear increases; when the convergent section convergence angle is
greater than 6°, the concrete outlet jet velocity is very small and the nozzle is easily blocked. The
shotcrete impact force distribution test system was designed and assembled in line with the conditions of
the wet shotcrete construction site, which can correctly collect the impact force of the sprayed surface and
analyze the nozzle spray evenness. The test system provides an effective solution for on-site testing of the
spraying performance of the wet sprayer nozzle. The force distribution test has a good consistence with
the numerical simulation results.
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