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Abstract: In order to improve the convective heat transfer relating to an eddy cur-
rent retarder, the finite element model has been used to assess the performances of
different possible designs. In particular, assuming the steady running state of
retarder as the working condition, flow and temperature fields have been obtained
for the rotor. The influence of airflow path on heat dissipation has been analysed,
and the influence of the temperature field distribution on the performance of
retarder has been discussed accordingly. The results show that when the steady
running state of the turntable is considered, the maximum temperature is lower,
the level of turbulence flow is mitigated, and the temperature distribution becomes
more regular. These factors contribute to improve the heat dissipation ability
of the retarder.
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1 Introduction

The number of people and total quantity of goods transported by automobiles have increased rapidly in
the past several years, leading to inherent safety issues [1,2]. An eddy current retarder is being widely
employed as an auxiliary braking device in vehicles [3,4]. This type of retarder has a rotor disk made of a
ferromagnetic material. The working principle involves converting the kinetic energy of a vehicle into
heat energy in the excitation magnetic field and radiating it to the surrounding air [5,6]. The heat
generated by braking is greater than the heat dissipated, causing a sharp increase in the rotor disk
temperature [7]. When a vehicle is in motion, the stator and rotor are the main components of the retarder
that are associated with heat dissipation [8]. The stator heat is mainly radiated to the periphery, and a
major proportion of this heat is carried away by radiation, the radiating capacity of the retarder is
determined by the volume and surface area of the stator [9]. Once the weight of the retarder is
determined, its radiation and heat dissipation capacity will not change significantly, and the convective
heat transfer due to rotor rotation will have a significant influence on the heat dissipation performance of
the retarder [10].
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2 Theoretical

The objective of this study was to analyse the heat transfer mechanism of a retarder, which transfers heat
between the outer surface of the rotor and the surrounding, mainly through convection. The heat quantity is
calculated using Newton’s law of cooling [11]:

Qconvention ¼ hAðTw � Tf ÞDr (1)

where h is the convective heat transfer coefficient (W/(m2·°C)); Tw and Tf are the external surface temperature
of the turntable and the external swept fluid temperature (°C), respectively.

Eq. (1) fundamentally defines only the heat transfer coefficient, and the essential simplification of the
convection heat transfer process is not proposed. Heat is transferred by two modes: conduction and
convection [12]. The factors influencing these modes, including the origin of flow, state of flow, physical
properties of the fluid, phase change, and geometric parameters of the wall, affect the convective heat
transfer process [13]. The relationship between the influencing factors and the convective heat transfer
coefficient can be expressed mathematically, and the general equation for convective heat transfer without
phase change is as follows [14]:

h ¼ f ðq; cp; g; �; u; lÞ (2)

where ρ, η, and u represent the density, dynamic viscosity, and velocity of the swept air, respectively; λ and cp
are the thermal conductivity and specific heat of the brake drum material, respectively; l is the geometric
characteristic dimension of the outer surface of the brake drum.

The rotor temperature distribution is influenced by the heat conducted due to the convection of the iron
core, stator material, and surrounding air, as well as by factors such as the air gap and rotor speed. Thus, the
heat flux through the stator surface is given by:

qc ¼ hcðTÞðT � TeÞ (3)

where qc, hc, and Te represent the heat flux generated by convection, heat transfer coefficient, and ambient
temperature, respectively.

The heat conduction equation for the rotor under the boundary condition is as follows:

qr ¼ hrðTÞðT 4 � T 4
e Þ (4)

��
@T

@n
¼ erF�ðT 4 � T 4

e Þ (5)

where n, ε, σ, and F* represent the normal vector of the stator boundary, thermal emissivity, Stefan–
Boltzmann coefficient, and thermal radiation angle coefficient, respectively.

Because the eddy current loss serves as the heat source, which is mainly due to the skin effect in the
stator, the heat generation rate Q is used to analyse the temperature field distribution on the stator.

Q ¼ P

V
(6)

where P is the braking power of the retarder, and V is the volume associated with the skin depth.

3 Numerical Analysis

Designing and improving the retarder is costly and time-consuming. Computational fluid dynamics
(CFD) focuses on flow field analysis, whereby we can theoretically obtain the distributions of air flow
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field and air velocity at various positions [15]. The mechanical structure design of a turntable can be made,
and the design efficiency can be improved based on the CFD analysis results [16]. Therefore, in this study,
the two cases of a retarder turntable are analysed using CFD.

3.1 Physical Models and their Design Comparison
The retarder is mounted on the chassis of a vehicle. As the vehicle moves, the turntable of the retarder is

radiated by the air flow due to the rotation; thus, the radiator system of the retarder can be simplified
separately. As shown in Fig. 1, the turntable is divided into inner and outer parts. The inner ring is
connected to the force bearing of the retarder and flange through a connecting plate, and the torque
generated by the retarder is transmitted to the transmission shaft to decelerate the vehicle. The outer ring
section consists of a thick metal disk and radiating spokes. The main function of the thick disk is to
generate eddy currents and braking torque and dissipate heat through the spokes.

As the retarder rotates, the pressure difference generated in the air at adjacent locations leads to air
convection. The air pressure on the windward side increases and that on the leeward side decreases
during the rotation of the radiating spokes and the connecting plate on the turntable, thereby generating
air flow. Because of the limitation of the sheet portion, air flows from the inside to the outside through
the passage between the ribs as the turntable rotates.

To improve the air convection state of the retarder, its structure was modified. As shown in Fig. 2, the
conventional retarder turntable is taken as the reference type, and the modified design is the control type. The
following are the differences in the design of the control-type turntable:

(1) The two turntables have different vane shapes. The reference-type turntable has an involute-shape
vane, and the connecting rib with the inner ring has a tangential form. The control-type turntable has a
circular arc-shaped vane, designed to reduce the air intake resistance and increase the air intake volume
as the turntable rotates.

(2) The two turntables have different edge angles, to change the air flow turbulence condition due to the
angle of the air outlet. The control-type turntable has a higher edge angle.

(3) There are 24 heat sinks in the reference-type turntable while 16 in the control-type turntable.

Figure 1: Turntable model
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3.2 Calculation Method
3.2.1 Control Equations

In this study, air is assumed to be a continuous medium, an incompressible ideal gas. For example,
density, velocity, and pressure are regarded as continuous functions of space. The characteristics of the
model can be described by mass continuous condition, momentum conservation, and energy balance
condition [17,18].

1. Mass balance equation

The mass balance equation is also called continuity equation.

In view of coordinate space, if we take the finite volume τ bounded by S-plane, then we denote S-plane as
the control surface and τ as the control body. Take the external normal direction as the positive direction
of the normal and n as the unit vector of the external normal direction. Considering the change of fluid
mass in the volume, the change is mainly caused by the following two reasons:

(1) There is fluid flowing out or in through S-plane, and the total change of flow out and in per unit time
is as follows:Z
S
qvndS ¼

Z
S
n � qvdS Gauss formula

Z
s
divðqvÞds (7)

(2) Owing to the unsteady density field, the mass of volume τ will change in unit time by

�
Z
s

@q
@t

ds (8)

The two should be equal; thus,Z
s
divðqvÞds¼ �

Z
s

@q
@t

ds (9)

As volume τ is arbitrary and the integrand function is continuous,

@q
@t

þ divðqvÞ ¼ 0 (10)

Figure 2: Structures of retarder turntables
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For incompressible fluid flow, the density ρ is constant. The continuity equations can be simplified as:

divv ¼ 0 (11)

2. Momentum equation

Take any fluid whose volume is τ, and its boundary is S. According to the theorem of momentum,
the change fluid momentum in volume τ is equal to the sum of mass force and surface force (stress)
acting on the volume.

If the surface force per unit area is pn ¼ n � P (P is the stress tensor), and the mass force per unit mass is
F, then the mass force and surface force acting on the volume are respectivelyZ
s
qFds (12)

andZ
S
pndS ¼

Z
S
n � PdS Gauss formula

Z
s
divPds (13)

The change of momentum is

D

Dt

Z
s
qvds¼

Z
s

DðqvÞ
Dt

dsþ
Z
s
qv

D

Dt
ds (14)

From continuity equation, we obtain

vi
@q
@t

þ vidivðqvÞ ¼ vi
@q
@t

þ divðqvÞ
� �

¼ 0 (15)

where vi is the speed in each direction.

The momentum equation is then

@ðqviÞ
@t

þ divðqvivÞ ¼ q
@vi
@t

þ vi � gradvi
� �

(16)

The above equations are the motion equations of viscous fluid expressed by stress, and they are
applicable to any viscous fluid and any motion state.

In general, we make the following assumptions. (1) The stress tensor of the moving fluid should tend to
the stress tensor of the static fluid after the motion stops. (2) The relation between the stress tensor and
deformation rate tensor is a linear homogeneous function. (3) The fluid is isotropic, that is, the fluid
property does not depend on the direction or transformation of the coordinate system. On applying
generalized Newton’s law, the momentum equation of compressible fluid can be obtained as follows:

@ðquÞ
@t

þ divðquvÞ ¼ divðlgraduÞ � @p

@x
þ Su

@ðqvÞ
@t

þ divðqvvÞ ¼ divðlgradvÞ � @p

@y
þ Sv

@ðqwÞ
@t

þ divðqwvÞ ¼ divðlgradwÞ � @p

@z
þ Sw

8>>>>><
>>>>>:

(17)
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where u, v, w are the velocity components in x, y, z directions respectively and p is the pressure.

The generalized source term is defined as

Su ¼ qFx þ sx; Sv ¼ qFy þ sy; Sw ¼ qFz þ sz (18)

When the viscosity of the fluid is constant and incompressible (Newtonian fluid), there are

sx ¼ @

@x
ðl @u

@x
Þ þ @

@y
ðl @v

@x
Þ þ @

@z
ðl @w

@x
Þ ¼ 0 (19)

As the fluid is assumed to be isotropic, there are similar conclusions in the Y and Z directions with the
above x directions.

Then, the motion equation of incompressible flow can be obtained as follows:

@u

@t
þ divðuvÞ ¼ divðtgraduÞ � 1

q
@p

@x
þ Fx

@v

@t
þ divðvvÞ ¼ divðtgradvÞ � 1

q
@p

@y
þ Fy

@w

@t
þ divðwvÞ ¼ divðtgradwÞ � 1

q
@p

@z
þ Fz

8>>>>>><
>>>>>>:

(20)

where t denotes the kinematic viscosity and momentum diffusion coefficient.

3. Energy equation

According to the law of energy conservation, in volume τ, the conversion rate of energy of fluid is equal
to the work done by mass force and surface force in unit time plus the heat given to volume τ in unit time.

The sum of kinetic energy and internal energy of the fluid in volume τ isZ
s
q U þ V 2

2

� �
ds (21)

where U is the internal energy of the fluid per unit volume. The work done by mass force to the fluid in
volume τ ( v is the movement distance in unit time) isZ
s
qF � vds (22)

The work done by the surface force to the fluid in volume τ isZ
S
pn � vdS (23)

The heat transmitted to the volume τ through the surface S in the form of heat conduction in unit time isZ
S
k
@T

@n
dS (24)

The total amount of heat transferred into the volume τ in unit time due to radiation or other reasons
(reaction, evaporation, among others) is
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Z
s
qqds (25)

where q is the heat distribution function of the unit mass.

From Eqs. (21)–(24), the energy conservation equation in integral form can be obtained as follows:

D

Dt

Z
s
q U þ V 2

2

� �
ds ¼

Z
s
qF � vdsþ

Z
S
pn � vdS þ

Z
S
k
@T

@n
dS þ

Z
s
qqds (26)

For compressible fluids, the energy equation is

@ðqTÞ
@t

þ divðqvTÞ ¼ div
k

cp
gradT

� �
þ ST

cp
(27)

For incompressible fluids, the energy equation is

@T

@t
þ divðvTÞ ¼ div

k

qcp
gradT

� �
þ ST
qcp

(28)

where k is thermal conductivity, cp is specific heat capacity, and ST is the source item.

In the above equations, the source term ST consists of two parts: Sh, which is the external volume heat
source; f, which represents the production of internal energy due to viscous stresses.

ST is defined as follows:

ST ¼ Sh þ f (29)

f ¼ l 2
@u

@x

� �2

þ @v

@y

� �2

þ @w

@z

� �2
" #

þ @v

@x
þ @u

@y

� �2

þ @w

@y
þ @v

@z

� �2

þ @u

@z
þ @w

@x

� �2
( )

(30)

where, μ is the viscosity.

For incompressible flows, the order of magnitude of f is negligible with respect to the other terms and
for that reason it can be ignored [19]. In addition, there is no external volume heat source in the simulation, so
Sh ¼ 0. Therefore, the source term is disregarded in our simulation.

3.2.2 Calculation Model of Retarder Turntable
The main numerical simulation methods for turbulence include direct simulation, large eddy simulation,

and Reynolds time-averaged equation simulation. A direct simulation requires considerable memory
and computing speed, and large eddy simulation is time-consuming. Therefore, the Reynolds time-
averaged equation with the standard k-ε two-equation model is used in this study owing to its high
calculation efficiency.

The objective of this study was to simulate the influence of two types of turntables on the air velocity.
Because the air flowing is ambient air, the fluid is assumed to be an ideal gas. This is done to simulate the
state of air flow in the turntable with the maximum accuracy possible.

For incompressible turbulent flows, the Reynolds averaged Navier-Stokes equations can be written in
conservative form as follows [20]:
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@v

@t
þ v � gradv ¼ �gradpþ divððtþ tTÞ½gradvþgradvT �Þ

divv ¼ 0
(31)

where the kinematic viscosity t depends only on the physical properties of the fluid, while tT is the turbulent
eddy viscosity which is supposed to emulate the effect of unresolved velocity fluctuations v′.

The standard k–ε model is based on the assumption that tT ¼ Cl
k2

e
, where k is the turbulent kinetic

energy and ε is the dissipation rate. Hence, the PDE system is to be complemented by two additional
convection-diffusion-reaction equations for computation of k and ε

@k

@t
þ div kv� tT

rk
gradk

� �
¼ Pk � e (32)

@e
@t

þ div ev� tT
re

grade

� �
¼ e

k
ðC1Pk � C2eÞ (33)

where, Pk ¼ tT
2

gradvþgradvT
�� ��2and ε are responsible for production and dissipation of turbulent kinetic

energy, respectively.

In the calculation, the related parameters are shown in Tab. 1.

3.2.3 Numerical Method
In this study, assuming that the gas flow is incompressible, the SIMPLE method (semi-implicit method

for pressure linked equations) is used to solve the Navier–Stokes equation, proposed by Patankar et al. [21].
The steps of the algorithm are as follows:

(1) Assume a velocity initial condition for calculating the coefficients and constants in the momentum
discrete equation of the first iteration.

(2) Assume a pressure field.
(3) Calculate the coefficients and constants in the momentum discrete equation.

(4) Solve the momentum discrete equation.

(5) Solve the pressure correction equation according to the speed.

(6) Correct the pressure and speed.

(7) Solve all other discrete transport equations.

(8) Repeat the iteration until the model converges.

Specifically, the numerical scheme is as Tab. 2:

Table 1: Values of constants in the calculation model

Near-wall treatment Standard wall functions

Cl 0.09

cE1 1.44

cE2 1.92

rk 1.0

rE 1.3
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3.3 Finite Element Model
A finite element model is established based on the actual operating conditions of the retarder (Fig. 3).

The structural model of the turntable includes two parts: a thick plate as the heat source and a heat sink. The
fluid model is set up based on the structural model.

The finite element model consists of two parts: a solid model and a fluid model. The solid model has a
rotation domain and a far-field domain; the rotation domain is a disk-shaped region of radius 0.315 m in the
vicinity of the turntable, and the far-field domain is a region of radius 1.5 m and 0.5 m in the axial direction.

The fluid model is divided into three parts: input, output, and middle parts. The middle part is where the
air flows in the rotor disk, which will be investigated in this study. The fluid model is divided into three parts
because the internal structure of the turntable is relatively complex, and the mesh quality is not ideal when the
expansion method is used for mesh generation. Thus, we separate the middle layer and provide a more
intensive mesh (Fig. 4).

To consider the calculation accuracy and efficiency, we performed a sensitivity analysis of the grids in
the middle layer (Tab. 3). When the number of nodes reaches 871025 (No. 2), the settlement result of the
outlet velocity will not change significantly. To improve the computational efficiency, the second group of
grids is selected as the computational grid.

Tab. 4 lists the specific numbers of nodes and grids.

Table 2: Numerical schemes for the SIMPLE method

Item Method

Gradient Green–Gauss Cell based

Pressure Second Order

Momentum Second–Order Upwind

Turbulent Kinetic Energy Second–Order Upwind

Turbulent Dissipation Rate Second–Order Upwind

Figure 3: Finite element model of a solid model. (a) Heat source and (b) Radiating disk
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3.4 Boundary Conditions
(1) Turbulent state

Because turbulence is formed by a transition at some distance behind the entrance, the turbulence
conditions are set at the boundary. The internal flow problem was overcome by appropriately setting the
turbulence intensity at the inlet, which depends on the upstream flow state. In this study, the effect of
the turntable structure on the airflow is investigated under ideal conditions. Therefore, it is assumed that
the upstream flow is undisturbed, and the turbulence intensity at the inlet is thus relatively low at 1%.

(2) Heat generation rate

The braking torque of the eddy current retarder for stable braking is approximately 400 N·m. The
braking power can be calculated using the torque power equation:

P ¼ T � n=9:55 ¼ 33507:9W (34)

where P, T, and n denote the braking power, braking torque, and rotational speed, respectively.

(a) Global flow grid
(b) Local enlarged drawing
of grids near the inlet part

Outlet part
Middle part

Inlet part

Figure 4: Finite element model of a fluid model. (a) Global flow grid and (b) Local enlarged drawing of
grids near the inlet part

Table 3: Mesh sensitivity analysis

Serial number Nodes Relative change in
outlet flow velocity (%)

1 156378 –

2 378953 0.4

3 489663 0.1

4 871025 0.05

5 1532711 0.05

Table 4: Data related to grids

Part Nodes Elements

Inlet part 3635 2380

Middle part 871,025 4,718,678

Outlet part 108,888 88,670
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According to the law of conservation of energy, the braking power of the retarder in the braking process
of the vehicle is equal to the power generated by the heating part of the thick disk. Therefore, it can be
calculated as follows:

Heat generation rate of turntable = braking power/thick disc volume = 11.6 × 106 W/m3.

Tab. 5 lists the boundary conditions.

3.5 Overall Condition of Temperature and Flow Field Distribution
3.5.1 Reference-Type Turntable

As shown in Fig. 5a, when the reference-type turntable operates stably, the maximum temperature is
1021°C, and the maximum temperature on the flange surface is 345°C. Because the adiabatic wall
boundary set in the numerical calculation ignores the radiant heat flow in the actual operation, the
calculated maximum temperature is slightly higher than the actual maximum temperature. Fig. 5b shows
the distribution conditions of the 3D air flow field during the operation of the existing turntable. The
maximum velocity of air is approximately 25.76 m/s, and many turbulence phenomena exist on the inner
side and outer edge of the turntable.

Table 5: Boundary conditions

Heat generation rate of turntable 11.6 × 106 W/m3

Import and export boundaries Opening boundary condition

Wall boundary Adiabatic conditions

Internal interface GGI connection mode

Materials Fluid part Ideal gas (compressible)

Solid part Steel surface emissivity: 0.8, diffusion fraction: 1.0

Figure 5: Numerical analysis results of reference turntable. (a) Temperature field and (b) Flow field
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3.5.2 Control-Type Turntable
As shown in Fig. 6a, the maximum temperature for a stable operation of the control-type turntable is 917°

C, and the maximum temperature on the flange surface is 322°C. The maximum temperature of the reference-
type turntable is higher than that of the control-type turntable by 104°C, and the maximum temperature of the
flange surface is higher than that of the control-type turntable by 23°C. Fig. 6b shows the 3D flow field of air
during the operation of the turntable. As shown, the maximum flow velocity of air is approximately 41.13 m/s,
the streamline graph is relatively uniform, and no excess turbulence is observed.

3.5.3 Comparison of Analysis Results
The 3D flow fields of air during the working of the turntable before and after the design improvement are

compared. The comparison results show that the overall flow velocity of the reference-type turntable is lower
than that of the control-type turntable, with the former exhibiting more turbulence on the inner side and outer
edge of the turntable than on the control-type turntable. The overall velocity of the flow field of the control-
type turntable is higher than that of the reference-type turntable, and the streamline diagram is more uniform
without high turbulence. From the perspective of heat transfer, the performance of turbulent flow is higher
than that of laminar flow. However, the turbulent heat transfer is concentrated between the inner walls of the
rotor, i.e., the high heat transfer performance is prominent only inside the retarder. The high-efficiency heat
transfer owing to laminar flow carries the heat generated by the turntable away from the retarder and
improves the overall heat dissipation performance. The results of temperature field analysis before and
after the improvement of the turntable show that the maximum temperature of the reference-type
turntable is higher than that of the control-type turntable by 104°C, and the maximum temperature of the
flange surface of the reference-type turntable is lower than that of the flange surface of the control-type
turntable by 23°C.

4 Validation Experiments

To verify the cooling effect of the reference-type and control-type turntables, we designed a wind speed
test platform to experimentally test the eddy current turntable.

Figure 6: Numerical analysis results of control-type turntable. (a) Temperature field and (b) Flow field
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4.1 Test Method
1. Install the control-type rotor sub-assembly (stator is not installed) on the test bench in the working

condition, start the test bench and set the rotational speed to 1045 rpm, and record the wind speed near
the highest point. Fig. 7 shows the settings of the wind speed tester; its position remains the same in all tests.

The motor is a variable-frequency adjustable-speed three-phase induction motor (Changsha Motor
Factory Co., Ltd.). Tab. 6 lists the main parameters of the motor.

Tab. 7 lists the main parameters of the wind speed sensor (Shenzhen Jetronl Instruments Co., Ltd.).

Figure 7: Settings of air speed tester for control-type retarder

Table 6: Parameters of motor

Rated frequency 50 Hz

Nominal power 500 kW

Rated voltage 380 V

Protection grade IP44

Cooling method IC81W6

Installation type IMB3

Table 7: Parameters of wind speed sensor

Measuring range 0.4–60 m/s

Temperature in the operating environment 0–60°C

Operating humidity <80% RH

Host size 177 mm × 64 mm × 32 mm

Probe diameter 72 mm

Probe length 220 mm
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2. Adjust the rotation speed to 2000 rpm, measure the torque, power, and wind speed following Step 1,
and record the same.

3. After testing the control-type turntable, remove it and install the reference-type rotor assembly, because
the structure of the reference-type turntable is different from that of the control-type turntable, to ensure that the
distance between the two types of turntables and the wind speed tester is the same (Figs. 8 and 9).

4. After testing the reference-type turntable, remove and start the test bench, idle at 1000 and 2000 rpm,
and record the initial torque.

5. Repeat Steps 1–4 five times and shut down after cooling.

4.2 Experimental Data
Based on the experimental results obtained under the actual working condition at 1045 rpm (Tab. 8 and

Fig. 10), the average air velocity is increased from 22.88 to 38.8 km/h. The air velocity of the control-type
turntable is nearly twice that of the reference-type turntable. Additionally, the results of each test show that
the wind speed is stable under the specified conditions.

As shown in Tab. 9 and Fig. 11, when the rotational speed is increased to 2095 rpm, the air velocity is
doubled, and the test results are stable.

Keep the air velocity 
indicator (anemograph) 
leveling, and rotate it to 
obtain and record the 
maximum air velocity. 

Figure 8: Settings of air speed tester for the reference-type retarder

Supported location 
for the anemograph 

Figure 9: Supported position of air speed tester in the control-type retarder’s radiator system
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Table 8: Measured value of air velocity at a rotational speed of 1045 rpm

Test No. Air Velocity (km/h)

Reference type Control type

1 23.0 40.0

2 22.9 39.7

3 23.1 38.1

4 22.5 38.5

5 22.9 37.7

Average 22.88 38.8

Figure 10: Comparison of tested air velocity at a rotational speed of 1045 rpm

Table 9: Measured value of air velocity at a rotational speed of 2095 rpm

Test No. Air Velocity (km/h)

Reference type Control type

1 47.1 83.5

2 47.9 82.5

3 47.3 83.4

4 47.2 83.7

5 47.2 84.3

Average 47.34 83.48

Figure 11: Comparison of tested air velocity at a rotational speed of 2095 rpm
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4.3 Data Evaluation
The data obtained from the test indicate that the air velocity of the control-type turntable is higher than

that of the reference-type turntable. Further, at rotational speeds of 1045 and 2095 rpm, the air velocity of the
control-type turntable is respectively 1.69 and 1.76 times that of the reference-type turntable. The control-
type turntable significantly improves the convective heat transfer capacity of the retarder, thus validating
the above numerical analysis.

The objective of the numerical simulation is to provide a reference for the mechanical design of the
rotary table. Some differences do exist between the experimental and numerical simulation results. The
numerical simulation was conducted to understand the influence of the mechanical model on the flow
field. This simulation process under an ideal situation considers only the ambient temperature of the ideal
gas and the speed and pressure of the airflow at the inlet and outlet. However, many unavoidable
interference factors are involved in the experiment due to material inhomogeneity, such as environmental
vibration, temperature gradient, acceleration and deceleration, and rotational vibration. The experimental
results show that the difference between the wind speed simulation results (25.76 m/s) and the
experimental results (22.88 m/s) for the reference-type turntable is approximately 11%, whereas the
difference between the wind speed simulation results (41.13 m/s) and the experimental results (47.34 m/s)
for the control-type turntable is approximately 15%. This difference is considered acceptable.

5 Conclusion

In this study, numerical and experimental analyses were conducted on a reference-type turntable and a
control-type turntable of an eddy current retarder. The following results were obtained:

(1) The structure of the retarder turntable has a significant influence on the convective heat transfer of
the retarder. Compared with an involute-type blade, an arc-type blade has a better air flow guiding
effect, and the air flow field changes from turbulent flow to laminar flow. The results of numerical
analysis showed that the maximum temperature of the control-type turntable is lower than that of the
reference-type turntable. Furthermore, there is no local high temperature, and the temperature field is
more uniform along the circumferential direction.

(2) The air velocity of the turntable was measured by experimental analysis. The results showed that the
speed of the control-type turntable is 1.69 and 1.76 times that of the reference-type turntable at 1045
and 2095 rpm, respectively, demonstrating that this turntable can significantly improve the
convective heat transfer capacity of the retarder.
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