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Abstract: The influence of the axial mount position of the guide vane on the pres-
sure fluctuation in a nuclear pump (AP1000) is investigated. The characteristics of
the three-dimensional flow inside the nuclear pump are analyzed by means of
numerical simulation. Results indicate that when the axial relative distance
between the guide vane and the pumping chamber is reduced, in conditions of
“small flow,” the efficiency of the pump increases, the pressure inside the pump-
ing chamber decreases, while the losses related to the guide vane grow. Under
large flow conditions, as the efficiency of the pump decreases, the losses for
the guide vane and the pumping chamber increase. The pressure fluctuation in
the annular pumping chamber is basically determined by the rotation frequency
and the blade passing frequency. The magnitude of these fluctuations is affected
by the guide vane axial position. In particular, the smallest possible amplitude is
obtained when the outlet central plane of the guide vane coincides with the outlet
axis of the pumping chamber.
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1 Introduction

As the nuclear reactor coolant main circulation pump in the nuclear power plant, nuclear main pump is
the first-class equipment on nuclear safety. Its stable operation is of great significance to the safety production
of nuclear power plant. The working performance and safety of the nuclear main pump have received
widespread attention. At present, vibration and noise caused by pressure fluctuation are common
problems in the operation process of the nuclear main pump [1–3]. Many factors can induce the pressure
fluctuation, and the interaction between the rotor-stator components is an important cause of the pressure
fluctuation. Many scholars at home and abroad have studied this. Zhang et al. [4,5] examined the
vibration frequency caused by rotor-stator interaction between the impeller and the volute of the pump,
and obtained that the blade passing frequency and its multiple play a leading role in the vibration induced
by pressure fluctuation. Cheng et al. [6] studied the effect of different rotor cantilever ratios on the
hydraulic vibration of the nuclear main pump through the one-way fluid-solid coupling method. They
found that the natural frequency of the rotor system can be effectively reduced by fluid-solid coupling.
Zhu et al. [7] pointed out that blade passing frequency is the main factor causing the rotor-stator
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interaction between the guide vane and the impeller in the nuclear main pump, serious pressure fluctuation
generally occurred at the inlet and outlet of the guide vane. Li et al. [8] studied the interference of the impeller
and guide vane on the flow field, the results show that the number of impeller blades affects the pressure
fluctuation period and the interference of the impeller trailing edge on the flow field inside the guide vane
is the main factor causing the pressure fluctuation in the guide vane. Wang et al. [9] also confirmed that
the number of blade and guide vane affects the fluctuation cycle. Su et al. [10] analyzed the variation of
the pressure fluctuation and radial force of the nuclear main pump during startup, and found that the
pump which deviates from the design condition will cause the pressure fluctuation of the guide vane
channel to increase and produce stronger radial vibration. Cheng et al. [11,12] found that the
circumferential position of the guide vane has a significant influence on the pressure fluctuation in
the pump through the full three-dimensional numerical calculation. They also analyzed the influence of
the matching position between annular shell and guide vane on the distribution of pressure in the nuclear
main pump and found that altering the guide vane position advisably can decrease the peak pressure
fluctuation in the outlet of impeller. As a key part connecting the impeller and the pumping chamber,
guide vane directly impacts internal flow of the flow passage component, which in turn affects the
performance of the pump [13–15]. Cheng et al. [16] found that the wrap angle of the space guide vane
has a significant effect on the flow field of the submersible well pump. Properly increasing the wrap
angle can improve the characteristics of the airflow, reduce the turbulence loss and increase the energy
conversion rate inside the guide vane.

In addition, the relative position between the flow passage components will also affect the flow
characteristics of the fluid which is passing through it, causing pressure fluctuation. Dai et al. [17]
conducted research and found that under different tip clearances, the pressure fluctuations in the flow
field showed significant periodic changes. The pressure gradient of the engine pump will also change
periodically as the impeller rotates. But there is currently little research in the influence of the relative
position of the million-kilowatt-class nuclear main pump flow passage components on its hydraulic
performance. In this paper, three different guide vane axial mount position are designed for this point.
Adopting the RNG k–ε turbulence model to perform numeral calculation of unsteady flow and analyzing
the influence of the axial relative position of the guide vane and the pumping chamber on the pressure
fluctuation of the nuclear main pump pumping chamber. A reference scheme for optimization design of
the nuclear main pump guide vane is provided.

2 Geometric Model and Scheme Design

2.1 Geometric Model and Grid Arrangement
In the present study, an AP1000 nuclear main pump was selected as the research object, the structure

diagram is shown in Fig. 1. According to the similarity theory, the geometric parameters of the prototype
pump are reduced to the parameters of the model pump for numerical calculation, proportional
coefficient λ was defined as 0.4 by geometric similarity. The main designing parameters of model pump
are: head H = 17.8 m, flow Q = 1145 m3 / h, speed n = 1750 rpm. Working media is water temperature.
Fig. 2a is a structure diagram of model pump flow passage components. Fig. 2b is a scaled model of
pump fluid calculation domain profile. The entire water includes suction chamber, impeller, guide vane,
pump shell, and inlet and outlet extension section.

Due to the complex structure of nuclear main pump, unstructured tetrahedral grid with strong inclusiveness
to complicated boundaries will be used to divide the entire fluid region. And locally encrypt the impeller and
guide vane to adjust the quality of the grid unit. The average expected y+ value of the impeller and guide vane
blades is 31, which meets the requirements for solving the wall functions. Through the check of grid
independence as shown in Tab. 1, the total number of grid points is 6.25 × 106, the number of passage parts
as shown in Tab. 2. The calculation domain and the local grid is shown in Fig. 3.
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Figure 1: Structure diagram of nuclear main pump
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Figure 2: Three-dimensional structure and fluid domain schematic diagram of nuclear main pump. a.
Nuclear main pump structure, b. Fluid calculation domain

Table 1: Grid-independent verification

Total number of grid points (×104) 255 399 537 625 721 864

Total head H (m) 22.7 22.5 22.3 22.0 22.0 22.0

Efficiency (%) 85.7 85.6 85.3 85.1 85.1 85.1
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2.2 Scheme Design
In this paper, based on the comprehensive consideration of the safety and structural permission of the

pump, three axial mount positions of the guide vane are set, as shown in Fig. 4. For convenience of
description, the distance between the guide vane and the pump outlet pipe axis in the direction of the
impeller rotation axis which is simply referred to as the axial relative distance of the guide vane and the
pumping chamber Δx. Different schemes correspond to different axial relative distance between guide
vane and pumping chamber, as shown in Tab. 3.

Table 2: Grid points number of hydraulic components

Hydraulic components Inlet section Impeller Guide vane Annular casing Outlet section Total

Grid points number (×103) 810 1900 1510 1600 430 6250

Impeller

Guide vaneGuuide vane

Figure 3: Grid generation schematic diagram of nuclear main pump model
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Figure 4: Schematic diagram of guide vane in different mount positions
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To study the effect of the axial mount position of the guide vane on the pressure fluctuation in the
pumping chamber, nine monitoring points were set on the mid-hight plane B-B of the outlet pipe of the
pumping chamber. In the direction of fluid flow, four monitoring points P1, P2, P3a and P4 are set in the
circumferential direction of the pumping chamber. Three monitoring points P3a, P3b and P3c are set
radially. Three monitoring points, P5, P6 and P7 are set up at the tongue and outlet. The concrete position
is shown in Fig. 5. The speed of the nuclear main pump impeller for this study is n = 1485 r/min, the
number of blades is 5, so the rotation frequency is fn = n/60 = 24.75 Hz, the blade passing frequency is
fr = 5fn = 123.75 Hz.

3 Numerical Method and Setting

3.1 Numerical Method and Boundary Conditions
Inside the nuclear main pump is a complex three-dimensional incompressible viscous turbulent flow.

When performing numerical calculations on the nuclear main pump, ignoring the effect of medium
temperature changes, the control equation of its three-dimensional flow field are:

(1) Continuity equation:

@u

@x
þ @v

@y
þ @w

@z
¼ 0 (1)

where, u, v, w are the components of the velocity vector in the three-dimensional coordinates x, y, z
respectively.

(2) N-S equation of incompressible viscous fluid:

@

@xi
ðuiujÞ ¼ fi � 1

q
@p

@xi
þ l

@2ui
@xixj

(2)

where, P is the pressure on the fluid micro-body, fi is the component of the mass force in the i direction.

Table 3: Design scheme information

Scheme Scheme A Scheme B Scheme C

Δx/mm 89 44.5 0

P1

P5 P6

P2

P3a

P4

P7

B-B

P3cP3b

Figure 5: Pumping chamber monitoring point distribution map
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The RNG k–ε turbulence model has been adopted as the computational procedure, which considers the
flow separation inside the pump and has high accuracy in handling high strain rates and streamline flow. The
pressure and momentum equations were coupled using the SIMPLEC algorithm with a high-resolution
scheme. The finite volume method was used to discretize the governing equations, using a second-order
scheme used for the advection term. In the RNG k–ε model, the transport equations for turbulent kinetic
energy and dissipation rate are as follows [18]:

@ qkð Þ
@t

þ @ qkuið Þ
@xi

¼ @

@xi
akleff

@k

@xj

� �
þ Gk þ qE (3)

@ qEð Þ
@t

þ @ qEuið Þ
@xi

¼ @

@xi
aEleff

@E
@xj

� �
þ C1E

k
Gk � C2Eq

E2

k
(4)

leff ¼ lþ lt (5)

lt ¼ qCm
k2

E
(6)

where, Cμ, αk and αε are empirical coefficients, ε is turbulent dissipation rate, C1ε and C2ε are empirical
constants, taking 1.42, 1.68 respectively.

The inlet boundary condition is set to the velocity inlet, and the velocity was determined through the
uniform normal flow running into the pump at suction section. The outlet was set to outflow and the
stationary walls were set as no slip walls. The multi-reference coordinate system is used to calculate the
steady uncompressible flow field. The impeller was set to a rotation domain with a rotation speed of n =
1750 r/min, the rest of the components are set to the static domain. Regarding the treatment of near wall
problems, choose the standard wall functions unique to the RNG k-ε turbulence model. By observing that
the outlet pressure tends to be stable or the convergence residual value is less than 10−5, it is determined
that the solution has converged [19]. Taking the steady calculation results as the initial conditions, and
using unsteady calculations to analyse the pressure fluctuation, setting the time step to 2.857 × 10−4 s and
calculating a total of 6 cycles. Taking the data of the last cycle for processing and analysis.

The pressure change law of the nuclear main pump can be directly reflected by the pressure fluctuation
coefficient CP, and CP is defined as:

CP ¼ P � P
1

2
qu22

(7)

u2 ¼ pDn
60

(8)

For which P represent the instantaneous pressure of the monitoring points, �P represent the time-average
pressure at one rotating revolution of the impeller, r represent the working media density, and u2 is the
circular velocity of the middle flow line at the impeller outlet.

The pressure fluctuation amplitude is defined as:

CA ¼ Cpmax � Cpmin (9)

In order to comprehensively, accurately and quantitatively analyse the characteristics of pressure
fluctuation, based on the pressure fluctuation coefficient CP, the pressure fluctuation intensity ICp is
defined for analysis. The expression is as follows:
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ICP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
n¼0

CP
2

vuut ;N ¼ 120 (10)

3.2 Numerical Accuracy Validation
Fig. 6 is experimental setup sketch of nuclear main pump model. The experimental setup is a

closed class B precision test bench, and equipped with electromagnetic flowmeter with an accuracy of
±1.0%, inlet and outlet pressure sensor with an accuracy of ±0.1%. It also equipped with torque-speed
transducer and instrument between pump and motor (the measurement accuracy is ±0.3%), pump flow,
inlet and outlet pressure, speed and power can be read directly. The pump head and efficiency are
calculated by measuring the inlet and outlet pressures, flow rates and torque of the pump. The head
formula of the pump is:

H ¼ p2
qg

� p1
qg

� �
þ v22

2g
� v21
2g

� �
þ Z2 � Z1ð Þ (11)

where H is head, m; Z is position head, m; P is pressure, Pa; v is velocity, m/s; ρ is fluid density, kg/m3,
subscript 1 indicates pump inlet, subscript 2 indicates pump outlet (the reference plane is selected on the
horizontal plane where the centerline of the pump shaft is located).

The pump efficiency calculation formula is:

g ¼ qgQH
1000P

� 100% (12)

where Q is flow rate, m3/s; H is head, m; P is input power, kW; ρ is fluid density, kg/m3.

The numerical simulation results of the model pump are compared with the experimental results and the
comparison results are shown in Fig. 7. As can be seen in Fig. 6, the numerical calculation results of the head
and efficiency are higher than the experimental results under different working conditions. The numerical
results are in good agreement with the experimental results under design condition, the error of head is
not more than 2.95%, the error of efficiency is not more than 2.4%. The calculation error of head and
efficiency increased under the condition of small flow and large flow, but the head and efficiency
variation trend of experimental are consistent with the numerical results invariably. These show that the
numerical calculation method adopted in this study has certain applicability and accuracy.

Figure 6: Sketch of experimental setup
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4 Results and Discussions

4.1 Effect of Guide Vane Axial Mount Position on the Flow inside the Pumping Chamber
The unstable flow in the pumping chamber is an important factor causing pressure fluctuation. In order

to analyse the influence of the axial placement of the guide vane on the flow state inside the pumping
chamber, an axial section A-A was established through the axis of the pump outlet pipe, as shown in
Fig. 4. Fig. 8 is a streamline diagram of the A-A section when the nuclear main pump is placed at
different axial positions of the guide vanes under the three operating conditions of 0.8 Qd, 1.0 Qd and
1.2 Qd. It can be seen from the figure that the flow is complicated and the recirculation phenomenon is
serious on A-A surface. This is mainly because the annular pumping chamber used in the nuclear main
pump cannot ensure that the liquid flow in the pumping chamber conforms to the principle that the
velocity moment is constant, which leads to the deterioration of the flow state in the pumping chamber.
When the liquid flows from the guide vane outlet into the pumping chamber, a part of the fluid directly
flows out from the pumping chamber outlet pipe in the upper area, and another part of the fluid flows
from the upper side to the lower side in an annular flow around the pumping chamber channel, and
finally flows out from outlet pipe of the pumping chamber. Therefore, the velocity in the upper area of
the pumping chamber is significantly higher than the velocity in the lower side, and an obvious low-
speed recirculation zone is formed in the lower area to increase the degree of recirculation.

Comparing the streamline diagrams under the three schemes under different working conditions, it can
be found that as the axial distance between the guide vane and the pumping chamber decreases, the flow
patterns on both sides of the guide vane gradually become uniform. At 0.8 Qd, the flow in the pumping
chamber is turbulent, the small vortex on the lower left side of the guide vane of Scheme A develops
around, and the flow state at the upper left side of the guide vane near the outlet pipe of the pumping
chamber is unstable, the magnitude and direction of the speed change obviously, forming a low-speed
zone. Scheme B also has a low velocity zone near the outlet pipe of the pumping chamber. Unlike the
first two schemes, the flow state of Scheme C is relatively stable, the velocity distribution near the outlet
pipe of the pumping chamber is uniform, and the velocity gradient is relatively small. No obvious low-
velocity regions similar to those described in Scheme A and Scheme B appear. In the 1.2 Qd working
condition, the low velocity zone is initially formed near the outlet pipe of the pumping chamber in
Scheme A, and the flow pattern in other areas is improved compared with the designed working
condition. Scheme B and scheme C have better flow pattern. From this, the flow pattern near the outlet
pipe of the pumping chamber is relatively poor, prone to stronger pressure fluctuation.Reducing the axial
relative distance between the guide vane and the pumping chamber can improve the flow state in the
pumping chamber, and plays a good role in suppressing the recirculation in the pumping chamber,
especially in the case of small flow conditions, the suppression effect on the recirculation is most obvious.
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Figure 7: Characteristic curves of model pump
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Figure 8: Streamline diagram of three schemes at A-A section a. Scheme A = 0.8 Qd; b. Scheme B = 1.0 Qd;
c. Scheme C = 1.2 Qd
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4.2 Influence of Axial Mount Position of Guide Vane on Circumferential Pressure Fluctuation
Fig. 9 is a pressure fluctuation frequency domain diagram of the circumferential monitoring points in the

annular pumping chamber at three different schemes. The figure reveals the dominant frequency of pressure
fluctuation in three circumferential monitoring points appears at fr or 14fr, at point P1, the dominant
frequency of the three schemes are exactly twice the blade passing frequency. This demonstrates that the
pressure fluctuation in the pumping chamber is mainly determined by the rotation frequency and the
blade passing frequency. It can be seen from the amplitude analysis of the dominant frequency in three
monitoring points P1, P2, P3a and P4, the pressure fluctuation of scheme A is the strongest and the
amplitude of the dominant frequency is the largest in the four monitoring points at the circumferential
direction. Except point P4, the dominant frequency amplitude of the scheme B is second, and the
dominant frequency amplitude of the scheme C is the smallest. At point P4, the pressure fluctuation
amplitude of the three schemes changes the most, while at other monitoring points, the amplitude
fluctuation of the three schemes are relatively small. The main reason is that the axial relative distance
between the guide vane and the pumping chamber directly determines the inflow position of the pumping
chamber, and the inflow position of the pumping chamber directly affects the flow state at the junction of
the pumping chamber and the outlet, the monitoring point P4 is located just at this junction, so it is
greatly affected by the axial mount position of the guide vane. The other monitoring points which are
located in the annular flow channel far from the junction of the pumping chamber and the outlet, the flow
is relatively stable. Therefore, the pressure fluctuation is less affected by the axial mount position of the
guide vane, and the amplitude of the dominant frequency changes little. From the above analysis, we can
see that reducing axial relative distance Δx can reduce the pressure fluctuation amplitude of the
circumferential monitoring point and effectively improve the flow state in the pumping chamber.
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Figure 9: Circumferential pressure fluctuation frequency domain in the pumping chamber
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In order to further analyse the pressure fluctuation characteristics, the pressure fluctuation amplitude and
pressure fluctuation strength of the three schemes in the last rotation period are calculated, as shown in
Fig. 10. It can be seen from the figure that the pressure fluctuation amplitude and the fluctuation intensity
of the three schemes are consistent at the circumferential monitoring point, only the magnitude of the
change is different. The variation of circumferential fluctuation amplitude and fluctuation strength of
Scheme B and Scheme C is relatively flat, while the variation of Scheme A is relatively large, and the
pulsation amplitude and pulsation intensity of Scheme A at point P4a are greatly increased. Except
the point P3a, the pressure fluctuation amplitude and fluctuation intensity of the Scheme A are the largest,
the Scheme B is the second, and the Scheme C is the smallest. Compared with the Scheme A, the pressure
fluctuation amplitude at the four monitoring points of the Scheme C decreased respectively by 36.6%,
43.8%, 37.6% and 42.7%, and the pulsation intensity decreased by 29.1%, 39.1%, 27.4% and 42.2%,
respectively. In summary, the pressure fluctuation at circumferential monitoring point of the Scheme A is
the largest, and the pressure fluctuation is obviously weakened compared with the Scheme A, which
indicates that the guide vane axial mount position affects the circumferential pressure fluctuation,
particularly, the point P4 at the junction of the pumping chamber and the outlet has the greatest influence.
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Figure 10: Circumferential pressure fluctuation amplitude and pressure fluctuation strength, (a) Pressure
fluctuation amplitude, (b) Pressure pulsation intensity
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4.3 Influence of Axial Mount Position of Guide Vane on Pressure Fluctuation at Tongue and Outlet
Fig. 11 displays the pressure fluctuation frequency domain at monitoring points P5, P6 and P7. It can be

seen from the figure, similar to other monitoring points in the pumping chamber, the dominant frequency of
pressure fluctuation in the three schemes P5, P6 and P7 are mainly determined by the rotation frequency and
the blade passing frequency. Comparing and analysing amplitude of dominant frequency in the three
schemes, we can see the axial mount position of guide vane affects the amplitude of the dominant
frequency of points P5, P6 and P7, with the axial relative distance Δx decreases, the difference in the
flow area on both sides of guide vane decreases, so that the flow patterns on both sides of guide vane
gradually become uniform. Points P5 and P7 reveal that the amplitude in the dominant frequency of the
pressure fluctuation also gradually decreases. The amplitude of the point P6 dominant frequency and the
monitoring points P5 and P7 show the opposite law, that is, as the axial relative distance Δx decreases,
the amplitude of dominant frequency of the pressure fluctuation gradually decreases. This is mainly
because the point P6 is located near the splitting position of the annular pumping chamber, and the flow
is extremely unstable and susceptible to other factors, which is due to the double action of the impact and
reflux at the tongue. With the axial relative distance between the guide vane and the pumping chamber
decreases, the distance between the point P6 and the guide vane outlet becomes smaller and smaller, and
the corresponding impact of the point P6 is more obvious, and the pressure fluctuation amplitude
increases. It can be seen from waveform of the frequency fluctuation that the pressure pulsation at the
volute tongue and the outlet shows obvious dispersion, and the high frequency component of the blade
passing double frequency increases, which is most obvious at the point P6. This is mainly due to the fact
that the point P6 is relatively small from the guide vane outlet distance compared with the points P5 and
P7, and accordingly the impeller double frequency effect is also increased.

Fig. 12 shows the pressure fluctuation amplitude and pressure fluctuation strength at the tongue and
outlet. As can be seen from the figure, at point P5, the pressure fluctuation amplitude and pressure
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Figure 11: Pressure fluctuation frequency domain of points P5, P6 and P7
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fluctuation strength of the three schemes are the largest, which is consistent with the change trend at point P7,
the fluctuation amplitude and strength gradually decrease with the axial relative distance between the guide
vane and the pumping chamber decreases. At point P6, the fluctuation amplitude and fluctuation strength of
Scheme B are the largest, which in Scheme C is the smallest, and the fluctuation strengths of Scheme C and
Scheme A are similar. It can be seen from the above analysis that the axial mount position of the guide vane
affects the pressure fluctuation amplitude in the tongue and the outlet. Scheme C has the lowest pressure
fluctuation amplitude and fluctuation strength, and the pressure fluctuation is the smallest, that is, when
the outlet axis of the pumping chamber corresponds with the outlet central plane of the guide vane, the
pressure fluctuation in the tongue and the outlet is minimal.

5 Conclusion

(1) When the axial relative distance Δx is 89 mm, the model pump has the best hydraulic performance
under design conditions and a shorter length of cantilever shaft. Reducing the axial relative distance between
the guide vane and the pumping chamber, pump efficiency increases under low flow conditions, where
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Figure 12: Pressure fluctuation amplitude and pressure fluctuation strength at points P5 ∼ P7, (a) Pressure
fluctuation amplitude, (b) Pressure fluctuation strength
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impeller efficiency increases, the flow state in the pumping chamber is improved, and the back-flow
phenomenon is suppressed, thereby reducing the loss of the pumping chamber, but at the same time the
guide vane loss is also increased; Under high flow conditions, the efficiency of the pump is reduced, in
which the impeller efficiency is reduced, and the loss of the guide vane and the pumping chamber is
correspondingly increased.

(2) The pressure fluctuation in the annular pumping chamber of the nuclear main pump is basically
decided by the rotation frequency and the blade passing frequency, the variation of axial mount position
of the guide vane mainly impacts the magnitude of pressure fluctuation amplitude. Reducing axial
relative distance of the guide vane and the pumping chamber, the circumferential pressure fluctuation
amplitude in the pumping chamber reduces correspondingly, in particular, the effect of pressure
fluctuation at the junction between the pumping chamber and the outlet is most obvious.

(3) Pressure fluctuation at the tongue and outlet zone shows significant discreteness, the high frequency
component of the frequency doubling of blade passing frequency increases. When the outlet central plane of
guide vane corresponds with the outlet axis of the pumping chamber, the pressure fluctuation amplitude and
the fluctuation strength at the tongue and the outlet are the smallest.
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