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Abstract: Cantilevered pipe conveying fluid may become unstable and flutter
instability would occur when the velocity of the fluid flow in the pipe exceeds
a critical value. In the present study, the theoretical model of a cantilevered
fluid-conveying pipe attached by an inerter-based dynamic vibration absorber
(IDVA) is proposed and the stability of this dynamical system is explored.
Based on linear governing equations of the pipe and the IDVA, the effects
of damping coefficient, weight, inerter, location and spring stiffness of the
IDVAon the critical flow velocities of the pipe system is examined. It is shown
that the stability of the pipe may be significantly affected by the IDVA. In
many cases, the stability of the cantilevered pipe can be enhanced by designing
the parameter values of the IDVA. By solving nonlinear governing equations
of the dynamical system, the nonlinear oscillations of the pipe with IDVA
for sufficiently high flow velocity beyond the critical value are determined,
showing that the oscillation amplitudes of the pipe can also be suppressed to
some extent with a suitable design of the IDVA.

Keywords: Cantilevered pipe conveying fluid; inerter-based dynamic
vibration absorber; dynamic vibration absorber; critical flow velocity;
nonlinear oscillation

1 Introduction

The dynamical stability of cantilevered pipes conveying fluid has been widely studied by many
researchers [1–6] in the past decades. The main reason why so many people are devoting on
this problem is because the dynamical system of pipes conveying fluid can be found in many
engineering fields, such as, heat exchanger tubes, concrete pump truck, locomotive braking system,
oil pipeline, aerial refueling, ocean risers, and etc.

It is generally known that a cantilevered pipe may become unstable and flutter instability
would occur when the velocity of the fluid flow in the pipe exceeds a critical value. Indeed,
a lot of researchers have endeavored to enhance the stability of cantilevered pipes conveying
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fluid [7–17], by using either passive or active methods. For instance, Tani et al. [12,13] applied a
torsional moment to a certain position of the cantilevered fluid-conveying pipe, and then experi-
mentally and numerically studied the suppression effect of the torque on the oscillation responses
of the pipe. Yau et al. [2] added a piezoelectric layer to a certain position of the cantilevered
pipe, and explored the effect of the mounting position and the length of the piezoelectric layer on
the vibration responses of the pipe. Lin et al. [9,14,15] further demonstrated that the cantilevered
pipe could obtain remarkable suppression effect when the voltage imposed on the piezoelectric
layer was within a suitable range. Khajehpour et al. [16] utilized piezoelectric layers to control
the vibrations of a rotating cantilever conveying fluid. Hussein et al. [17] analyzed the effect of
hydraulic damper position, base width of hydraulic damper, damping and flow pressure on the
dynamic responses of slender pipes by using state space technique.

Since active control methods for cantilevered pipes conveying fluid are always restricted by the
reliability and service life of the controller, passive control methods [18–22] have attracted more
attentions. For instance, Wang et al. [23] derived the governing equations of a pipe conveying
fluid on elastic foundation and showed that an elastic foundation can increase the critical flow
velocity for statical and dynamical instabilities of the pipe. DoarÉ et al. [24] compared the
stability characteristics of finite- and infinite-length pipes conveying fluid on elastic foundations.
Hiramoto et al. [20] improved the stability of cantilevered pipes conveying fluid by optimizing
the outer diameter distribution of the pipe with a closed-loop device. Pisarski et al. [25] applied
electromagnetic devices of a motional type to cantilevered pipes conveying fluid to improve the
dynamical stability of the pipe system. It was demonstrated that the electromagnetic devices of
the motional type can remarkably increase the critical flow velocity by fifty percent comparing to
the same pipe but without the electromagnetic actuator.

At the year of 2013, Yang et al. [26] initiated to numerically investigate the nonlinear
responses of simply supported pipes conveying fluid with an attached nonlinear energy sink
(NES). A cubic spring linked with a mass was used to model the effect of NES on the pipe
system. It was indicated that the vibrational energy of the simply supported pipe conveying fluid
could be robustly absorbed by the NES. Based on the work of Yang et al. [26], Mamaghani
et al. [27] used an attached NES to suppress the oscillation responses of clamped–clamped
pipe conveying fluid subjected to an external harmonic force. It was demonstrated that the
pipe could achieve excellent suppression effect by attaching the NES at the middle point of
the pipe. Song et al. [28] explored the vibration control performance of a Pounding Tuned
Mass Damper (PTMD) for pipe structures by installing a PTMD on an M-shaped pipeline,
using both experimental and numerical methods. Rechenberger et al. [29] used Microsoft Excel
spreadsheet calculations to establish a mathematical model of Tuned Mass Damper (TMD). Their
studies were of a practical guidance on the design of TMD for suppressing the oscillations of
pipeline structures. Zhou et al. [30] installed an NES attachment somewhere along the length of
a cantilevered pipe conveying fluid to enhance the stability of the pipe. The effects of mass ratio,
spring stiffness, damping and location of the NES on the stability and nonlinear responses of the
pipe were explored. Very recently, Liu et al. [31] analyzed the dynamical stability of a cantilevered
pipe with an additional linear dynamic vibration absorber (DVA) attachment. It was shown that
the damping coefficient, spring stiffness, location and weight of the DVA can remarkably affect
the dynamical behaviors of the pipe.

In the current work, we introduce an inerter-based dynamic vibration absorber
(IDVA) [32–35] to adjust the dynamical stability of cantilevered pipes conveying fluid. Based on
the proposed governing equations, the effect of several key parameters of the additional IDVA
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on the dynamics of the pipe are investigated. It will be shown that the IDVA can enhance the
stability and suppress the oscillations of the pipe in many cases.

2 Governing Equations

Fig. 1 shows the schematic diagram of a cantilevered pipe conveying fluid with an additional
IDVA. The spring-mass attachment is attached at x = xb ≤ L, where L is the pipe length. The
pipe is horizontal and its motion is limited in a horizontal plane by embedded a steel strip in
the pipe.
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Figure 1: Schematic of a cantilevered pipe subjected to an inerter-based dynamic vibration
absorber

In Fig. 1, the lateral displacement of the pipe along the y axis is denoted by W(s, t),
with s being the curvilinear coordinate along the pipe length and t being the time. Before
giving the nonlinear governing equations of the pipe system, several basic assumptions were
made [36,37]: (1) The internal axial fluid is incompressible; (2) The centreline of the pipe is
inextensible; (3) The Euler–Bernoulli beam theory is acceptable for the pipe; (4) The pipe’s axial
strain is sufficiently small, although its lateral deflection may be relatively large. Following the
derivation of Semler [38] and Liu et al. [31] and considering the effect of IDVA, the equation of
motion of the pipe may be written as

(m+M) Ẅ + 2MUẆ ′ (1+W ′2)+MU2 (
1+W ′2)W ′′ +ψIẆ ′′′′

+EI
[
W ′′′′ (1+W ′2)+ 4W ′W ′′W ′′′ +W ′′3

]
+W ′

∫ s

0
(m+M)

(
Ẇ ′2+W ′Ẅ ′′

)
ds

−W ′′
[∫ L

s

∫ s

0
(m+M)

(
Ẇ ′ +W ′Ẅ ′′)dsds+ ∫ L

s

(
2MUW ′Ẇ ′ +MU2W ′W ′′

)
ds

]
− [

K (V −Wb)+C
(
V̇ − Ẇb

)+ I0
(
V̈ − Ẅb

)]
δ (s− sb)= 0

(1)

in which the overdots and primes denote the derivative with respect to t and s, respectively; ψ is
the Kelvin–Voigt damping coefficient of the pipe, EI is the flexural rigidity of the pipe; m is
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the mass of the empty pipe per unit length, U is the steady flow velocity, M is the mass of
the internal fluid per unit length; Wb is the lateral deflection of the pipe at the location of the
IDVA attachment; C is the damping coefficient of the damper, K is the stiffness of the spring,
I0 denotes the inerter of the IDVA, V is the displacement of the additional mass; δ(s− sb) is the
Dirac delta function with sb being the location of the IDVA.

The governing equation of the IDVA takes the form

m1V̈ +K (V −Wb)+C
(
V̇ − Ẇb

)+ I0
(
V̈ − Ẅb

) = 0 (2)

where m1 is the mass of the attached rigid body.

Introducing the following dimensionless quantities

ξ = s
L
, w= W

L
, v= V

L
, τ =

(
EI

m+M

)1/2 t
L2 , u=

(
M
EI

)1/2

UL, β = M
M +m

,

φ =
(

EI
m+M

)1/2
ψ

L2 , α= m1

(M +m)L
, k= KL3

EI
, γ = m+M

EI
L3g, c= CL

[(m+M)EI ]1/2
,

θ = I0
(M +m)L

Eqs. (1) and (2) may be written in dimensionless forms as

w′′′′ +φẇ′′′′ + ẅ+ 2u
√
βẇ′ + u2w′′ +N (w)− [k (v−wb)+ c (v̇− ẇb)+ θ (v̈− ẅb)] δ (ξ − ξb)= 0 (3)

and

αv̈+ k (v−wb)+ c (v̇− ẇb)+ θ (v̈− ẅb)= 0 (4)

where the prime and overdot on each variable now denote the derivative with respect to ξ and
τ , respectively. The nonlinear term N(w) in Eq. (3) is given by

N (w)= 2u
√
βẇ′w′2+w′′u2w′2+ 3w′w′′w′′′ +w′′3+w′

∫ ξ

0

{
ẇ′2− 2u

√
βw′ẇ′′ − u2w′w′′′ +w′′w′′′′

}
dξ

−w′′
∫ 1

ξ

∫ ξ

0

[
ẇ′2− 2u

√
βw′ẇ′′ − u2w′w′′′ +w′′w′′′′

]
dξdξ (5)

−w′′
∫ 1

ξ

(
2u

√
βw′ẇ′ + u2w′w′′ +w′′w′′′

)
dξ

3 Galerkin Discretization

The governing equations for the pipe and IDVA are in partial differential forms, which
can be discretized by using several effective methods including Galerkin approach [39–41] and
differential quadrature method [42–44]. In the following calculations, the Galerkin approach is
used to discretize the partial differential equations. Based on this method, the displacements of
the pipe can be given by

w (ξ , τ )=
N∑
r=1

ϕr (ξ)qr (τ ) (6)
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where ϕr (ξ) is the base eigenfunctions of a plain cantilevered beam, and qr (τ ) is the corre-
sponding generalized coordinates; N is the number of base functions used in the discretization.
Substituting expression (6) into Eqs. (3) and (4), multiplying by ϕi (ξ) and integrating from 0 to
1, the following ordinary differential equations can be obtained

[M]

{
q̈

v̈

}
+ [C]

{
q̇

v̇

}
+ [K]

{
q

v

}
+{fnonl} = {0} (7)

where the overdots now denote the total derivative with respect to dimensionless time τ . In
Eq. (7), [M], [C] and [K] represent the mass, damping and stiffness matrices for the linear parts
and fnonl denotes the nonlinear term associated with various nonlinearities of the pipe system. In
the following calculations, a four-mode Galerkin approximation will be utilized (N = 4) because
the instability of the pipe system is usually associated with the lowest several modes.

By neglecting the nonlinear terms in Eq. (7), the eigenvalues of the pipe with IDVA can be
obtained. According to the obtained eigenvalues for each mode, the stability of the pipe with
the IDVA can be evaluated. When the dimensionless inerter in Eq. (7) is set as θ = 0 and the
nonlinear term fnonl is absent, the eigenvalues of the pipe with DVA may be obtained, referring
to [31]. The nonlinear oscillations of the pipe with IDVA can be predicted by numerically solving
the nonlinear governing equations via a fourth-order Runge–Kutta iteration algorithm.

4 Results

In this section, the effect of IDVA on the dynamical stability and nonlinear responses of
the pipe system is explored. For that purpose, the evolution of eigenvalues for the pipe and the
attached mass as a function of the flow velocity will be shown first. Based on the stability analysis
of the linear system, the nonlinear oscillations of the pipe and the attached mass will be further
studied. Results for the dynamical behaviors of the cantilevered pipe and the attached IDVA for
various system parameters will be presented mainly in the form of Argand diagrams, bifurcation
diagrams and displacement-time diagrams.

4.1 Model Validation and Simple Comparison
The Argand diagram of a cantilevered fluid-conveying pipe without IDVA for φ = 0.001 and

β = 0.213 is reproduced first to check the correctness of our approximately analytical solutions.
The evolution of lowest four eigenvalues of the pipe without IDVA with increasing dimensionless
flow velocity, u, is illustrated in Fig. 2. In this figure, it should be noted that Re(ω) is the
dimensionless oscillation frequency, while Im(ω) is related to the dimensionless damping of the
whole system. It is obvious that the flutter instability of the pipe occurs in the second mode,
at ucr ≈ 5.8. It is also seen that the results plotted in Fig. 2 agree well with those obtained by
Gregory et al. [45] and Paidoussis et al. [46], demonstrating that the approximately analytical
solutions obtained in this work are reliable.

In order to explore the effect of IDVA on the basic dynamics of the fluid-conveying can-
tilever, typical results of Argand diagrams for a cantilevered pipe conveying fluid with DVA and
IDVA are shown in Figs. 3 and 4. It is seen from Fig. 3 that flutter instability of the pipe with
DVA occurs at ucr≈ 6.4. This dimensionless critical flow velocity is much larger than that shown
in Fig. 2, indicating that the DVA can improve the stability of the pipe system. It is also noted
from Fig. 3 that the present result for the pipe with DVA agrees well with that reported in [31].
Furthermore, as shown in Fig. 4, once the inerter is added to the spring-mass attachment, the
dimensionless critical flow velocity of the pipe system would increase further to ucr≈ 6.9.
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Figure 2: Argand diagram for a cantilevered pipe conveying fluid without IDVA, from which it is
seen that the critical flow velocity is about ucr = 5.8
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Figure 3: Argand diagram for a cantilevered pipe conveying fluid with DVA for k = 20, c= 0.5,
φ = 0.001, α = 0.1, β = 0.213, ξb = 0.5. It is seen that the critical flow velocity for the whole
system is about ucr = 6.4

In order to make the calculation results easier to understand, the dimensional values of
critical flow velocity for the pipe with IDVA or without IDVA are briefly discussed. Taking a
silicone tube [47] as an example, several key physical and geometrical parameters are chosen
as: the flexural rigidity of the pipe EI = 0.0217 Nm2, the mass of the empty pipe per unit
length m = 0.19 kg/m, the density of the internal fluid per unit length ρ = 1000 kg/m3, the
pipe length L = 0.35 m, the outer diameter D = 0.0155 m, and the inner diameter of the pipe
d = 0.00794 m. According to the definition of the dimensionless flow velocity u= [M/ (EI)]1/2UL,
the dimensional critical flow velocity of the pipe with IDVA is found to be about Ucr = 7.78 m/s.
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Figure 4: Argand diagram for a cantilevered pipe conveying fluid with IDVA for k= 20, c= 0.5,
φ = 0.001, α = 0.1, θ = 0.02, β = 0.213, ξb = 0.5. It is seen that the critical flow velocity for the
whole system is about ucr = 6.9

4.2 Effect of IDVA on the Critical Flow Velocity
In this subsection, the stability of the cantilevered fluid-conveying pipe for various system

parameters of the IDVA will be investigated. Figs. 5–12 show the critical flow velocities of the
pipe system for various physical and geometrical parameters of the IDVA. In these figures, unless
otherwise stated, the system parameters were chosen as: φ = 0.001, α = 0.1, β = 0.213, θ = 0.02,
k= 20, c= 0.5 and ξb = 0.5.

(a) (b) (c)

Figure 5: Dimensionless critical flow velocities ucr of the system as a function of dimensionless
inerter and mass ratio of the IDVA for φ = 0.001, k= 28, β = 0.213, ξb= 0.5: (a) c= 0.1, (b) c=
0.3 and (c) c= 0.5

The dimensionless critical flow velocities ucr of the pipe system as a function of dimensionless
inerter and mass ratio of the IDVA for φ = 0.001, k = 28, β = 0.213, ξb = 0.5 are indicated
in Fig. 5. The results shown in this figure demonstrate that the critical flow velocities of the
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dynamical system increase with the increase of the damping coefficient. As shown in Figs. 5a–5c,
with the increase of dimensionless mass ratio, a smaller value of dimensionless inerter of the
IDVA is required to achieve higher crtitical flow velocity.

Fig. 6 shows that the critical flow velocities of the pipe system as a function of dimensionless
inerter and mass ratio for three different values of IDVA location (ξb). It is found that the critical
flow velocities of the system in the case of ξb= 0.75 change slightly only. The peak value of the
critical flow velocity of the dynamical system occurs at ξb≈ 0.5, as can be seen in Figs. 6a–6c.

(a) (b) (c)

Figure 6: Dimensionless critical flow velocities ucr of the system as a function of dimensionless
inerter and mass ratio of the IDVA for φ = 0.001, k = 28, c = 0.5, β = 0.213: (a) ξb = 0.25,
(b) ξb = 0.5 and (c) ξb= 0.75

(a) (b) (c)

Figure 7: Dimensionless critical flow velocities ucr of the system as a function of dimensionless
stiffness and mass ratio of the IDVA for φ = 0.001, θ = 0.02, β = 0.213, ξb = 0.5: (a) c = 0.1,
(b) c= 0.3 and (c) c= 0.5

Fig. 7 shows that the critical flow velocities of the pipe system as a function of dimensionless
stiffness and mass ratio of the IDVA, for three different values of damping coefficient (c). It is
obvious that the peak value of the critical flow velocity increases with the increase of damping



CMES, 2020, vol.125, no.2 503

coefficient. As shown in Figs. 7a–7c, with the increase of dimensionless damping coefficient of the
IDVA, the cantilervered pipe conveying fluid with IDVA can achieve higher crtitical flow velocity.

The critical flow velocities of the pipe system as a function of dimensionless stiffness and
mass ratio of the IDVA are shown in Fig. 8, for three given values of inerter (θ). By inspecting
Figs. 8a–8c, a remarkable feature can be found: with the increase of the inerter of IDVA, the
critical flow velocities of the pipe with IDVA would reduce. That is to say, a larger value of
inerter is detrimental to the system’s stability.

(a) (b) (c)

Figure 8: Dimensionless critical flow velocities ucr of the system as a function of dimensionless
stiffness and mass ratio of the IDVA for φ = 0.001, c = 0.5, β = 0.213, ξb = 0.5: (a) θ = 0.01,
(b) θ = 0.03 and (c) θ = 0.05

(a) (b) (c)

Figure 9: Dimensionless critical flow velocities ucr of the system as a function of dimensionless
stiffness and inerter of the IDVA for φ = 0.001, c= 0.5, α = 0.16, β = 0.213: (a) ξb= 0.25, (b) ξb =
0.5 and (c) ξb= 0.75

Figs. 9a–9c plot the results of critical flow velocities for two independent parameters, stiffness
and inerter, with three different values of IDVA location (ξb). It is found that when the IDVA
location is closer to the free end of the pipe, the stiffness of the IDVA needs to be decreased to



504 CMES, 2020, vol.125, no.2

obtain higher critical flow velocity. Among the three cases shown in Figs. 9a–9c, it is noted that
the maximum critical flow velocity appears at ξb = 0.5.

Figs. 10a–10c show the critical flow velocities of the pipe with the IDVA being attached at
ξb= 0.5, for three different values of mass ratio (α). It is observed that with the increase of mass
ratio, the stiffness of the IDVA needs to be increased to achieve higher critical flow velocity. Upon
comparing the three diagrams of Fig. 10, again, it is found that higher critical flow velocity can
be realized in the case of α = 0.1.

(a) (b) (c)

Figure 10: Dimensionless critical flow velocities ucr of the system as a function of dimensionless
stiffness and inerter of the IDVA for φ = 0.001, c= 0.5, β = 0.213, ξb = 0.5: (a) α= 0.05, (b) α=
0.1 and (c) α= 0.15

(a) (b) (c)

Figure 11: Dimensionless critical flow velocities ucr of the system as a function of dimensionless
stiffness and damping of the IDVA for φ = 0.001, α = 0.16, β = 0.213, ξb = 0.5: (a) θ = 0.01,
(b) θ = 0.03 and (c) θ = 0.05

In Fig. 11, the critical flow velocities as a function of dimensionless stiffness and damping
coefficient of the IDVA for three different values of inerter are shown. Once again, it is found
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that the stability of the pipe can be better enhanced by using the IDVA with smaller values
of inerter.

The critical flow velocities of the pipe system as a function of dimensionless stiffness and
damping of the IDVA for φ = 0.001, θ = 0.02, β = 0.213, ξb = 0.5 and three different values of
mass ratio of the IDVA are plotted in Fig. 12. Among the three cases shown in Fig. 12, it is
noted that with the increase of mass ratio, the spring stiffness of the IDVA needs to be increased
to achieve higher critical flow velocity, and the peak value of the critical flow velocity of the
system appears at α = 0.1.

(a) (b) (c)

Figure 12: Dimensionless critical flow velocities ucr of the system as a function of dimensionless
stiffness and damping of the IDVA for φ = 0.001, θ = 0.02, β = 0.213, ξb = 0.5: (a) α = 0.05,
(b) α= 0.1 and (c) α = 0.15

4.3 Effect of IDVA on Nonlinear Oscillations of the Pipe
In this subsection, the nonlinear oscillations of the cantilevered pipe conveying fluid with

IDVA will be studied when the flow velocity is successively increased. Some fascinating dynamical
behaviors will be shown by analyzing this modified system. In order to illustrate the effect of
IDVA on the pipe, nonlinear responses of the cantilevered pipe conveying fluid with and without
IDVA are examined.

Before embarking some numerical calculations, it is recalled that the argand diagrams for the
cantilevered pipe conveying fluid attached with DVA and IDVA show some difference (see Figs. 3
and 4). Therefore, it is expected that the nonlinear responses of the pipe with DVA and with
IDVA are also different. To illustrate this, two bifurcation diagrams for the pipe with DVA and
with IDVA are plotted in Fig. 13. It is immediately seen that the flutter instability of the pipe
with DVA occurs at a higher flow velocity if compared with that of the pipe without IDVA.
Furthermore, the pipe with IDVA shows a much higher critical flow velocity. These critical flow
velocities for flutter instability based on nonlinear theory are consistent with the linear results
shown in Figs. 3 and 4. It is noted that the oscillation amplitudes of the pipe with DVA or with
IDVA are generally smaller than that of the plain pipe without any attachments, for a wide range
of flow velocity. Interestingly, the pipe with a DVA loses instability at about ucr = 6.4, then regains
stability at about u= 7.2, and finally becomes unstable with further increasing flow velocity. When
the flow velocities are higher than u= 10, the oscillation amplitudes of the pipe with and without
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mass attachment has no obvious difference. The dynamic responses of the DVA and IDVA show
similar behaviors as the pipe, which can be observed in Fig. 13b.
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Figure 13: Bifurcation diagrams of the oscillation amplitudes with internal flow velocity u being
the variable parameter for: φ = 0.001, ξb = 0.5, c = 0.5, k = 20, α = 0.1, θ = 0.02, β = 0.213.
(a) Oscillation amplitudes of the pipe at ξ = 0.5 and (b) oscillation amplitudes of the IDVA
and DVA
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Figure 14: Bifurcation diagrams of the oscillation amplitudes with internal flow velocity u being
the variable parameter for: φ = 0.001, ξb = 0.5, c = 0.5, k = 20, α = 0.15, θ = 0.02, β = 0.213.
(a) Oscillation amplitudes of the pipe at ξ = 0.5 and (b) oscillation amplitudes of the IDVA
and DVA

When the value of the mass ratio of the IDVA is increased to α = 0.15, it is indicated that
the dynamical behaviors of the pipe shown in Fig. 14 exhibit some difference from those given
in Fig. 13 for α = 0.1. It is noted that the pipe with either DVA or IDVA becomes unstable at a
critical flow velocity higher than the flow velocity for flutter instability of the pipe without IDVA.
One can see that the pipe with DVA for α = 0.15 no longer switches between stable and unstable
sates when the flow velocity is successively increased. Similar phenomenon can be observed in
Fig. 14b for the dynamic responses of the IDVA.
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In the case of α = 0.1 and θ = 0.04, the bifurcation diagrams for the pipe system with flow
velocity as the variable parameter are plotted in Fig. 15. It is seen from this figure that the
oscillation amplitudes of the pipe with IDVA at the location of the attachment are larger than
the counterpart of the pipe with DVA for most flow velocities, while the oscillation amplitudes of
the IDVA are generally smaller than that of the DVA. For both cases, the attachment mass can
absorb some energy of the whole system, resulting in the decrease of the oscillation amplitudes
of the cantilevered pipe.
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Figure 15: Bifurcation diagrams of the oscillation amplitudes with internal flow velocity u being
the variable parameter for: φ = 0.001, ξb = 0.5, c = 0.5, k = 20, α = 0.1, θ = 0.04, β = 0.213:
(a) displacements of the pipe at ξ = 0.5 and (b) displacements of the IDVA and DVA

Bifurcation diagrams of the oscillation amplitudes as a function of the flow velocity for φ =
0.001, ξb = 0.5, c = 0.5, k = 20, α = 0.15, θ = 0.04, β = 0.213 are plotted in Fig. 16. In this
case, the pipe with DVA has smaller oscillation amplitudes than that of the pipe with IDVA.
This implies that the inerter has a negative effect on the vibration suppression of the pipe in
such a case.
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Figure 16: Bifurcation diagrams of the oscillation amplitudes with internal flow velocity u being
the variable parameter for: φ = 0.001, ξb = 0.5, c = 0.5, k = 20, α = 0.15, θ = 0.04, β = 0.213.
(a) Oscillation amplitudes of the pipe at ξ = 0.5 and (b) oscillation amplitudes of the IDVA
and DVA
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The bifurcation diagrams for the pipe system with flow velocity as the variable parameter
for k = 28, α = 0.1 and two different values of inerter are shown in Figs. 17 and 18. It is seen
that the critical flow velocity of the pipe with IDVA for θ = 0.04 is slightly larger than that of
the pipe with IDVA for θ = 0.02, indicating that the inerter has a positive effect on the stability
of the system in this case. It is also observed that, with increasing flow velocity, the oscillation
amplitudes of the pipe with IDVA (or DVA) at ξ = 0.5 would increase gradually to relatively large
values and thereafter decrease to relatively small values. When the flow velocity is sufficiently high
(e.g., u= 10.5), the oscillation amplitude of the pipe at ξ = 0.5 would tend to a constant value.
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Figure 17: Bifurcation diagrams of the oscillation amplitudes with internal flow velocity u being
the variable parameter for: φ = 0.001, ξb = 0.5, c = 0.5, k = 28, α = 0.1, θ = 0.02, β = 0.213.
(a) Oscillation amplitudes of the pipe at ξ = 0.5 and (b) oscillation amplitudes of the IDVA
and DVA
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Figure 18: Bifurcation diagrams of the oscillation amplitudes with internal flow velocity u being
the variable parameter for: φ = 0.001, ξb = 0.5, c = 0.5, k = 28, α = 0.1, θ = 0.04, β = 0.213.
(a) Oscillation amplitudes of the pipe at ξ = 0.5 and (b) oscillation amplitudes of the IDVA
and DVA
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Figure 19: Tip-end displacements of the cantilevered pipe with IDVA, with DVA and without
IDVA, for φ = 0.001, ξb = 0.5, c= 0.5, k= 20, α = 0.1, θ = 0.02, β = 0.213 and u= 6.2
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Figure 20: Tip-end displacements of the cantilevered pipe with IDVA, with DVA and without
IDVA, for φ = 0.001, ξb = 0.5, c= 0.5, k= 20, α = 0.1, θ = 0.02, β = 0.213 and u= 6.8

In order to further compare the dynamic responses of the cantilevered pipe conveying fluid
with IDVA and without IDVA, some displacement-time curves (time traces) for several typical
flow velocities are demonstrated in Figs. 19–22. The displacement-time curves shown in Fig. 19
are for u= 6.2. It is obvious that the pipe without IDVA undergoes a periodic oscillation while
the displacements of the pipe with DVA or IDVA is towards to zero. In this case, therefore, the
pipe with IDVA or DVA becomes more stable than the pipe without IDVA. It is clearly seen from
Fig. 20 that the pipe undergoes a periodic motion, either with DVA or without IDVA, while the
pipe with IDVA keeps still for u= 6.8. Moreover, the oscillation amplitudes of the pipe without
IDVA are much larger than the counterpart of the same pipe with DVA. In the case of u= 7.3,
the displacement-time curves are shown in Fig. 21. It is fascinating that the pipe without and
with IDVA occurs flutter instability while the pipe with DVA keeps stable. That is to say, the
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pipe with DVA shows a better stability performance than the same pipe but with IDVA in case
of u= 7.3. When the flow velocity is up to u= 8, the result shown in Fig. 22 indicates that the
pipe undergoes a periodic motion, even if the pipe is installed with IDVA or DVA. It is also
noted that the oscillation amplitude of the pipe without IDVA is larger than that of the pipe
with IDVA. Unfortunately, the oscillation amplitude of the pipe with IDVA is larger than that of
the pipe with DVA.
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Figure 21: Tip-end displacements of the cantilevered pipe with IDVA, with DVA and without
IDVA, for φ = 0.001, ξb = 0.5, c= 0.5, k= 20, α = 0.1, θ = 0.02, β = 0.213 and u= 7.3
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Figure 22: Tip-end displacements of the cantilevered pipe with IDVA, with DVA and without
IDVA, for φ = 0.001, ξb = 0.5, c= 0.5, k= 20, α = 0.1, θ = 0.02, β = 0.213 and u= 8
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5 Conclusions

The dynamical stability and nonlinear responses of a cantilevered pipe conveying fluid with
an IDVA added somewhere along the pipe length are explored in the present study. For a plain
pipe without IDVA, the dynamical system loses stability via flutter when the flow velocity exceeds
a certain critical value. For the same pipe but with an IDVA, the flutter instability would occur at
a higher critical flow velocity. By constructing Argand diagrams for eigenvalues of the dynamical
system, it is found that the damping coefficient, stiffness, location, weight and inerter of the
additional IDVA do have effect on the stability of the pipe. Under certain conditions, the critical
flow velocity of the pipe can be remarkably increased by adding the IDVA, and hence the stability
of the pipe can be enhanced. The underlying reason of the enhanced stability of the fluid-
conveying pipe is associated with the transfer of energy from the pipe to the IDVA. To evaluate
the effect of IDVA on the nonlinear behaviors of the pipe, the oscillations of the pipe and the
IDVA are also calculated based on nonlinear theories. It is shown that the oscillation amplitudes
of the pipe with IDVA are sometimes smaller than that of the pipe with DVA, and the oscillation
amplitudes of the IDVA are always larger than that of the DVA. Therefore, the results obtained
in this paper may be expected to be useful for the design of energy absorbers (or energy transfer
devices) of fluid-conveying pipes by adding IDVAs somewhere along the pipe length. However,
this does not mean that the IDVA is always better than a DVA for enhancing the stability and
suppressing the oscillations of cantilevered pipes conveying fluid. Within some ranges of flow
velocity, indeed, the DVA has a better performance, as shown in Figs. 13–18.

Furthermore, for a pipe with both ends positively supported, buckling is the preferred form
of instability since it is a conservative system in the absence of dissipation. When an inerter-based
DVA is added to the supported pipe, the linear spring of the IDVA could change the effective
bending stiffness of the whole pipe system. For this reason, it can be foreseen that the IDVA can
affect the stability of pipes with both ends supported.
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