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Abstract: The blood flow through a catheterized artery having a mild steno-
sis at the wall together with a blood clot at the centre is studied in the
current investigation. Stenosis can occur in vessels carrying blood to brain
(i.e., Carotid arteries), Renal arteries that supply blood to kidneys etc. The
flow is refined in such vessels by application of catheter. We have used a
Newtonian viscous fluid model and also distinct shapes of stenosis, (i.e.,
symmetric and non-symmetric shapes) are considered for this study. The
entropy generation together with viscous dissipation is also taken into account
for a complete description of heat transfer mechanism. Exact solutions are
calculated for the problem subject to given “no slip conditions”. The results
are discussed graphically. The velocity quickly increases for a non-symmetric
stenosis as compared to a symmetric stenosis. When the height of mild steno-
sis increases and the channel becomes narrow then the velocity increases in
the centre but it decreases with the stenosed wall. However, as the height of
blood clot σ increases then the velocity of blood flow reduces with the wall
having clot but it remains almost same with the stenosed wall. Streamlines
are plotted to visualize the flow pattern. The trapping is symmetric for a
symmetric stenosis shape but it changes to non-symmetric trapping when we
have a non-symmetric shape of stenosis.
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Nomenclature

(r, z): Cylindrical coordinate system;
(u, w): Radial and axial velocity components;
R: Non-stenotic radius of capillary;
cR: Radius of catheter (inner tube);
b: Stenosis length;
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n≥ 2: Shape parameter of stenosis;
n= 2: Symmetric stenosis shape;
T: Temperature of fluid;
μf : Dynamic viscosity;
σ : Maximum height of clot;
zd : Axial displacement of clot;
Br: Brickmann number;
θ0: Dimensionless ratio of absolute to characteristic temperature difference;
δ∗: Stenosis maximum height;
a: Stenosis location;
n= 6: Asymmetric stenosis shape;
L: Length of tube;
u0: Characteristic velocity;

1 Introduction

Stenosis is an arterial disease that results in narrowing of blood vessel due to collection of
plaque on the wall of arteries. It reduces the flow of blood and the situation gets worse when this
stenosis also produces a thrombus within the vessel, (i.e., a blood clot is formed inside the artery).
In this scenario, the flow through such diseased arteries is improved by using a catheter. The
blood flow problem for an artery having stenosed walls was explained by Ponalagusamy [1]. It has
attracted the interest of many researchers and this topic is further mathematically interpreted due
to its medical and biological uses. Further, stenosis can occur in vessels carrying blood to brain
(i.e., Carotid arteries), Renal arteries that supply blood to kidneys etc. Chaturani et al. [2] had
used a non-Newtonian model of fluid flow to illustrate the blood flow inside a stenosed artery.
Moreover, the stenosed artery study is examined for many different fluid models that cover the
non-Newtonian properties of blood flow problems. The blood flow through stenosed arteries for
various fluid models is given in the studies [3–5]. A thrombus may also be developed in such
arteries with stenosis and to cover this aspect mathematically, the blood flow inside a diseased
artery having both stenosis and thrombus was studied by Doffin et al. [6]. They had used a
Newtonian fluid model and provided both theoretical and experimental results in their work.
Srivastava et al. [7] had discussed the blood flow inside a catheterized vessel having stenosed
walls. The surgical method for catheter injection inside a composite stenosed artery was explained
by Mekheimer et al. [8]. They had provided a mathematical model to explain the blood flow
between eccentric tubes. Ramana Reddy et al. [9] had conveyed the mathematical description for
blood flow inside a diseased artery by using a catheter. They had considered different shapes of
stenosis in their theoretical investigation. By inspecting the available study of literature work, It
is uncovered that the blood flow inside a catheterized artery having a mild stenosis at the wall
together with a blood clot at the centre of artery is not examined mathematically by anyone. We
have considered distinct shapes of stenosis, (i.e., combine results for symmetric and asymmetric
shapes) for the first time in the literature. The irreversibility study is also main focus of this work
and entropy generation is considered for this work.

The heat transfer phenomenon also has significant importance in fluid flow problems. Bhatti
et al. [10] had interpreted the heat transfer of blood flow inside a diseased artery having a
thrombus. The unsteady flow and heat transfer mechanism through a catheterized vessel with
stenosis was discussed by Ahmed et al. [11]. Entropy generation together with viscous dissipation
has significant importance in heat transfer phenomenon. Entropy is defined as the chaos and
disturbance in a system. Akbar et al. [12] had illustrated the entropy generation for an annulus
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problem with endoscopic effects. The blood flow through a stenosed artery using a Newtonian
fluid model with entropy generation was explained by Akbar et al. [13].

In the present work, we have studied the blood flow inside a catheterized artery having a mild
stenosis at the wall together with a blood clot at the centre of artery. We have used a Newtonian
viscous fluid model and distinct shapes of stenosis, (i.e., symmetric and non-symmetric shapes)
are considered for this study. The entropy generation together with viscous dissipation is also
considered. Exact solutions are calculated for the problem subject to given “no slip conditions.”
The solution is discussed and help is taken from [14]. The results are explained graphically.
Streamlines are plotted to see the details of flow.

2 Mathematical Formulation

Consider blood flow inside a catheterized artery having a stenosed wall and a blood clot at
the centre (Fig. 1).

Figure 1: Geometry of the problem

The geometry of outer wall (i.e., stenosis wall) η (z), and inner wall (i.e., clot wall) ε (z), in
dimensional form are defined by [15]

η (z)=
{
R
[
1−K

{
bn−1 (z− a)− (z− a)n

}]
, a≤ z≤ a+ b

R otherwise
, (1)

ε (z)=
{
R [c+ f1 (z)] , a≤ z≤ a+ b

cR otherwise
, (2)

where f1 (z) defines the geometry of clot and its shape is handled by an appropriate choice of
f1 (z). Moreover, the value of K is given by

K = δ∗

Rbn
n

n
n−1

n− 1
, (3)
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Here δ∗ defines the maximum height attain by stenosis at z= a+ b

n
1

n−1

. The shape of stenosis

varies with changing values of parameter n. For n= 2, the stenosis is symmetric in shape but for
n= 6, it is not symmetric anymore. The governing equations in dimensional form are
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The governing equations are simplified by considering following non-dimensional variables

r= r
R
, z= z

b
, w= w

u0
, u= Lu

u0δ∗
, p= R2p

u0bμf
, θ = T −T0

T1−T0
, ε (z)= ε (z)

R
,

η (z)= η (z)
R

, h= a
b
, δ = δ∗

R
, Br=

μf u20
kf
(
T1−T0

) , SG0 =
kf
(
T1−T0

)2
T
2
0R2

,

θ0 = T0

(T1−T0)
.

(8)

The following assumptions are considered to deal with a mild stenosis case

δ = δ∗

R
� 1,

Rn
1

n−1

b
∼ o(1) (9)

Using the dimensionless variables given in Eq. (8) and the assumptions for a mild stenosis
given in Eq. (9), in Eqs. (4)–(7), the dimensionless equations are given as
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)2
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The corresponding boundary conditions are

w= 0, at r= ε (z) , and w= 0, at r= η (z) , (13)

θ = 1, at r= ε (z) , and θ = 0, at r= η (z) , (14)

The geometries of outer wall η(z) and the inner wall ε(z) are given in dimensionless form.
The function f1 (z) is suitably selected [15] to describe the clot model.

η (z)=

⎧⎪⎨
⎪⎩1− δ

n
n

n−1

n− 1

[
(z− h)− (z− h)n

]
, h≤ z≤ h+ 1

1 otherwise
(15)

ε (z)=
{
c+ σ e−π2(z−zd−0.5)2, h≤ z≤ h+ 1

c otherwise
(16)

3 Exact Solution

The exact solution is obtained for velocity profile by solving Eq. (11), subject to boundary
conditions given in Eq. (13)

w=

[
∂p
∂z

{(
−ε2 + η2

)
Log (r)+

(
r2 − η2

)
Log (ε)+

(
−r2 + ε2

)
Log(η)

}]
4 (Log (ε)−Log(η))

, (17)

The volumetric flow rate is calculated by using

Q=
∫ η

ε

rw dr, (18)

Thus the expression for pressure gradient is calculated

dp
dz

= 16Q(Log (ε)−Log(η))

(ε2− η2)
[−ε2 + η2+ (ε2+ η2

)
(Log (ε)−Log(η))

] , (19)

The wall shear stress τw is evaluated as

τw =− ∂w
∂r

∣∣∣∣
r=η

=
−∂p

∂z

[
−ε2+ η2

η
+ 2η(Log (ε)−Log(η))

]

4(Log (ε)−Log(η))
, (20)

The temperature profile is obtained by evaluating Eq. (12), subject to corresponding bound-
ary conditions given in Eq. (14)
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4 Entropy Generation Analysis

The dimensional volumetric entropy generation is given [16]
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Using the dimensionless variables given in Eq. (8) and the assumptions given in Eq. (9), the
dimensionless form of entropy generation is provided

NS = SG
SG0

=
(

∂θ

∂r

)2

+ θ0Br

(
∂w
∂r

)2

, (23)

Eq. (23) consists of two parts, the entropy generation due to finite temperature difference
(NScond ) is given in first part while the entropy generation due to viscous effects (NSvisc) is given in
second part. The entropy generation profile is completed together with velocity and temperature
profiles. Thus the convective heat transfer mechanism is fully explained by it. The Bejan number
is computed with the following formula [17]

Be =
NScond

NScond +NSvisc
=

(
∂θ

∂r
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(
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∂r

)2
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)2 . (24)
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5 Results and Discussion

The graphical results are discussed for exact solutions obtained in previous section. The
symmetric shape of mild stenosis (i.e., for n = 2) and the non-symmetric shape (i.e., for n = 6)
both are considered for accomplishing the graphical results. Thus, we have plotted combine
graphs for both symmetric and non-symmetric shapes of stenosis. In real blood flow problems,
one can have the details for velocity of flow, temperature, disorder by means of entropy study
against various sizes of stenosis as well as thrombus. Moreover, the main purpose is to refine
the flow that is confined due to presence of stenosis and thrombus. Thus, all these graphical
results are helpful for this purpose, as they clearly depict the variations of velocity, temperature
etc against certain parameters. Figs. 2a–2d, represent the velocity profile for distinct values of
various physical parameters that are involved. Fig. 2a show that there is increase in velocity as
the value of δ increases for both cases n = 2, and n = 6. It means that as the height of mild
stenosis increases and the channel becomes narrow then the velocity increases in the centre but
it decreases with the stenosis wall. The velocity gains magnitude for enhancing values of Q in
both cases, as depicted in Fig. 2b. It is certain that the velocity increments by increasing the flow
rate. Fig. 2c shows that there is decline in velocity profile with enhancing values of σ for both
cases. It yields, as the height of blood clot σ enhances then the velocity of blood flow reduces
with the wall having clot but it remains almost same with the stenosis wall. There is increase
in the velocity with increasing values of zd , as represented in Fig. 2d. These graphical results
also convey that the velocity quickly increases for a non-symmetric stenosis as compared to a
symmetric stenosis. Figs. 3a–3d are plotted to reveal the effects of distinct physical parameters
on the temperature profile. Fig. 3a reveals that the temperature profile increases by increasing the
value of Br, for both cases. It means that viscous dissipation is generating more heat as compared
to heat transferred by conduction. There is decline in the temperature with increasting values of
δ, as depicted in Fig. 3b. Fig. 3c depicts that there is increase in temperature with increasing
flow rate Q for both cases. The temperature increases with incrementing values of σ , as shown in
Fig. 3d. Figs. 4a–4d convey the effects of distinct parameters on wall shear stresses against the
axial coordinate z. Fig. 4a reveals that τw increases with increasing values of δ. (i.e., there is more
resistance to flow at the wall with stenosis, when the height of stenosis enhance). The wall shear
stresses τw also increase by increasing the rate of flow Q, as shown in Fig. 4b. The main reason
for this increase in the value of τw is the “no slip condition” at the boundaries. Fig. 4c reveals that
τw increases with increasing values of σ . Clearly, wall shear stresses increase with increasing clot
height. There is decline in the value of τw, as the value of zd enhances, as shown in Fig. 4d. The
entropy generation is plotted for Br and θ0, as shown in Figs. 5a, 5b respectively. Fig. 5a reveals
that there is decline in entropy with the wall having thrombus but entropy increases with the wall
having stenosis for increasing values of Br, in both cases of symmetric and non-symmetric shapes
of stenosis. The value of entropy Ns increments with increasing values of θ0, as given in Fig. 5b.
Both graphs reveal that entropy is minimum near about the centre of channel, since disorder is
minimum at centre. Thus the chaos and disturbance in the system gains magnitude with increasing
temperature. Figs. 6a, 6b are plotted to study the effects of Br and θ0 on Bejan number. Fig. 6a
shows that the value of Be declines with the wall having thrombus but increases with the wall
having stenosis, for increasing values of Br. Further, it’s value is minimum near about the centre.
Fig. 6b reveals that there is decline in Bejan number with increasing values of θ0. Streamlines
are plotted for various values of flow rate Q, considering both cases of symmetric (i.e., n = 2)
and non-symmetric (i.e., n= 6) shapes of stenosis, as shown in Figs. 7a–7d. The symmetric and
non-symmetric shapes of stenosis can be seen clearly in these graphs. Figs. 7e–7h also show the
streamlines for distinct values of σ , again considering both cases of symmetric and non-symmetric
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shapes of stenosis. The variation in the height of thrombus together with different shape steno-
sis can be seen clearly in these graphs. Further, the trapping is symmetric for a symmetric
stenosis shape but it changes to non-symmetric trapping when we have a non-symmetric shape
of stenosis.

z = 0.8,Q = 0.03,h = 0.01,zd = 0.6,c = 0.05,
σ = 0.02

z = 0.8,δ = 0.1,h = 0.01,zd = 0.6,c = 0.05,
σ = 0.02

z = 0.8,δ = 0.1,h = 0.01,zd = 0.6,c = 0.05,
Q = 0.03

z = 0.8,δ = 0.1,h = 0.01,σ = 0.02,c = 0.05,
Q = 0.03

(a) (b)

(c) (d)

Figure 2: (a) Velocity profile for δ. (b) Velocity profile for Q. (c) Velocity profile for σ . (d) Velocity
profile for zd

z = 0.8,δ = 0.1,h = 0.01,σ = 0.02,c = 0.05,
Q = 0.05,zd = 0.6

z = 0.8,Br  = 0.1,h = 0.01,σ = 0.02,c = 0.05,
Q = 0.06,zd = 0.6

(a) (b)

Figure 3: (Continued)
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(c) (d)

z = 0.8,Br = 2,h = 0.01,σ = 0.02,c = 0.05,
δ = 0.1,zd = 0.6

z = 0.8,Br = 1,h = 0.01,Q = 0.06,c = 0.05,
δ = 0.1,zd = 0.6

Figure 3: (a) Temperature profile for Br. (b) Temperature profile for δ. (c) Temperature profile
for Q. (d) Temperature profile for σ

h = 0.01,Q = 0.04,c = 0.05,σ = 0.02,zd = 0.02

h = 0.01,δ = 0.2,c = 0.05,σ = 0.02,zd = 0.02

h = 0.01,δ = 0.2,c = 0.05,Q = 0.04,zd = 0.02 h = 0.01,δ = 0.3,c = 0.05,Q = 0.04,σ = 0.02

(a) (b)

(c) (d)

Figure 4: (a) Wall shear stress for δ. (b) Wall shear stress for Q. (c) Wall shear stress for σ .
(d) Wall shear stress for zd
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z = 0.8,Q = 0.05,h = 0.01,c = 0.05,
zd = 0.3,σ = 0.25,δ = 0.01,θ0 = 0.2

z = 0.8,Q = 0.05,h = 0.01,c = 0.05,
zd = 0.3,σ = 0.25,δ = 0.01,Br = 1

(a) (b)

Figure 5: (a) Entropy for Br. (b) Entropy for θ0

z = 0.8,Q = 0.06,h = 0.01,c = 0.05,
zd = 0.6,σ = 0.02,δ = 0.2,θ0 = 0.1

z = 0.8,Q = 0.06,h = 0.01,c = 0.05,
zd = 0.6,σ = 0.02,δ = 0.2,Br = 1

(a) (b)

Figure 6: (a) Bejan number for Br. (b) Bejan number for θ0

Figure 7: (Continued)
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Figure 7: (a) Streamlines for Q= 1, n= 2. (b) Streamlines for Q= 1, n= 6. (c) Streamlines for Q=
1.3, n= 2. (d) Streamlines for Q = 1.3, n= 6. (e) Streamlines for σ = 0.04, n= 2. (f) Streamlines
for σ = 0.04, n= 6. (g) Streamlines for σ = 0.09, n= 2. (h) Streamlines for σ = 0.09, n= 6
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6 Conclusions

The blood flow through a catheterized artery having a stenosed wall together with a blood
clot at the centre of artery is studied. Stenosis can occur in vessels carrying blood to brain (i.e.,
Carotid arteries), Renal arteries that supply blood to kidneys etc. The flow is refined in such
vessels by application of catheter. The major findings are

• When the height of mild stenosis increases, and the channel becomes narrow then the
velocity increases in the centre, but it decreases with the stenosed wall.

• When the height of blood clot σ increases then the velocity of blood flow reduces with the
wall having clot, but it remains almost same with the stenosed wall.

• The velocity quickly increases for a non-symmetric stenosis as compared to a
symmetric stenosis.

• There is more resistance to flow at the wall with stenosis when the height of
stenosis increases.

• There is an increase in entropy with enhancing values of Br for both cases of symmetric
and non-symmetric shapes of stenosis.

• The trapping is symmetric for a symmetric stenosis shape, but it changes to non-symmetric
trapping when we have a non-symmetric shape of stenosis.

Funding Statement: The author(s) received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References
1. Ponalagusamy, R. (1986). Blood flow through stenosed tube (Doctoral dissertation, Ph.D. Thesis). IIT

Bombay, India.
2. Chaturani, P., Ponnalagar Samy, R. (1985). A study of non-Newtonian aspects of blood flow

through stenosed arteries and its applications in arterial diseases. Biorheology, 22(6), 521–531. DOI
10.3233/BIR-1985-22606.

3. Nadeem, S., Akbar, N. S., Hendi, A. A., Hayat, T. (2011). Power law fluid model for blood flow
through a tapered artery with a stenosis. Applied Mathematics and Computation, 217(17), 7108–7116.
DOI 10.1016/j.amc.2011.01.026.

4. Ellahi, R., Rahman, S. U., Gulzar, M. M., Nadeem, S., Vafai, K. (2014). A mathematical study of non-
Newtonian micropolar fluid in arterial blood flow through composite stenosis. Applied Mathematics &
Information Sciences, 8(4), 1567–1573. DOI 10.12785/amis/080410.

5. Ellahi, R., Ur-Rahman, S., Nadeem, S. (2013). Analytical solutions of unsteady blood flow of Jeffery
fluid through stenosed arteries with permeablewalls. Zeitschrift für NaturforschungA, 68(8–9), 489–498.
DOI 10.5560/zna.2013-0032.

6. Doffin, J., Chagneau, F. (1981). Oscillating flow between a clot model and a stenosis. Journal of
Biomechanics, 14(3), 143–148. DOI 10.1016/0021-9290(81)90020-8.

7. Srivastava, V. P., Rastogi, R. (2010). Blood flow through a stenosed catheterized artery: Effects of
hematocrit and stenosis shape. Computers & Mathematics with Applications, 59(4), 1377–1385. DOI
10.1016/j.camwa.2009.12.007.

8. Mekheimer, K. S., El Kot, M. A. (2012). Mathematical modeling of axial flow between two eccentric
cylinders: Application on the injection of eccentric catheter through stenotic arteries. International
Journal of Non-Linear Mechanics, 47(8), 927–937. DOI 10.1016/j.ijnonlinmec.2012.03.005.

9. Ramana Reddy, J. V., Srikanth, D., Krishna Murthy, S. V. S. S. N. V. G. (2014). Mathemati-
cal modelling of pulsatile flow of blood through catheterized unsymmetric stenosed artery—Effects

http://dx.doi.org/10.3233/BIR-1985-22606
http://dx.doi.org/10.1016/j.amc.2011.01.026
http://dx.doi.org/10.12785/amis/080410
http://dx.doi.org/10.5560/zna.2013-0032
http://dx.doi.org/10.1016/0021-9290(81)90020-8
http://dx.doi.org/10.1016/j.camwa.2009.12.007
http://dx.doi.org/10.1016/j.ijnonlinmec.2012.03.005


CMES, 2020, vol.125, no.2 577

of tapering angle and slip velocity. European Journal of Mechanics-B/Fluids, 48, 236–244. DOI
10.1016/j.euromechflu.2014.07.001.

10. Bhatti, M. M., Zeeshan, A., Ellahi, R. (2016). Heat transfer analysis on peristaltically induced motion
of particle-fluid suspension with variable viscosity: Clot blood model. ComputerMethods and Programs
in Biomedicine, 137, 115–124. DOI 10.1016/j.cmpb.2016.09.010.

11. Ahmed, A., Nadeem, S. (2017). Shape effect of Cu-nanoparticles in unsteady flow through curved
artery with catheterized stenosis. Results in Physics, 7, 677–689. DOI 10.1016/j.rinp.2017.01.015.

12. Akbar, N. S., Raza, M., Ellahi, R. (2016). Endoscopic effects with entropy generation analysis in
peristalsis for the thermal conductivity of 2 HO nanofluid. Journal of Applied Fluid Mechanics, 9(4),
1721–1730. DOI 10.18869/acadpub.jafm.68.235.24422.

13. Akbar, N. S., Butt, A. W. (2017). Entropy generation analysis in convective ferromagnetic nano blood
flow through a composite stenosed arteries with permeable wall. Communications in Theoretical Physics,
67(5), 554. DOI 10.1088/0253-6102/67/5/554.

14. Liu, Q., Chen, L. (2020). Time-space fractional model for complex cylindrical ion-acoustic waves in
ultrarelativistic plasmas. Complexity, 2020, 9075823, 16. DOI 10.1155/2020/9075823.

15. Jayaraman, G., Sarkar, A. (2005). Nonlinear analysis of arterial blood flow—steady streaming effect.
Nonlinear Analysis: Theory, Methods & Applications, 63(5–7), 880–890. DOI 10.1016/j.na.2005.01.016.

16. Bejan, A. (1979). A study of entropy generation in fundamental convective heat transfer. Journal of
Heat Transfer, 101(4), 718–725.

17. Akbar, N. (2015). Entropy generation analysis for a CNT suspension nanofluid in plumb ducts with
peristalsis. Entropy, 17(3), 1411–1424. DOI 10.3390/e17031411.

http://dx.doi.org/10.1016/j.euromechflu.2014.07.001
http://dx.doi.org/10.1016/j.cmpb.2016.09.010
http://dx.doi.org/10.1016/j.rinp.2017.01.015
http://dx.doi.org/10.18869/acadpub.jafm.68.235.24422
http://dx.doi.org/10.1088/0253-6102/67/5/554
http://dx.doi.org/10.1155/2020/9075823
http://dx.doi.org/10.1016/j.na.2005.01.016
http://dx.doi.org/10.3390/e17031411

