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Abstract: Based on the rapid simulation of Markov Chain on samples in
failure region, a novel method of reliability analysis combining Monte Carlo
MarkovChain (MCMC) with random forest algorithmwas proposed. Firstly,
a series of samples distributing around limit state function are generated by
MCMC. Then, the samples were taken as training data to establish the ran-
dom forest model. Afterwards, Monte Carlo simulation was used to evaluate
the failure probability. Finally, examples demonstrate the proposed method
possesses higher computational efficiency and accuracy.
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1 Introduction

With increasing functionality and complexity of modern products, the structural reliabil-
ity analysis becomes an emerging research focus in the field of reliability engineering. Failure
probability can be expressed as

Pf =P {g (x)≤ 0} =
∫
g(x)≤0

f (x)dx (1)

where x denotes the random variable in reliability study, f (x) denotes the combined probability
density function, g(x) is performance function, where the inequality g> 0 represents the safe state
and g< 0 represents the failure state. When g is 0, this state is called limit state which divides the
whole domain the safe region and the failure region. The integral denotes the total probability of
joint probability density function in failure region. Because f (x) is usually unknown, it is difficult
to calculate the failure probability directly from Eq. (1), especially for high-dimension problems
or implicit problems. In recent decades, many methods about solving the integral function have
been proposed, including sampling method based on Monte Carlo simulation and approximation
method based on performance function, such as the first-order reliability methods (FORM) and
the second-order reliability method (SORM) [1–5]. The first-order or second-order reliability
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method makes a first-order function or second-order function to replace the corresponding limit
state function, and the analytical solution requires to solve an optimization function of the
shortest distance between limit state and origin in standard normal space [6]. However, the
existing approximation methods are unstable if the performance function is nonlinear, or has
multiple design points and failure modes [7,8].

Moreover, there are several approximate limit state functions combined surrogate model with
Monte Carlo simulation to improve computational efficiency, such as polynomial response surface
method (RSM) [9,10], polynomial chaos expansion (PCE) [11,12], Kriging model [13–16], support
vector machine (SVM) [17–19], fault tree model [20] and artificial neural network algorithm
(ANN) [21,22], etc. By means of surrogate model, the solution of integral function could be
obtained with high computational accuracy and little computation cost. It has been become
a research focus. Echard et al. [23] adopted the active learning strategy to establish Kriging
model adaptively. Compared with conventional sampling methods, smaller samples were used to
construct the Kriging model. Ghosh et al. [18] proposed a SVM model to substitute the perfor-
mance function, and combined with Monte Carlo simulation to calculate the structural safety.
However, the inherent parameters of the SVM model is difficult to determine, such as kernel
parameters and the penalty factor. Cheng et al. [24] demonstrated a neural network based method
combined with the uniform sampling method for predicting failure probability of structures.
Oparaji et al. [25] applied the neural network to the reliability and sensitivity analysis of complex
nonlinear systems, where the robustness of artificial neural network models was improved by
Bayesian theory and model averaging technique. Although ANN has many advantages, including
excellent learning capability, fitting for complex nonlinear function with chosen accuracy and so
on, ANN also have several disadvantages, such as effect of subjective factors, large generalization
errors and low convergence rate. With increasing model complexity, the nonlinear effect of system
functions is enhanced.

As a kind of integrated learning algorithm based on decision tree for classification, random
forest algorithm has been widely used for addressing issues like data classification and investiga-
tion [26]. The advantages of random forest regression model are that it has a better generalization
ability and insensitive for abnormal data in samples. Besides, there are other advantages of
random forest algorithm, including high accuracy, a fast convergence, less overfitting and so on.
In terms of regression problems, the option of hyper-parameters for random forest algorithm has
a significant effect on the accuracy of predication, and a further optimization is necessary.

Meanwhile, it requests good samples to construct the surrogate model. The conventional
methods usually used the random sampling or design of experiments technique generate samples.
For small failure probability event, it will take a lot of samples to establish a high precision
surrogate model, because there should be at least one point in the failure domain. Therefore,
it is requested an efficient algorithm which can generate samples in both failure region and the
safe region.

Recently, the coupling algorithm of Markov Chain Monte Carlo (MCMC) is a powerful tool
to simulate samples with random distribution [27,28]. MCMC simulation was adopted to generate
samples in failure region. Regarding the generated samples as training data, this brings about an
algorithm with higher accuracy [29].

In this study, a combined method called Markov Chain Random Forest (MCRF) algo-
rithm, is adopted to adaptively generate samples. Based on the generated samples, the random
forest model is established and improved to determine the best parameters of random forest.
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Then, the reliability analysis is performed by Monte Carlo simulation with the random forest
model. The work aims to use small number of calling performance function for high precision
reliability analysis.

2 Methodology

2.1 Monte Carlo Simulation
Here, the limit state of system can be expressed by g(x), where x is variables affecting

structural performances. Meanwhile, the joint probability density of each variable is denoted as
fx (x), thus the failure probability of the whole system can be represented as,

Pf =P (g (x)≤ 0)=
∫
F
fx (x)dx (2)

where F denotes the failure domain, namely g (x) ≤ 0;
∫
F fx (x)dx is the integration of variables

for their joint probability density function on failure domain. Further, an indicator function of
failure domain, IF (x), is adopted in this study. If the sample xi does not belong to failure
domain, there is IF (xi) = 0, else if xi belongs to failure domain, there is IF (xi) = 1. So the
equation of failure probability can be transformed into Eq. (3),

Pf =
∫
Rn
fx (x) IF (x)dx (3)

Eq. (3) could be solved by transforming it into the mathematical expectation of samples, and
the mathematical expectation can be obtained via the mean of samples. According to Law of

Large Numbers, the unbiased estimator P̂f and its variance var
(
P̂f
)
can be calculated by Eqs. (4)

and (5), respectively.

P̂f =
1
N

N∑
i=1

IF (xi) (4)

var
(
P̂f
)
= 1
N − 1

(
1
N

N∑
i=1

(IF (xi))2− P̂2
f

)
(5)

where xi is the ith sample.

2.2 Adaptive Sampling Based on Markov Chain
In this section, samples in important region around the limit state are generated by Markov

Chain Monet Carlo simulation. Then the generated samples are regarded as training samples
which are used as the design of experiments to training random forest model. The random forest
model is adopted to approximate the original limit state function. Here, the method for samples
generated by Markov Chain is introduced as following.

Step (1): Select the initial state for Markov Chain

Initial variable x(0) needs to meet x(0) ∈ F , namely x(0) belongs to failure domain, where x(0)

can be determined from engineering or simple computation.
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Step (2): Select appropriate stationary distribution function

The stationary distribution function is determined as conditional distribution density function
to generate the failure region samples as,

f (x | F)= IF (x) fx (x) /Pf (6)

As the length of Markov Chain increases, the stationary distribution function ensure that the
generated state points tend to fit into the selected target distribution function, namely generating
samples in failure region.

Step (3): Select proposal distribution function

The proposal distribution function of Markov Chain directly affects the transforming method
from current state to alternate state, which also has an influence on the distance between the
candidate state and current state. Based on the basic principle of Markov Chain, proposal
distribution adopting the current state x(j) as sampling center has a symmetric property. Here,
the proposal distribution is a normal distribution, written as,

f ∗
(
ε | x(j)

)
=N

(
x(j),V2

)
(7)

where ε denotes the candidate state and x(j) represents the current state. The vector V is the
standard variance vector of original joint probability density function, which affects the sampling
region of Markov Chain. In order to enhance the convergence of Markov Chain, the gradual
changing strategy is adopted. Setting the initial value of V to be V0 and taking coefficient
γ (γ < 1) make the standard variance gradually decreasing during the simulation. Those settings
can enable Markov Chain simulation to seek its important zone of limit state more quickly,
and enable more samples of simulation locating around the important domain and the limit
state function.

Step (4): Determine the jth state x(j) of Markov Chain

Based on previous state x(j−1), the jth state x(j) of Markov Chain can be determined by
combining its proposal distribution with the Metropolis-Hastings criterion. Firstly, candidate
state points ε are generated by the proposal distribution f ∗

(
ε | x(j−1)), then the ratio between

stationary distribution function f (ε | F) of candidate state ε and its previous distribution function
f
(
x(j−1) | F) can be calculated by Eq. (8),

r= f (ε | F)

f
(
x(j−1) | F) =

IF (ε) fx (ε) /Pf
IF
(
x(j−1)

)
fx
(
x(j−1)

)
/Pf

= IF (ε) fx (ε)

IF
(
x(j−1)

)
fx
(
x(j−1)

) (8)

According to Metropolis-Hastings criterion, candidate state ε is regarded as the jth state x(j)

of Markov Chain if r≥ 1, namely x(j) = ε. If r< 1, x(j) takes the value ε of on the probability
of r, or takes the value of x(j−1) on the probability of 1− r, written as,

x(j) =

⎧⎪⎪⎨
⎪⎪⎩

ε r≥ 1

ε α < r< 1

x(j−1) r≤ α

(9)

where α is a random number subjected to uniform distribution in the interval [0, 1].
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For reliability analysis, each of the candidate state ε, whether it is regarded as a Markov
Chain state or not, is evaluated by calculating the performance function. Thus, all candidate states
ε are used for training the random forest model, which makes most of valid information during
Markov process. The proposed Markov Chain is adaptive to generate samples around the limit
state function, so the random forest model has a better approximate accuracy for calculating
failure probabilities.

2.3 Random Forest Algorithm
Random forest algorithm is a kind of machine learning regression algorithm. Random for-

est algorithm is a coupling model assembled with b-regressive trees θ , which can be labeled
as {h (x, θk) , k= 1, 2, . . . , b}. By calculating the average of b-regressive trees, the prediction
of random forest regressive model could be obtained. Once the samples are generated by the
MCMC, the random forest model is constructed based on these samples. The establishing process
of random forest algorithm for reliability analysis is described as follows.

Step (1): Based on Bootstrap method, abstracting b training sample groups repeatedly to
construct b regressive trees from n samples generated by the MCMC. For b samples that are not
selected during each time of abstraction for training samples assemble an out-of-bag (OOB) as a
sample group for examination.

Step (2): Construct the regressive tree. From k variables among sub-branch points of each
trees, select randomly mtry (mtry < k) variables as candidate branch variables, then estimate their
optimal branch variables based on the branch-weight criterion.

Step (3): Each regressive tree branches grows unceasingly, recursively from top to bottom. The
coefficient ntree-value of each tree, is regarded as the termination criterion of regressive growth.

Step (4): The produced b regressive trees construct regressive model of random forest. And
the prediction of new model can be evaluated by the prediction accuracy of OOB, which is
measured by the variance average of examination set of original data. Assuming the sample
number of OOB to be m, then

MSEOOB =

m∑
i=1

(
yi− ŷi

)2
m

(10)

R2
RF = 1−MSEOOB

σ̂ 2
y

(11)

where yi denotes the real value of dependent variable among OOB, ŷi denotes the corre-
sponding predicted value obtained by random forest regressive model, σ̂ 2

y denotes the variance
of predictions.

For random forest regressive model, the effect of independent variable on dependent variable
can be evaluated by variable importance measure (VIM). Here, VIM is an assessment approach
based on the mean square error reduction of random permutation and reduction of model
accuracy to evaluate the influence of independent variables. The calculation process of mean
square error reduction is given as following.

(1) Establish regressive tree for each training sample set, and use the established regres-
sive tree to predict the OOB data. Then, the mean square error of b-OOB data, labeled as
MSE1, MSE2, . . . , MSEb, can be obtained.
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(2) Due to the random selection of variables during constructing of regressive trees branch,
variables Xi of OOB data sets are replaced randomly to assemble a new examination set of OOB
data. Using the established random forest regressive model to predict the new examination set,
the mean square variances of OOB data can be obtained after replacing randomly. The mean
square errors can be assembled as the following matrix,⎡
⎢⎢⎢⎢⎢⎢⎣

MSE11 MSE12 . . . MSE1b

MSE21 MSE22 . . . MSE2b

...
...

. . .
...

MSEk1 MSEk2 . . . MSEkb

⎤
⎥⎥⎥⎥⎥⎥⎦

(12)

(3) Substring the corresponding mean error of ith row for the above matrix from
MSE1, MSE2, . . . , MSEb, respectively. Then divide these mean values by their standard
deviation, the VIM can be obtained, which is expressed as Eq. (13),

VIMi (MSE)=
⎛
⎝1
b

b∑
j=1

(
MSEj −MSEij

)⎞⎠/SE , (1≤ i≤ k) (13)

A large value means the independent variable is important for dependent variable. The key
idea of the VIM is to apply random disturbance to each variable, and observe the change
of accuracy on the established model. Based on the reduction of accuracy, the importance
of variable can be evaluated. If the model’s accuracy increases after a disturbance of variable
decreases, it indicates that this specific variable possesses a higher importance.

2.4 Improved Random Forest Algorithm
The number of regressive trees ntree and number of predictors sampled for splitting at each

node mtry are important parameters for random forest algorithm. Partial observed values of
independent variables are generated randomly by Bootstrap resampling technique during the
construction process of random forest regressive tress. Partial explanatory variables selected ran-
domly determine the branch number of regressive trees, which can create hundreds of regressive
trees. The data is divided into ntree training samples, and ntree decision tree models are trained
simultaneously. The splitting number mtry at each node can also affect the accuracy of results.
Meanwhile the parameter mtry depends on ntree, making the regressive model sensitive. Therefore,
the sequential quadratic programming (SQP) is adopted to search the best parameter combina-
tion of ntree and mtry. The objective function is the mean square error (MSE) of the random
forest model.

2.5 The Integral Process of the MCRF Method
The integral process of the Markov Chain, random forest modeling, and Monte Carlo simu-

lation is shown in Fig. 1. Firstly, based on the engineering experience or numerical computation,
an initial point is generated, which is located in failure region. Secondly, the adaptive sampling is
performed by the Markov Chain simulation. During iteration, all the points at which the perfor-
mance function is evaluated, are retained. Then these points obtained by the Markov Chain are
used as the design of experiments, and the random forest model is constructed. The parameters
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of the random forest are optimized by SQP method. Finally, the failure probability is calculated
by the Monte Carlo simulation and random forest.

Figure 1: The overall process of the MCRF method

3 Model Application

In this section, cases including nonlinear function with cross terms, exponential-nonlinear
function, and an engineering problem, sealing ring of aircraft, are employed to verify the
effectiveness of the proposed method.

3.1 Case I: Nonlinear Function with Cross Terms
Limit state function with cross terms, as a limit state nonlinear function with cross terms, is

shown as Eq. (14),

g (x)= 0.16 (x1 − 1)3+x2 + 4− 0.04 cos (x1x2) (14)

where x1, x2 denote independent random variable subjected to the standard normal
distribution, respectively.

Initial selection point of Markov Chain is [−4, −4]. Samples are created after 67 Markov
Chain simulations, which contain the accepted samples and rejected samples, as shown in Fig. 2.

Using the generated samples to construct the random forest model. The random forest model
is optimized by SQP. The parameter mtry is set as 39 and the ntree is set as 500. The iteration
of objective function is shown in Fig. 3. As can be seen, the RF model converged in about
37 iterations.

The prediction values and training values of random forest model are shown in Fig. 4. From
Fig. 4, these prediction values agree well with that of expectation, indicating the trained random
forest model has a higher accuracy to replace their corresponding original performance function
for reliability analysis. Based on these prediction values, it is possible to apply random forest
model to calculate output values and to obtain their failure probability through Monte Carlo
Simulation. Aiming to validate the effectiveness of proposed method, the failure probability is
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calculated by crude Monte Carlo Simulation. Then, the first order reliability method (FORM)
method, SVM, ANN and subset simulation [30] are listed in Tab. 1, respectively.
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Figure 2: Samples generated by MCMC for Case I
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Figure 4: Comparison between prediction values and training values of random forest model

Table 1: Reliability results for Case I

Method Pf Ncall β Relative error (%)

MCS 0.0328 3× 105 1.8411 /
Proposed RF 0.0331 67 1.8371 0.22
FORM 0.0316 73 1.8578 0.91
SVM 0.0322 67 1.8494 0.45
ANN 0.0318 67 1.8550 0.75
Subset 0.0337 3800 1.8290 0.66

where, β is reliability index, calculated by β =−�−1
(
Pf
)
.

The parameters used in the methods are explained as follows. For SVM, the RBF kernel
function is applied, the parameters of the kernel are obtained by the grid searching method,
which is 256 (as penalty factor) and 0.0625 (as radius of the kernel function), respectively. For
ANN, the architecture is 25-10-5, namely, 25 neurons in the input layers, 10 neurons in the hidden
layers and 5 neurons in the output layers. The learning rate is 0.1, and the max iteration number
is 200. The activity function is sigmoid function. The standard subset simulation code is adopted
here [30], the number of samples in each simulation level is 2000, the conditional probability is
0.1, and the maximum number of simulation levels is 10.

Here, the failure probability is obtained by 3× 105 times of Monte Carlo simulations, which
is considered as a benchmark solution. Compared with Monte Carlo simulation, results by the
proposed method have a higher accuracy. Using the proposed model, less times of performance
functions are conducted. Moreover, it needs not to calculate the design point for reliability
analysis by the proposed RF method, which improves the stability of the algorithm.
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3.2 Case II: Exponent Nonlinear Function
In this section, an exponent nonlinear function is validated [31], which is expressed by

Eq. (15) as,

g (x)= exp (0.2x1+ 1.4)−x2 (15)

where all basic random variables are independent with each other and obey standard normal
distribution. By randomly selecting initial state points of Markov Chain, some samples are
generated during the process of Markov Chain, and are shown in Fig. 5.
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Figure 5: Samples generated by MCMC for Case II

Table 2: Reliability results for Case II

Method Pf (×10−4) Ncall β Relative error β (%)

MCS 3.59 107 3.3826 /
Proposed RF 3.58 66 3.3824 5.913e-3
FORM 4.04 77 3.3500 0.96
SVM 2.90 66 3.4408 1.72
ANN 4.70 66 3.3079 2.21
Subset 3.62 7400 3.3803 0.068

From Fig. 5, 66 samples, including 60 rejected samples and 6 accepted samples, were pro-
duced in the process of Markov Chain. Their calculations of failure probability are list in Tab. 2.
It shows, the failure probability reaches 3.59× 10−4 after 107 Monte Carlo Simulations, which
can be regarded as the benchmark solution of this problem. The calculation obtained by the
proposed model is very similar to that by FORM method. But compared with FORM method,
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the proposed method requires less callings of performance function, meaning that the proposed
method has a higher computational efficiency than FORM method. Compared with SVM and
ANN, the proposed method has much higher precision and can be used in probability analysis.
The result by standard subset simulation method is also better than the FORM, SVM, and ANN,
however it takes a large amount of calling performance function. The subset simulation combined
with surrogate model will be effective to reduce the number of performance calling.

3.3 Case III: Sealing Ring
The reliability analysis of sealing is carried out as the last example [32]. The sealing equip-

ment is the aircraft hydraulic system, including an O-ring, a piston rod, a seal groove etc. The
simulation model is shown in Fig. 6, where the finite element model is performed in ANSYS.
The diameter D, elastic modulus E, the amount of compression l and working oil pressure P are
taken as random parameters, whose distributions are listed in Tab. 3.

Figure 6: Sealing equipment model

Table 3: Random parameters and distribution

Variables Distribution type Means Variances

Elastic modulus E (MPa) x1 Normal 14.4 1.189
Diameter of ring d (mm) x2 Normal 4 0.3304
Amount of compression l (mm) x3 Normal 0.4 0.03304
Oil pressure P (MPa) x4 Normal 5 0.413

The failure model of sealing presumes that the maximum contact pressure σ to be greater
than the working oil pressure P between the ring and cylinder. Therefore, the performance
function of the sealing can be written as,

Z = gi = σ (xi)−P (i= 1,2,3,4) (16)

where xi is the random vector for reliability analysis, x = (E, d, l, P); σ (xi) is the contact
pressure, and p (xi) is the working oil pressure, where P= x4.

The results of failure probability calculated by literature and the proposed method are listed
in Tab. 4. As can be seen, the literature uses 350 samples to establish the neural network and
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obtain the failure probability, while here only 200 samples are used to construct the random
forest model and get the failure probability. The relative error between the proposed method and
literature is less than 5%, indicating the proposed method is effective.

Table 4: Reliability analysis results of sealing

Method Pf (×10−4) Ncall β Relative error (%)

ANN 2.66 350 3.4641 /
Proposed RF 2.65 268 3.4651 0.029

4 Conclusion

In this paper, a novel reliability analysis method combined with Markov Chain, random forest
model and Monte Carlo simulation was proposed. Firstly, a series of samples, including rejected
samples and accepted samples, are generated by Markov Chain. Then, based on the samples by
Markov Chain, random forest model is established to substitute for the real performance function.
Next, according to the distribution of random variables, the reliability analysis was performed
by Monte Carlo simulation based on the random forest model. After validation by cases, the
proposed random forest model has shown a higher accuracy and efficiency. Compared with Monte
Carlo simulations, the proposed model could significantly reduce the calling times of performance
functions, while holding a higher calculation accuracy. Compared with the first order reliability
method, the proposed method does not require to calculate the gradient of limit state function,
which reduces the explicit requirement of limit state function. Compared with SVM, ANN and
subset simulation, the proposed method holds a higher precision in terms of failure probability.

The proposed method in this study makes a full use of the adaptability of Markov Chain
and the excellent nonlinear fitting ability of random forest model, which reduces the dependence
of conventional approximation method on experimental design. The high accuracy prediction of
sampling simulation could be realized by means of random forest model, ensuring the calculation
accuracy of reliability analysis and enhancing the calculation effectiveness. Application examples
of the proposed model shows it is effectiveness for engineering. The proposed method is applicable
in low dimension problems as demonstrated in this paper, and it will be a promising method
for high dimension problems. In further study, it should be developed for high dimensional
problems. Moreover, the parallel computing should be also adopted to further improve the
computing efficiency.
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