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Abstract:Microdamage is produced in bone tissue under the long-term effects
of physiological loading, as well as age, disease and other factors. Bone
remodeling can repair microdamage, otherwise this damage will undermine
bone quality and even lead to fractures. In this paper, the damage variable
was introduced into the remodeling algorithm.The new remodeling algorithm
contains a quadratic term that can simulate reduction in bone density after
large numbers of loading cycles. The model was applied in conjunction with
the 3D finite elementmethod (FEM) to the remodeling of the proximal femur.
The results showed that the initial accumulation of fatigue damage led to an
increase in density but when the damage reached a certain level, the bone
density decreased rapidly until the femur failed. With the accumulation of
damage, bone remodeling was coupled with fatigue damage to maintain the
function of bone. When the accumulation of damage reached a certain level,
bone remodeling failed to repair the accumulated fatigue damage in time,
and continued cyclic loading significantly weakened the loadbearing capacity
of the bone. The new mathematical model not only predicts fatigue life, but
also helps to further understand the compromise between damage repair and
damage accumulation, which is of great significance for the prevention and
treatment of clinical bone diseases.

Keywords: Bone remodeling; fatigue damage; mathematical equation;
proximal femur; FE analysis

1 Introduction

Human bone is a living tissue whose structure and shape are constantly being renewed to
maintain its mechanical performance and adapt to its changing mechanical environment [1]. Bone
is often subjected to repetitive fatigue loading during daily physical activities. When the loading
exceeds a certain stress–strain level, microdamage or microcracks will occur in the bone tissue
and with sufficient accumulation of damage may cause fracture [2]. However, bone tissue, as a
special biological material, can repair itself in order to adapt to the surrounding mechanical and
physiological environment. It does this through bone resorption and bone formation at specific
locations to adjust its internal structure and external shape [3,4]. This allows bone to maintain or
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improve its mechanical properties by repairing microdamage in bone tissue generated under daily
loading [5], so as to prevent fractures.

According to Wolff’s law, bone strives to achieve an optimal structure [6] through bone
modeling and remodeling; this process is called functional adaptation. Bone modeling changes
the spatial distribution of bone tissue so that it can perform its physiological function. With
skeletal maturity the amount of bone modeling is greatly reduced and bone remodeling becomes
predominant. The function of bone remodeling is to adjust bone structure to adapt to chang-
ing mechanical requirements, repair microdamage, and prevent eventual fatigue failure [7,8].
Martin [9] pointed out that fatigue damage caused by physiological loading is identified and
repaired by the activation of bone remodeling. Bone remodeling is the only way to eliminate this
kind of damage, and it may be a necessary condition to extend the fatigue life of bone. Taylor
believed that stress fractures were the result of repeated cyclic loading and theoretically predicted
that stress fractures occurred in athletes and soldiers during high-intensity exercise. He found that
the main mechanism of preventing stress fractures came from microdamage repair [10].

Physiologically, bone remodeling is a process of bone tissue repair that employs basic mul-
ticellular units (BMUs) [11–13]. BMUs are discrete anatomical structures in which osteoclasts
remove damaged tissue and osteoblasts generate new bone tissue. Fatigue damage first activates
the BMUs and eliminates excess damage through the bone remodeling process [14]. Burr [15]
proposed, based on spatial and temporal associations with new remodeling, that accumulation of
damage in bone could initiate the remodeling process to repair itself. In other words, the bone
can sense the damaged area and repair it before fracture occurs [16,17].

Damage plays an important role in the bone remodeling process and may involve substan-
tial changes in mechanical function so it is very important to investigate the relationship of
bone remodeling to fatigue damage. In this study, a new damage adaptive remodeling model is
proposed. The FE numerical simulation was used to obtain the corresponding damage variable
by changing the number of loading cycles, and bone remodeling under different degrees of
damage was evaluated. The resorption of damage associated with excessive loading cycles also
was simulated. The new mathematical model established in this paper can predict the fatigue life
of the femur, and also provides a reference for the prevention and treatment of clinical fractures.

2 Bone Remodeling AlgorithmModel

2.1 Development of Bone Remodeling Algorithm
Most relevant previous studies on bone remodeling were experimental and analyzed the

mechanical properties of bone through in vivo experiments. With the rapid development of
computer technology in the 1990s, the numerical simulation of bone remodeling using computer
simulation technology became more popular. At present, there are mainly two kinds of algorithms
for the numerical simulation of bone remodeling: the mechanical model and the physiological
model. The mechanical model is generally expressed as the change of apparent density with a
mechanical stimulus, whereas the physiological model is generally expressed by the damage state
and porosity change [18].

A conceptual mechanical steady-state theory was proposed by Frost. Based on this the-
ory, Carter et al. [19] presented a qualitative description of bone remodeling that could be
expressed as

dρ

dt
=B (S−K) , 0< ρ ≤ ρcb (1)
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where ρ is the apparent density, which represents the internal structural characteristics of bone;
S is the mechanical stimulus; B is the remodeling rate coefficient; K is the steady state reference;
and ρcb is the maximum density of cortical bone. Huiskes [20] proposed a remodeling algorithm
which considered the concept of a “lazy zone.” Weinans [21] also proposed the concept of a “dead
zone” and believed that bone remodeling didn’t occur when the stimulus was between K(1±ω).
As mentioned above, bone damage and repair are coupled, and bone remodeling can also influ-
ence the bone’s damage behavior. Based on these conditions, models of bone behavior have
been developed and applied to the prediction of fracture and implant loosening [1,22–26]. The
bone damage-repair process is shown in Fig. 1. Under the long-term action of external loading,
bone will develop fatigue damage, causing changes in bone material properties. Fatigue damage
can activate bone remodeling [27], replacing the damaged bone and maintaining its mechani-
cal properties. Based on the process of bone damage-repair, this paper proposes a new bone
remodeling model that considers different values of damage accumulation, which is significant for
preventing fractures.

Figure 1: Diagram of the bone damage-repair process

2.2 Bone Remodeling Algorithm Based on Damage Repair
In this paper, based on the classical bone remodeling equation, the damage variable D

D= 1−
[
1−

(
N
Nf

) 1
1−α

] 1
1+β

(2)

proposed by Hambli [28,29] was introduced into the simulation, and a new control equation for
fatigue damage was proposed to simulate bone damage behavior. In the formula, N is the number
of loading cycles, Nf is the number of cycles to failure, and α and β represent the material
fatigue parameters of bone. We assigned α = 0.01 and β = 0.001. We considered the damage
variable, caused by the number of loading cycles, to be an isotropic parameter. This formula
shows the evolution of damage with the number of loading cycles. The scope of the damage
variable D is from 0 to 1. D= 0 corresponds to the undamaged state; when the number of loading
cycles is equal to the number of failure cycles, D = 1, and there will be local failure. In other
words, the damage variable D is positively correlated with the number of loading cycles N. In the
simulation, the damage variable can be changed by changing the number of loading cycles. From
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this, the new control equations are modified on the basis of the traditional control equation and
expressed as:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dρ

dt
=A [S− (1+ω)K]−B ·D · [S− (1+ω)K]2 S> (1+ω)K

dρ

dt
= 0 (1−ω)K < S< (1+ω)K

dρ

dt
=A [S− (1−ω)K]−B ·D · [S− (1−ω)K]2 S< (1−ω)K

(3)

In the formulae the remodeling control quantity ρ is the apparent density of bone; S is the
mechanical stimulus; A, B are bone material parameters; K is the steady-state reference value;
and ω represents the dead zone range. When S is between (1± ω)K, bone remodeling will not
occur. Based on [21], the specific values of parameters in Eq. (3) are: A = 1 (g/cm3)2 · (MPa ·
time−unit)−1, B = 10 (g/cm3)3 · (MPa)−2 · (time−unit)−1, K = 0.04 J/g = 0.04 MPa/(g · cm−3),
ω = 0.1.

Using this equation, the rate of change in density with damage accumulation can be studied.
The equation also can be used to calculate the change of bone density values, and the new bone
structure can be obtained by constantly updating the density value through iterative calculation.
The density change rate curve expressed by this equation is a quadratic curve with a downward
opening that varies with the damage. As the number of loading cycles increases, which increases
damage, bone density and the density change rate first increase to a maximum value (bone gain),
then begin to decrease until they become negative where overload resorption may occur [30]. In
the equation, by changing the bone material parameters A and B, the shape and position of the
quadratic curve can be adjusted to the corresponding mechanical behavior of different types of
the bone.

In the study of bone remodeling, equivalent stress, equivalent strain and strain energy density
all can be selected as the mechanical stimulus. According to Weinans, bone is regarded as a
continuous material [21], and the strain energy density S = U/ρ is selected as the mechanical
stimulus to simulate bone remodeling based on the fatigue damage model. The apparent strain
energy density is used as the strain energy density in the calculation, regardless of the stress
history. Therefore, the strain energy density is expressed by the current stress and strain [30].
In the simulation here, uniaxial loading is considered, then strain energy can be expressed as
U = σε/2= σ 2/2E.

In previous studies, scholars defined the properties of bone material related to their apparent
density [31]. If we consider bone tissue as an isotropic material, the relationship between the
elastic modulus and apparent density of bone material can be defined as: E = E(ρ) = Cρr,
where C and r are the constants, and their values generally are obtained experimentally [32,33].
This equation has been accepted and is used widely. In this paper, we considered the role of
the damage variable [34], then the elastic modulus E = C(1 − D)ργ , and the constants C =
3790 MPa · (g/cm3)−3 and γ = 3, so the mechanical stimulus can be expressed as a function
of stress:

S= U
ρ

= σ 2

2Eρ
= σ 2

2C (1−D) ρ4 (4)
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Next, substituting Eq. (4) into Eq. (3):

dρ

dt
= f (σ ,ρ,D)=

(
σ 2

2C (1−D) ρ4 − 1.1K

)
−B ·D ·

(
σ 2

2C (1−D) ρ4 − 1.1K

)2

(5)

We used the improved Euler’s method to calculate the differential equation, as shown below:

ρ∗
n+1 = ρn+Δtf (σ ,ρn,D) (6)

ρn+1 = ρn+ Δt
2

[
f (σ ,ρn,D)+ f

(
σ ,ρ∗

n+1,D
)]

(7)

3 Application to Femoral Remodeling Using the Finite Element Method

To realize the practical value of the algorithm, the new bone remodeling mathematical model
was applied to the FE software Abaqus. By converting the remodeling control equation into the
Python program and using iSight for software integration, the control equation was combined
with the FE calculation process in Abaqus to improve the efficiency of the cyclic calculation.

3.1 FE Simulation of 2D Proximal Femur
Due to the large number of elements in the 3D FE model of the proximal femur and complex

bone remodeling algorithm, a simpler 2D FE model was used to simulate bone remodeling and
to verify the feasibility of the algorithm. Then, the 3D proximal femur model was simulated with
bone remodeling considering fatigue damage.

The CT scan data were imported into Mimics software to establish the 2D shape of the
proximal femur in the coronal plane, which was imported into Abaqus for mesh division to obtain
a 2D FE model. The 2D FE model assumed that the femur is an isotropic material with an initial
elastic modulus of 14 GPa, a Poisson’s ratio of 0.3, and an initial density of 1.4 g/cm3. Three
conditions are shown in Tab. 1 [35] and illustrated in Fig. 2.

Table 1: The magnitudes and orientations of the three load cases

Load case Load cyclic Joint force Muscle force
number Magnitude (N) Direction (◦) Magnitude (N) Direction (◦)

1 Single-leg stance 6000 2317 24 703 28
2 Abduction 2000 1158 −15 351 −8
3 Adduction 2000 1548 56 468 35

Based on the simulation of bone remodeling under these three typical conditions, the von
Mises stress distribution of the femur was obtained over the loading period. The maximum
stresses corresponding to different cycles were extracted, and iterative calculations were carried
out by using the algorithm proposed in this paper. The damage variable, elastic modulus and
density corresponding to different cycles were calculated successively, and their variation trends
were analyzed.

As shown in Figs. 3–5, the von Mises stress corresponded to the increase of loading cycles
under the three typical loading conditions. By analyzing the stress nephogram under these three
conditions, it was found that the maximum stress was concentrated primarily near the femoral
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shaft. The stress on the periphery of the femoral shaft was greater, and bone remodeling began
in this area initially. Through the repair effect of bone remodeling, the corresponding density of
the periphery of the femoral shaft increased and the area with high femoral shaft density tended
to thicken. The intracortical area of the femoral shaft was less stimulated by stress, so the repair
effect of bone remodeling was relatively weak.

Figure 2: Schematic of the 2D proximal femur model with loads and boundary conditions

The stress distribution can only be seen simply through the cloud map, and the observation of
the overall trend change is not very obvious. As the amount of damage was positively correlated
with the number of cycles, the maximum von Mises stress of different cycles was extracted and
brought into the bone remodeling algorithm for iterative calculation. The variation of elastic
modulus and density with the damage was obtained and analyzed. Fig. 6 shows the variation
of the elastic modulus under the three typical conditions, and the overall trend is downward.
In single-leg stance or adduction, as damage increases, the elastic modulus decreases slowly at
first and then rapidly. In abduction, the elastic modulus decreases uniformly. In single-leg stance
or adduction, the corresponding damage is different when the trend of elastic modulus changes,
indicating that the femur presents a different relationship between modulus and damage under
different conditions of loading angle and magnitude. So although the overall trend is roughly the
same, the corresponding damage is different when there is a turning point. With the accumulation
of damage, bone remodeling is insufficient to repair it, so the decline of elastic modulus is
more obvious.
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Figure 3: The von Mises stress with cycles in single-leg stance
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Figure 4: The von Mises stress with cycles in abduction
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Figure 5: The von Mises stress with cycles in adduction
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Figure 6: The variation trend of elastic modulus with damage in the three loading conditions

As shown in Fig. 7, in single-leg stance, when the damage variable was less than 0.8, although
the density change rate fluctuated up and down the density change was greater than zero.
Similarly, as shown in Figs. 8 and 9, in abduction when the damage was less than 0.7, and in
adduction when the damage was less than 0.8, the overall density change rate was greater than
zero. A density change rate greater than zero indicates that the fatigue damage caused by the
cycles can be repaired by bone remodeling, and bone deposition would occur on the femoral
shaft at this time. When the cycles and damage continue to increase, the density change rate
begins to decrease until it is less than zero, indicating that bone resorption would occur at this
time. Different accumulations of damage correspond to different remodeling behaviors. We believe
there is a critical damage quantity D0 under different loading conditions. When D < D0, bone
remodeling is coupled with damage and can repair it. When D > D0, bone remodeling can no
longer fully repair the damage, and so damage continues to accumulate, eventually leading to
fatigue failure.

Figure 7: The trend diagram of density change rate before and after critical damage in
single-leg stance
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Figure 8: The trend diagram of density change rate before and after critical damage in abduction

Figure 9: The trend diagram of density change rate before and after critical damage in adduction

The variation of density under three typical conditions was further analyzed, as shown in
Figs. 10–12. When D<D0, the bone density increases, consistent with the trend of density change
rate, because bone deposition occurs at this time. When D>D0, the damage continues to increase.
In single-leg stance or adduction, the density has a significant downward trend, indicating that
resorption due to overload occurs at this time, and bone density decreases. The variation trend of
the density value corresponding to abduction does not show an obvious decrease. This is because
fatigue damage can be repaired by bone remodeling, so the time when density decreases occurs
later after more cycles.

3.2 3D FE Simulation of Human Proximal Femur
We used the 3D FE model of the proximal femur to simulate the macroscopic mechanical

properties and damage behavior of cortical bone based on the assumption that cortical bone
at the continuum level is a purely elastic material. Since cancellous bone is a solid–liquid two-
phase material composed of trabeculae and bone marrow, it presents a more complex irregular
structural network with high porosity. Therefore, we studied the mechanical properties only of
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cortical bone. Mimics software and Hypermesh were combined to establish the proximal femur
3D FE model quickly and accurately.

Figure 10: The variation trend of density before and after critical damage in single-leg stance

Figure 11: The variation trend of density before and after critical damage in abduction

In Abaqus, local constraints were applied to the bottom of the femur model and loading was
set based on human muscle strength and joint force; typical conditions were shown in Tab. 1.
The loading details are shown in Fig. 13 and are based on an adult of 70 Kg bodyweight
when stationary or walking slowly. The ODB result file was imported into iSight to extract
the maximum von Mises stress, which was substituted into the bone remodeling algorithm. The
mechanical stimulus and bone density change rate were obtained in turn, and the updated density
was obtained through the Euler iterative algorithm.

After the simulation was completed, the performance parameters of femur remodeling were
analyzed. The results of bone remodeling in single-leg stance were analyzed first followed by
analyses in hip joint abduction and adduction.
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Figure 12: The variation trend of density before and after critical damage in adduction

Figure 13: Schematic of the 3D proximal femur model with loads and boundary conditions. A
CT scan of a male volunteer with normal femurs was performed. A 3D geometric model of the
proximal femur was established using Mimics and geomagic software. The mesh was divided in
hypermesh to establish a 3D FE model. Loads and constraints were applied in Abaqus, and iSight
was used in combination to study bone remodeling under three loading conditions

In this bone remodeling algorithm, the damage variable gradually increases with the number
of cycles. The corresponding damage was obtained by changing the number of cycles in the
simulation, and variations in the elastic modulus of the femur were analyzed (Fig. 14).

Under cyclic loading the elastic modulus of bone changes in three different stages. In the first
stage, damage is produced, and the modulus decreases rapidly. The damage continues to increase
in the second stage even though some bone remodeling occurs to repair the damage. Therefore,
damage is resorbed and energy dissipated in the second stage, but the elastic modulus does not
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change significantly. The damage continues to accumulate in the third stage. Bone remodeling
continues to occur, but is insufficient to repair all the damage which continues to accumulate,
leading to a rapid decline in modulus.

Figure 14: Elastic modulus of bone plotted against the damage variable in single-leg stance

Next, a comprehensive analysis of the bone density changes and rate of change with
fatigue damage was performed (Figs. 15, 16). Bone remodeling plays a role in the process of
repairing damage. Fig. 15 shows that the density change rate first increases sharply with an
increase of damage, followed by some repair through bone remodeling. When the density change
rate reaches the maximum, the bone repair ability is greater than damage accumulation. After
that, the density change rate gradually decreases, indicating that bone remodeling and damage
gradually tends toward an equilibrium. When the density change rate is zero, the process of bone
remodeling ends. As the damage accumulation continues to increase, the density change rate drops
sharply, and bone resorption would be predicted to occur.

Figure 15: The trend of density change rate in single-leg stance before and after critical damage
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The change of density values is shown in Fig. 16. With the increase of damage, due to
the effect of bone remodeling, density gradually increases to make up for the bone loss caused
by damage. This is relatively consistent with the trend of density change rate. However, as the
damage continues to accumulate, the density decreases. When the density drops to zero, overload
resorption occurs and the femur can fail locally due to the accumulation of damage.

Figure 16: The variation trend of the density in single-leg stance before and after critical damage

The variation of the elastic modulus in abduction and adduction also was analyzed (Fig. 17).
It was found that the overall change trend of elastic modulus is similar between these conditions
and shows a downward trend. In abduction, the overall elastic modulus shows a uniform down-
ward trend. In adduction, the elastic modulus first presents a steady downward trend. After the
damage exceeds 0.8, the elastic modulus decreases more quickly.

Figure 17: Elastic modulus of bone plotted vs. damage in abduction and adduction
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The density change rate (Fig. 18) and the variation in bone density (Fig. 19) under the two
conditions were analyzed. As the damage increases, the variation of density and its change rate in
abduction and adduction is similar to single-leg stance. The damage variable D is proportional to
the number of loading cycles and the cycle ratio N/Nf , that is, the damage variable represents the
ratio of loading cycles to failure cycles. It was found that different damage situations correspond
to different bone remodeling behaviors. There was a different critical damage quality D0 in differ-
ent loading conditions. When D<D0, bone remodeling was coupled with the damage. Although
the damage increased, bone remodeling could repair some of the damage at this time. When
D > D0, with the accumulation of damage, bone remodeling can no longer maintain sufficient
repair, eventually leading to fatigue failure.

Figure 18: The trend of density change rate in abduction or adduction before and after
critical damage

Figure 19: The variation of bone density in abduction or adduction before and after
critical damage
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4 Discussion

In conclusion, FE simulations were implemented to predict the evolution of the bone dam-
age healing process through remodeling by using a model that combined both strain-adaptive
and damage-adaptive mechanisms. This work demonstrates the advantage of bone remodeling
simulations to predict the healing behavior in the proximal femur. However, several important
simplifications have been performed in this model. The orientation of bone material in the
proximal femur is difficult to determine, and the relationship between the elastic modulus of bone
and its apparent density assumed an isotropic material. In addition, the actual bone remodeling
process is not only affected by the external mechanical environment, but also by the internal
physiological environment. In future work, the anisotropy and the interaction between bone and
blood, bone marrow and cells, as well as the role of metabolism in the process of bone remodeling
and repair damage, should be considered to establish a more comprehensive damage model.
Further, resorption and formation rates in the algorithm should be experimentally measured. In
the future, it will be necessary to improve these models by including some of these effects.

5 Conclusions

In this paper, the damage variable was introduced into the bone remodeling study, and a
new bone remodeling algorithm considering fatigue damage was proposed. The new mathematical
model can simulate behavior of bone remodeling in different damage states and also can describe
resorption due to damage caused by cyclic loading. The model found that different damage
amounts correspond to different bone remodeling behaviors in the proximal femur.
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