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Abstract:Themodeling and risk assessment of a pandemic phenomenon such
as COVID-19 is an important and complicated issue in epidemiology, and
such an attempt is of great interest for public health decision-making. To this
end, in the present study, based on a recent heuristic algorithm proposed by
the authors, the time evolution of COVID-19 is investigated for six different
countries/states, namely New York, California, USA, Iran, Sweden and UK.
The number of COVID-19-related deaths is used to develop the proposed
heuristic model as it is believed that the predicted number of daily deaths
in each country/state includes information about the quality of the health
system in each area, the age distribution of population, geographical and
environmental factors as well as other conditions. Based on derived predicted
epidemic curves, a new 3D-epidemic surface is proposed to assess the epidemic
phenomenon at any time of its evolution. This research highlights the poten-
tial of the proposed model as a tool which can assist in the risk assessment of
the COVID-19. Mapping its development through 3D-epidemic surface can
assist in revealing its dynamic nature as well as differences and similarities
among different districts.
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1 Introduction

Taking into consideration the remarkable SARS-CoV-2 (severe acute respiratory syndrome
coronavirus 2) viral spread causing the COVID-19 (coronavirus disease) pandemic [1,2] with more
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than 5.5 million infected cases worldwide and 350.000 deaths as of May 26, 2020, mathematical
models serve as helpful tools for authorities to make public health decisions, thereby ensuring
optimal use of resources to reduce the morbidity and mortality associated with COVID-19 [3].
In order to control the pandemic viral spread, both mitigation and suppression of new infections
have emerged as the predominant public health strategies [4]. Previous studies based on estimates
of the fatality ratio showed a strong age gradient in risk of death [5]. The high risk of the
COVID-19 pandemic phenomenon as well as the more available time of researchers due to
restrictive received measures have had as a result, for the first time, that a plethora of researchers
coming from the computational engineering area, focus their research methods on the pandemic’s
trend prediction [6–12]. The recently proposed forecasting models are of great interest in epi-
demiology promising more reliable and robust predictions not only for COVID-19 but for other
“closely related families of viruses” of COVID-19. Thus, the modeling and risk assessment of
a pandemic phenomenon is an important and complicated issue in epidemiology, and such an
attempt is of great interest for public health decision-making.

In the present work, we have analyzed how to model the outbreak’s spread taking as a
parameter the number of deaths, and how the model changes over time as more information on
the number of deaths becomes available. We have developed our model relying on mortality data
from official sources that are in general more reliable than the reported confirmed cases based on
diagnosis-testing. Based on the number of reported daily deaths from COVID-19, we developed
a model of forecasting [13] that was applied to different parts of the world. In the present study,
based on a recent heuristic algorithm proposed by the authors, the time evolution of COVID-19
is investigated for six different countries/states, namely the New York state, California, USA, Iran,
Sweden and UK. The number of COVID-19-related deaths was used as it is believed that the
predicted number of daily deaths in each state includes information about the quality of the
health system in each area, the age distribution of population, geographical and environmental
factors as well as other conditions. Based on derived predicted epidemic curves a 3D-epidemic
surface is proposed to assess the epidemic phenomenon at any time of its evolution. This research
highlights the potential of the proposed model as a tool which can assist in the risk assessment
of the COVID-19.

In the light of the above, the manuscript is organized into 4 sections, including as its first
section the introduction presented above. In Section 2, the proposed heuristic algorithm for the
modeling of the COVID-19 trend is presented in detail, providing the basic assumptions and
the mathematical details of Gaussian functions. Section 3 provides the various results and the
discussion related to different countries/states under investigation. Here it should be noted that
six different areas, namely New York, California, USA, Iran, Sweden and UK have been taken
under consideration and the same heuristic algorithm has successfully been applied to all of them.
Analysis of the findings with respect to key parameters is discussed. Finally, insightful conclusions
and future recommendations are drawn in the final section.

2 Short Literature Review on COVID-19 Computational Models

Artificial intelligence and machine learning (ML) approaches e.g., artificial neural networks
(ANNs), and genetic programming (GP) have been found to be feasible in predicting outbreak,
trend or potential effect of COVID-19 in the near future [14–18]. Salgotra et al. [19] developed
many gene expression programming (GEP) models to predict the potential effect of COVID-19
in 15 most effected countries i.e., USA, Turkey, Brazil, Iran, Germany, Canada, MEXICO, UK,
Russia, Spain, Italy, France, China, South Africa, and Singapore. For prediction purposes, they
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used two data categories of the mentioned countries including confirmed cases (CC) and death
cases (DC) between January 2020 and May 2020. According to their results, it was expected that
the maximum rises in CC and DC will be happed in Brazil and USA, respectively. In addition,
they found a very high rate of increase (new cases) in USA, UK, Russia, Brazil and Mexico
during June 2020. In another study, a time series analyses and forecasting of COVID-19 in
India and its future behaviour, was performed by Salgotra et al. [20] using the GEP predictive
technique. They considered and used data of CC and DC of the three major states in India i.e.,
Maharashtra, Gujarat and Delhi. Actually, for each state, they developed a mathematical GEP
equation which is able to predict trends of CC and DC for future of the specific state. In addition,
they did a same procedure for the entire India, which is the second most populous country in the
world. They concluded that GEP-based predictive models/equations are highly reliable and can
be treated as benchmark for time series predictions. In another similar project, Pinter et al. [21]
conduced a research based on hybrid ML technique to estimate COVID-19 pandemic in Hungary.
They proposed two models namely adaptive network-based fuzzy inference system (ANFIS) and
multi-layered perceptron-imperialist competitive algorithm (MLP-ICA) to estimate time series of
infected individuals and mortality rate and after comparison, they selected the MLP-ICA predic-
tive model because of its lower system error during prediction and validation stages. According
to their conclusion, by late May, 2020, the outbreak and the total morality of COVID-19 would
drop substantially. An advance hybrid intelligence system namely ISACL-MFNN, which integrates
an improved interior search algorithm-based on chaotic learning strategy into a multi-layer feed-
forward neural network, was developed in the study conducted by Rizk-Allah et al. [22] to predict
the CS of COVID-19 in three countries i.e., Spain, Italy and USA. Then, to show capability of
the proposed model, they compared its performance with the other techniques such as particle
swarm optimization-MFNN and genetic algorithm-MFNN, and successfully indicated that the
proposed ISACL-MFNN is able to provide higher performance compared to other techniques.
In another investigation, Fanelli et al. [23] proposed a differential equation technique to evaluate
the exponential growth of the COVID-19 in France, Italy and China based on data related to
a period from 22/01/2020 to 15/03/2020. A comparative study of the ML techniques was carried
out by Ardabili et al. [24] to predict COVID-19 outbreak in five countries i.e., USA, Italy, Iran,
China, and Germany. These models include MLP and ANFIS predictive models. After construct-
ing the predictive models and evaluating them using COVID-19 data of the mentioned countries,
they found that both ML models are considered as an effective tool to model/predict the
COVID-19 outbreak.

3 Methods

3.1 Assumptions and Data Sources
During the study of the development of the COVID-19 pandemic, the daily number of

confirmed deaths due to COVID-19 for each location have been recorded and analyzed further.
The selection of daily deaths was based on the authors’ assumption that mortality rates provide
more accurate and reliable data compared to the recordings of the number of daily infected
individuals. The daily mortality rate is suggestive of additional information about the unique
characteristics of each setting, which influence the pandemic transmission trend in each place.
Such characteristics include:

• The climate and environmental conditions in each location
• The quality of the healthcare systems in each location
• The experience and expertise of the medical staff and healthcare workers
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• The age distribution of the population
• The pandemic mitigation measures applied in each location

The main assumption during the design of this algorithm was the observation that the
mortality rate, in particular the death numbers in the respective populations, follow a normal
distribution. Although daily recording might not be the case for optimal normal distribution,
it is important to note that the selection of death recordings every two or three days almost
always leads to an optimal normal distribution. Following this assumption, the simulation of the
pandemic spread was investigated for a variety of mortality rates in different settings, and the
setting giving the most accurate results and predictions was selected in developing the model.

In the process of developing a new prediction model, it is common that scientists pay
attention to the computational model; yet a reliable database is of high importance, and in order
to achieve a reliable forecast, researchers should give the appropriate attention to the database
used for the development, training, and validation of the model. In the light of the above,
the final overall database was based on two individual databases. Data for the states/countries
were obtained from the database Worldometer [25] and for the United States from the COVID
Tracking project [26]. In our prediction we did not accommodate underreporting of cases or
deaths, which is common in many parts of the world with considerable influence on the prediction
results. Recent analysis shows that the official global COVID-19 death toll is much higher (60%)
than officially reported [27].
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Figure 1: Shape, parameters and terminology of Gaussian function

3.2 Proposed Heuristic Algorithm
By analyzing the official data from China, including daily COVID-19 infections and deaths, it

is clear that they can be expressed with meaningful accuracy using a suitable Gaussian curve (or,
equivalently, a proper normal distribution density function). In addition, by studying the evolution
of the pandemic and the course of the restrictions in this country, and taking into account
that many European and other world countries have taken similarly strict restrictive mitigation
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measures, we assumed that the development of COVID-19 pandemic would have similarities to
its development in China. In other words, we propose that the number of new incidents or deaths
will be expressed using a proper normal distribution (Fig. 1).

A Gaussian function is a function of the form:

y= f (x)=Ae−
(x−μ)2

2σ2 (1)

whose graph is a symmetrical bell-shaped curve centered at the position x= μ. A is the height of
the peak and the variance σ2 controls its width. On both sides of the peak, the tails of the curve
quickly fall of and approach the x-axis (asymptote). Our algorithm aims to determine in each
state or setting the optimal normal curve for daily deaths by calculating the parameters A,μ,σ2;
i.e., by fitting the “best” possible normal curve. The optimality of the normal curve is given with
reference to well-known statistical indices.

More precisely, the main steps of the algorithm are (through a triple loop):

(1) (for A/first inner loop) We start from a given value of A, and with Step 1, we continue up
to a certain value (desired accuracy) depending on the maximum value of our available
data (deaths),

(2) (for μ/second inner loop) We start from a value of μ = 10 and we continue, with Step 1
(day), up to a value of μ = 60 (we observed for example that in the case of China, the
phenomenon lasted for about 60 days with an average [peak day of deaths] at about the
30th day).

(3) (for p/third inner loop) A = 1
σ
√
2π

so peaking σ2 can be calculated. The algorithm then

uses a probability value p, starting from p= 0.85, and with step 0.00001, continues up to
0.99999 (it is known that P = p × 100% of the data under a normal distribution curve
lie inside the interval

[
μ+ zq/2σ,μ− zq/2σ

]
, where q = 1− p and zq/2 =�−1 (q/2), � the

cumulative distribution function of the standard normal distribution N (0, 1) and �−1 its
inverse function. This interval is used to fit the actual data, using a proper transformation.

The algorithm application creates a large number of proper normal distributions by calcu-
lating the three parameters (theoretical/experimental values) each time. Finally, these values are
compared with the empirical values (actual numbers of deaths) and the “best” possible curve
is being selected using a number of indices, i.e., the algorithm searches for the optimal curve
characteristics using the available data up to the forecast day.

In the following pseudo-code (Algorithm 1), the algorithmic implementation of the method
is demonstrated.

3.3 Performance Assessment
The reliability and accuracy of the best fit Gaussian curves developed for each one pre-

diction were evaluated using Pearson’s coefficient of determination R2, the root mean square
error (RMSE) and the mean absolute percentage error (MAPE). RMSE presents information
on short-term efficiency, which is a benchmark of the difference in predicated values compared
to the experimental values. A lower RMSE indicates a more accurate evaluation. The Pearson’s
coefficient of determination R2 measures the variance that is interpreted by the model. R2 values
ranges from 0 to 1, with the model having the healthiest predictive ability when it is near to 1
producing little analysis when it is near to 0.
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Algorithm 1: Proposed heuristic algorithm’ pseudo code for the finding of best Gaussian function that fits
data (daily deaths due to COVID-19)
Input: Daily deaths
Output: Best fitting Gaussian curve of daily deaths
Definition of min and max values of Gaussian function parameters (A,μ,p) based on data
Index i=0
for A←min A:1:max A do

for ← min μ:1: max μ do
for ← min p:0.00001:←max p do

i = i+1
define i-th Gaussian function based on Eq. (1)
define root mean square error (RMSE) of i-th Gaussian function

end
end

end
Return: Best fitting curve of daily deaths is the Gaussian function with the minimum RMSE

The aforementioned statistical parameters have been calculated by the following
expressions [28–35].

RMSE =
√√√√1
n

n∑
i=1

(xi− yi)2 (2)

MAPE = 1
n

n∑
i=1

∣∣∣∣xi− yixi

∣∣∣∣ (3)

R2= 1−
(∑n

i=1 (xi− yi)2∑n
i=1 (xi−x)2

)
(4)

where xi are the actual/experimental values and yi the predicted/theoretical values.

3.4 Methodology
The present section outlines the methodology used to investigate the spread of COVID-19

in a country, state, city, or region. As an example, the methodology is presented here as it was
conducted and applied in the investigation of the spread of the epidemic in China. Given that the
epidemic in China preceded the spread of the epidemic to other countries, this allows us to apply
the proposed algorithm at the beginning of the phenomenon; in the intermediate phase, which is
usually characterized by a strong disease dynamic; and at its peak, where the phenomenon begins
to fade or recede.

The main principles of the proposed methodology are as follows:

• In each step of the study of the phenomenon, the optimal normal distribution is calculated
using the proposed algorithm and based on data available at the moment of calculation.
• The first assessment must be made 14 days after the first death recorded. The period of two

weeks is considered necessary to reliably characterize the beginning of the phenomenon.
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• At each time step, following the 14-day period from the first death record, the optimal data
simulation curve is calculated with the use of the proposed algorithm. Fig. 2 shows the
optimal curves for the country of China, that best simulate the data (number of deaths)
for three different days (6, 12, and 18 February 2020).
• In addition to the above estimates it is possible to reliably predict the expected number
of deaths for the time period up to 10 days following the time of the prediction (Fig. 3).
The algorithm provides simultaneous estimates for its higher and lower limits. Based on
a comprehensive study in the ten aforementioned countries, states, regions, and cities, and
the results presented below, these limits, as well as the difference between the predicted and
actual deaths, were confirmed for all states.

Figure 2: Prediction of the best fit curves of the actual deaths at three different dates of
prediction (Country of China)

4 Results and Discussion

In order to implement the proposed algorithm, a computer program has been developed at
the Computational Mechanics Laboratory, School of Pedagogical and Technological Education,
Athens, Greece. Utilizing this software through implementation of the heuristic algorithm, the
development of the epidemic was investigated in six different geographical locations: the states
of California and New York, and the countries United States, Iran, Sweden, and the United
Kingdom. The software was used to predict deaths for each country from the first day deaths
were recorded until available data as of May 4, 2020.

Fig. 4 presents the predicted deaths for the next eight days as well as the corresponding
epidemic curves over time for USA. These curves show the evolution of the phenomenon as
time passes. The predicted deaths (red dots) always follow the predicted curve (red line) with a
deviation lower than ±30% (green area).
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Figure 3: Prediction of number of deaths, in 2-day intervals, for the next ten days starting
February 12, 2020, for the country of China. Black dots represent actual data until the day in
which the algorithm made the prediction. Blue dots represent actual data after the day in which
the algorithm made the prediction

Based on the predicted epidemic curves (Fig. 4) a 3D epidemic surface for the pandemic trend
evolution over time is proposed. Fig. 5 represents the 3D epidemic surface for USA, that is the
predicted number of deaths over time over a period for more than 2 months. In accordance with
the epidemic curves presented above, this 3D epidemic surface strongly reveals the dynamic nature
of the pandemic phenomenon with its three distinct phases. Furthermore, using the proposed
heuristic algorithm, useful parameters about the pandemic phenomenon such as peak time, deaths
at peak time and total deaths have been predicted (Tab. 1).

As mentioned, using our proposed algorithm, we examined in 6 different states/countries
how our predictions of the model’s fitting parameters change in real time as time progresses.
The following epidemic mortality curves (Fig. 6) show the predicted total number of deaths
over a period of 2 months, comparing in each diagram 2 states/countries, and in the last one
all 6 locations together. Every epidemic curve reveals a strongly dynamic behavior of pandemic
phenomenon characterized by three distinct phases (i) the first phase with strongly dynamic
behavior (first three weeks of the phenomenon), (ii) the second phase where the phenomenon is
characterized by an oscillation and (iii) the third phase where a balance takes place.

Key variables vary substantially among countries as well as among states in a large country
such as US. The predictive model for a large country such as US aggregates heterogeneous
sub-epidemics in local areas. Distinct differences are evident among California and New York,
probably due to demographic factors and/or different climate and environmental conditions at
the time period the phenomenon takes place. Namely, the average highest temperature in March
was 20◦C for California and 10◦C for New York. New York is the most densely populated state
in USA.
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Figure 4: Verification of number of death predictions, in 2-day time intervals, for the next eight
days, for USA. Blue dots represent the actual recorded deaths until the day of prediction while
red dots represent actual data after the day on which the algorithm made the prediction. Green
area represents deviation between predicted and actual deaths lower than ±30%, while the light
blue area deviation smaller than ±60%
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Figure 5: Epidemic surface for USA based on available data as of 4 May 2020 (dpm: deaths
per million)

Table 1: Predicted parameters based on 4 May 2020 available data

Nr Country/State Population Population Peak Deaths at
density time peak time

(million) Number of people (days) (dpm)
per square mile

1 California 39.51 251.3 60 2.08
2 Iran 81.8 30 46 1.64
3 USA 328.2 136 54 6.90
4 Sweden 10.23 57.5 44 8.99
5 UK 66.65 94 44 13.65
6 New York 8.399 421 30 110.13

Note: dpm: deaths per million

It is remarkable that Sweden and UK share similar dynamic mortality curves (Fig. 6), which
could be attributed to the similarity of public health approaches; both Sweden and UK out of
few countries have opted against a “lockdown” to contain the spread of coronavirus. California
and Iran also show similarities in the course of the mortality curve (Fig. 6); both countries share
the same latitude (about 35◦N).

The proposed algorithm based on the data (deaths per time interval) determines the epidemic
curve and surface, as well as the integrated parameters, such as ‘peak time’ (time period from
the day the first death was traced until the day where maximum number of daily deaths were
recorded) and ‘number of deaths at peak time’ (Tab. 1). Both are valuable parameters that could
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help us classify the epidemic in different locations towards an understanding of the COVID-19
pandemic phenomenon. Moreover, these parameters could be useful for estimating and monitor-
ing the severity of the phenomenon for health authorities to take action. Interestingly, New York
State reached peak time in 30 days, while California in 60 days.

Figure 6: Dynamic behavior of the pandemic phenomenon (epidemic curves with temporal
changes in number of deaths per million people) based on available data as of 4 May 2020 (dpm:
deaths per million)
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Careful attention should be made by worldwide organizations (WHO, CDC) to ensure reli-
able recording for mortality data. Accurate reporting is of particular importance to ensure the
reliability and validity of the predictions.

The findings presented herein are preliminary results proposing two valuable parameters (peak
time and deaths at peak time) for the COVID-19 epidemic. The authors have started, based on
the proposed algorithm, in-depth investigations on the epidemic differences and similarities of the
pandemic phenomenon among ten states in the USA as well as among different cities in Italy in
order to reveal in more detail the nature of the COVID-19 dynamic phenomenon.

5 Conclusions

A model of forecasting for short-term prediction of COVID-19 mortality was applied to
different countries/states in the world based on the number of reported deaths from COVID-19.
The same model examined and estimated COVID-19 related mortality with great accuracy, even
after the peak was reached. The proposed ‘peak time’ and ‘deaths at peak time’ could classify
the epidemic among different countries/states as well as further explain similarities and differ-
ences among different locations, helping us to understand the COVID-19 pandemic phenomenon.
Interestingly, our multidisciplinary approach, although not based on classical epidemic infection
curves, leads to results that show epidemiologic relevance and can help epidemiologists classify
and predict the course of the pandemic phenomenon, and at the same time provide a useful tool
for public health authorities in decision-making and operational planning.

The proposed algorithm is also expected to make a substantial contribution to engineering
problems, where it is frequent that the parameters of a multitude of engineering problems follow
a normal distribution. Authors also believe that since data/parameters of other closely related
families of viruses causing mortality are expected to have a normal distribution, the proposed
algorithm will be applicable to those cases as well.
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