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Abstract: Internet of Things (IoT) is a network that connects things in a
special union. It embeds a physical entity through an intelligent perception
system to obtain information about the component at any time. It connects
various objects. IoT has the ability of information transmission, information
perception, and informationprocessing. The air quality forecasting has always
been an urgent problem, which affects people’s quality of life seriously. So
far, many air quality prediction algorithms have been proposed, which can be
mainly classified into two categories. One is regression-based prediction, the
other is deep learning-based prediction. Regression-based prediction is aimed
to make use of the classical regression algorithm and the various supervised
meteorological characteristics to regress themeteorological value. Deep learn-
ing methods usually use convolutional neural networks (CNN) or recurrent
neural networks (RNN) to predict the meteorological value. As an excellent
feature extractor, CNN has achieved good performance in many scenes. In
the same way, as an efficient network for orderly data processing, RNN has
also achieved good results. However, few or none of the above methods can
meet the current accuracy requirements on prediction. Moreover, there is no
way to pay attention to the trend monitoring of air quality data. For the
sake of accurate results, this paper proposes a novel predicted-trend-based
loss function (PTB), which is used to replace the loss function in RNN. At
the same time, the trend of change and the predicted value are constrained
to obtain more accurate prediction results of PM2.5. In addition, this paper
extends the model scenario to the prediction of the whole existing training
data features. All the data on the next day of the model is mixed labels, which
effectively realizes the prediction of all features. The experiments show that
the loss function proposed in this paper is effective.
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1 Introduction

In recent years, the Internet of Things (IoT) [1] technology has been continuously improved,
matured with the relevant researches, and widely used in many aspects [2]. The IoT conceptual
model integrates devices. Based on this function, all node devices distributed in the grid are
networked to transfer data [3]. Nowadays, air quality forecasting [4–6] has become a common but
serious problem due to the demand for accurate meteorological data. So far, although there is a
great quantity of real-time measurement methods [7–9], all of them will be seriously disturbed
by external unexpected factors without exception. Moreover, these methods cannot predict future
time data. For solving the prediction problem, a large number of machine learning algorithms
were proposed and achieved good results [10–13].

Air quality forecasting is often seen as a regression problem due to its continuity [12,13].
Although some researchers regard it as a classification problem of multiple classes [11]. Without
exception, they cannot get good prediction results and accuracy. Based on this, a large number
of classical regression algorithms are applied to air quality prediction. As a classical regression
algorithm, decision tree regression (DTR) [14] and support vector machine (SVM) [15] have
achieved good results in air quality prediction. The heuristic method is used to partition the
feature space. Each partition examines all the values of all the features in the current set one
by one. According to the square error minimization criterion, the best strategy is selected as
the segmentation point to realize data regression. In addition, gradient boost regression [16,17]
is also applied to air quality forecasting. Gradient boost regression tree is a technique to learn
mistakes. In essence, it is to gather ideas and integrate a bunch of poor learning algorithms for
learning. Besides, other regression algorithms were also used on air quality forecasting, such as
linear regression algorithm and local weighted regression.

Although the traditional regression algorithm can be applied to air quality prediction, these
methods cannot meet the current accuracy requirements. For the sake of accuracy, a large number
of deep learning models are used in air quality forecasting [18–21]. First, convolutional neural
network (CNN) [22] has attracted more researchers’ attention. Sahin et al. [19] used CNN to
process the air quality data and achieved better performance than linear regression. An interesting
result is that the concentrations of all pollutants are better predicted in winter than those in
summer. Yi et al. [23] proposed a deep neural network-based approach to forecast air pollution
data, which contains a spatial transformation subgroup and a distributed fusion network. Previ-
ously methods based on CNN were studied in greater depth and used larger data sets [24]. The
former transforms sparse air quality data into consistent input to simulate pollution sources. The
latter adopts the distributed structure of neural networks, integrates heterogeneous urban data,
and captures the factors affecting air quality. Recently, more researchers have realized that air
quality data is a time series data, which makes models with time series tasks get better prediction
results on these data. Based on this, the recurrent neural network (RNN) [25] is more used
in prediction. Tsai et al. [26] proposed a method to forecast PM2.5 concentration using RNN
with Long Short-Term Memory (LSTM) [27], which is the derivation of RNN. To deal with
the missing value in series data, Fan et al. [28] proposed a spatiotemporal prediction framework
based on deep recurrent neural networks (DRNN). The framework implements three different
missing value fixing algorithms and integrates them into the deep neural network composed of
the LSTM layer and fully connected layer. Moreover, to optimize the prediction model, Kim
et al. [29] selected key input variables as a preprocessing step by the projection of the partial least
squares (PLS) [30]. Athira et al. [31] proposed a framework where RNN, LSTM and GRU [32]
were used for forecasting, based on the pollution and meteorological time series AirNet data.
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However, these methods only pursue the prediction accuracy without exception, and ignore the
changing trend of various pollution indicators. To solve this problem, this paper constructs a
loss function which can monitor the trend of change. Also, this paper combines with the existing
RNN model to realize the dual choice of prediction results and trends. To sum up, the main
contributions of this paper are as follows:

(1) This article is based on the IoT technology to monitor the air quality data, through the use
of IoT technology to complete the monitoring and management of air quality data. The
monitoring system uses sensors, core control units, and wireless communication modules.
They can help detect various air quality indicators to collect, analyze, and manage data.

(2) This paper proposes a novel loss function based on RNN model for forecasting the PM2.5
value and all air quality data. This model not only predicts the accurate value effectively,
but also monitors the changing trend of various indicators accurately.

(3) We verify the effectiveness and performance advantages of the proposed method through
a large number of comparative experiments on the data in Beijing air quality data from
2018-01-01 to 2020-01-01.

2 Related Work

In this section some RNN models will be introduced, such as RNN, LSTM and GRU.

2.1 RNN
A traditional neural network only takes and processes the input information one by one.

Moreover, there is no relevance between the near input information. However, some tasks need
to handle the sequence information, where the traditional network cannot deal well with the
previous input and the related later input. For the sake of some similar problems and dealing
with sequence information better, RNN was proposed. The structure of RNN is shown as Fig. 1.
In Fig. 1, X represents the value of the input layer while s represents the hidden layer. U is the
weight matrix from the input layer to the hidden layer. o means the output layer; V is the weight
matrix from the hidden layer to the output layer. The value s depends not only on the current
input x, but also on the former hidden layer. W is the weight of the last value of the hidden layer
as the input of this time. We can use the following equation to express the calculation method
of the cyclic neural network:

ot = g (Vst) (1)

st = f (Uxt+Wst−1) (2)

Eq. (1) shows how to calculate the output layer, which is often a fully connected (FC) layer.
where each node is connected with any other node. g is the activation function which is usually
represented as tanh function. Eq. (2) is the calculation of the cyclic hidden layer. U is the weight
matrix of input x, F is another activation function. If we repeat to bring Eq. (2) into Eq. (1),
we will get:

ot = g (Vst)

=Vf (Uxt+Wf (Uxt−1+Wst−2))

=Vf (Uxt+Wf (Uxt−1+Wf (Uxt−2+Wst−3)))

=Vf (Uxt+Wf (Uxt−1+Wf (Uxt−2+Wf (Uxt−3+ · · · )))) (3)
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It shows that the output value in t time, ot is affected by the previous input, which is why RNN
can deal with the former data sequence.

Figure 1: The structure of RNN

2.2 LSTM
Long short term memory (LSTM) is a kind of special RNN, which is an improvement of

RNN on gradient processing, including gradient disappearance and gradient explosion. LSTM
can perform better on a longer sequence than RNN. The structure of LSTM is shown in Fig. 2.
Compared with RNN, LSTM has an extra structure for cell memory which indicates not only the
output of the current cell need to be updated but also the state of the cell need to be considered.
Specifically, the three gates are used for this function, which is forget gate, input gate and output
gate, respectively. Forget gate can decide which information should be discarded. The information
from the previous cell and the current cell is input into the sigmoid function. The output value
is in [0,1]. This function can be used to control the data which is forgotten. The input gate is
used to update the unit status which contains how to adjust the output into [0,1] and transform
the input data by tanh function into [−1,1] to adjust the network, and then the tanh function
output and the sigmoid function output are multiplied. The sigmoid output will determine which
information is important and needs to be retained. The output gate can determine the value of
the next hidden state, which contains the relevant input information previously. Also, hidden states
can also be used for prediction. The overall process is as follows: First, the previous state and
current state are transferred to the sigmoid function; Second, the new state is transferred by the
tanh function and then the output will be multiplied to determine the information that the hidden
state should carry; Finally, the hidden state outputs as the current cell, and the new state are
transferred to the next state. The update rule in LSTM is shown as follows:

ft = σ
(
Wf · [ht−1,xt]+ bf

)
(4)

it= σ (Wi · [ht−1,xt]+ bi) (5)

ot= σ (Wo · [ht−1,xt]+ bo) (6)

Ct≈ tanh (WC · [ht−1,xt]+ bC) (7)

where ft, it,ot,Ct represent the state of forget gate, input gate, output data and the memory cell.

2.3 GRU
GRU is an effective variant of LSTM which is better but simpler than LSTM. The structure

of GRU is shown in Fig. 3. In Fig. 3, there are only two doors: update gate and reset gate.
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Update gate determines which information will be kept. Reset gate indicates how to process
the previous information with the current information. The update guidelines in GRU is shown
as follows.

Figure 2: The structure of LSTM

zt = σ (Wz ∗ [x (t) ,h (t− 1)]) (8)

rt = σ (Wr ∗ [x (t) ,h (t− 1)]) (9)

ĥ (t)= σ (Wh ∗ [x (t) , (rt ∗ h (t− 1))]) (10)

h (t)= (1− zt) ∗ h (t− 1)+ zt ∗ ĥ (t) (11)

where σ is the activation function, x (t) is the input, h (t− 1) is the previous output, Wz,Wr and
Wh are the weights of the update gate, reset gate, and candidate output.

Figure 3: The structure of GRU

3 Air Quality Data Collection and Monitoring Scheme

For the need of real-time air quality information, this paper proposed a simple air quality
monitoring system based on IoT to gather the pollution composition and analysis due to the poor
prediction on air quality. At present, air quality monitoring technology is relatively backward.
In order to supplement the inadequacy of the monitoring system, this article intends to set up
monitoring nodes in qualified areas based on IoT.

The air quality index acquisition and data transmission module are constructed by a high-
precision sensor module. The air composition index is analyzed and the current air quality status
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is obtained. In the experiment, some areas were set to nodes to collect the information in real
time, obtain air composition information such as PM2.5, PM10, and SO2, and analyze the real-
time status.

The monitoring system needs to acquire and manage air composition and transmit to the
database or platform through the network, which is shown in Fig. 4. In terms of function, air
quality monitoring based on the IoT can be divided into three parts: data acquisition terminals,
servers, and data processing platforms or databases. The data acquisition terminal is a ZigBee
wireless sensor network. It mainly contains a coordinator node and several terminal nodes [33].
The terminal node includes sensors, core control units, wireless communication modules and
embedded software systems for detecting various air composition indicators [35]. Its main function
is to collect data. It collects data and uploads it to the server directly via wireless network. The
server is equipped with a J2EE application server with the MySQL database, which is used to
provide an interface for data access and save the location information and air quality data of
monitoring points. The server can upload data to the background database and process platform.
The platform in the background analyzes various air components and their impact on the air
quality index.

Figure 4: The structure of platform

3.1 Perception Technology
In a sensor network, each sensor node consists of sensors, microprocessors and communica-

tion units. Nodes form a sensor network through a communication network and work together to
perceive and collect accurate information about the environment or objects. Currently, the wireless
sensor network is the most widely used sensor network which is still increasing in usage [34]. The
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sensor is the main device for obtaining information in IoT. It uses measures to convert air quality
data into electrical signals and then processed by specific signal processing equipment. Common
sensors include temperature, pressure, photoelectric sensors, etc. The framework of the wireless
sensor networks is shown in Fig. 5.

Figure 5: Air quality data monitoring framework based on IoT

3.2 Information Fusion Technology
Information fusion technology can carry out comprehensive analysis, collect various percep-

tion information and process this information, which helps the sensor network achieve many
functions such as real-time monitoring, information management, real-time warning, intelligent
decision-making. The monitoring data needs to be memorized, and the other node need to make
a request to the master node to store this data. The master node selects the slave node and
returns the storage location to the node requesting storage, and then the requesting storage
node can directly send the data to the assigned slave node for storage. Through wireless sensor
nodes to monitor the environment, multiple wireless sensor nodes use wireless routing nodes and
base stations to form a wireless sensor network to analyze and display data, realizing real-time
monitoring of air quality.

4 Proposed Method

In this section, we will introduce a novel predicted-trend-based loss function (PTB) to replace
the traditional mean square error loss function on RNN models for predicting one demission
PM2.5 value data and multi-dimension air quality data.

4.1 PTB Loss Function for One Demission PM2.5 Value Data
Among the common RNN models, MSE is the most common loss function, which is shown

as follows:

MSE =
∑(

ytrue− ypred
)2 (12)

where ytrue means the true value while ypred means the predicted value. However, this single loss
measurement method is difficult to adapt to the current requirements, especially in forecasting air
quality data. When predicting air quality data, we should not only accurately predict the specific
data at a certain time, but also predict the trend of data changes because of the continuance. An
accurate trend of change is often more important than an accurate result. However, MSE loss
function cannot meet this requirement. For the sake of continuity constraints, we propose a new
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loss function based on predicted value and true value, which is shown as follows:

loss=
∑(

Δytrue−Δypred
)2 (13)

where

Δyitrue=
{
yitrue− yi−1

true i> 1
0 i= 1

(14)

and

Δyipred =
{
yipred − yi−1

pred i> 1
0 i= 1

(15)

By this loss function, we can effectively control the rate of change on PM2.5 value, so that
the model can stably predict each trend on different features, so as to achieve more accurate
prediction. The final loss function is the combination of MSE and the new loss function, which
is called predicted-trend-based loss function and shown as follows:

loss=
∑((

ytrue− ypred
)2+α

(
Δytrue−Δypred

)2) (16)

where α is the trade-off parameters. Based on this loss function, we can accurately predict the
real data and the trend.

4.2 PTB Loss Function for Multi-Dimension Air Quality Data
In fact, PM2.5 value and other air quality data are all needed to be predicted, such as PM10,

SO2. The traditional method is to label each pollution data as a sample cell, and then predict
each pollution data separately. This method not only sacrifices a great deal of time complexity,
but also cannot judge the relationship between pollution features and the overall trend of multiple
features. For the sake of this problem, based on Eq. (13), we propose a loss function for air
quality feature prediction under more features. In the multi-dimension forecasting model, Ytrue
and Ypred are represented for the true value and the predicted value. MSE is still the first part
of the loss function, which is shown as follows:

MSE = ∥∥Ytrue−Ypred
∥∥2
F (17)

where || · ||F means the Frobenius norm. In the same way, for the prediction of multiple features,
we still need to consider the joint changing trend of each feature. For the sake of this problem,
another loss function for multiple features is proposed, which is shown as follows:

loss= ∥∥ΔYtrue−ΔYpred
∥∥2
F (18)

where

ΔYi
true=

{
Yi
true−Yi−1

true i> 1

0 i= 1
(19)

and

ΔYi
pred =

{
Yi
pred −Yi−1

pred i> 1

0 i= 1
(20)
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In addition, to ensure the forecasting results are accurate rather than close enough, we take
the l1 norm as an additional constraint, and the final loss is shown as follows:

loss= ∥∥Ytrue−Ypred
∥∥2
F +α

∥∥ΔYtrue−ΔYpred
∥∥2
F +β

∥∥Ytrue−Ypred
∥∥
1 (21)

where α and β are the trade-off parameters.

5 Experiment

In this section, we will perform experiments on real air quality data to evaluate the proposed
loss function based on RNN, LSTM and GRU. By comparing the traditional loss function with
our PTB loss function, the prediction performance and effectiveness of the model are verified.

5.1 Dataset
The experience in this paper uses six cities air quality dataset which includes PM2.5 value

data and other feature such as date, time, PM10. The data interval in the dataset is one hour and
the dataset used for experiment is ranged from 2018-01-01 to 2020-01-01.

5.2 Setup
5.2.1 Error Measurement

We choose Root Mean Square Error (RMSE) as the error measurement while RMSE can
better reflect the actual situation of the prediction error. The calculation formula is shown
as follows:

RMSE(ypred ,ytrue) =
√√√√1
n

n∑
i=1

(
yipred − yitrue

)2
(22)

where n is the number of samples, yitrue is the real data, yipred is the predicted data. Moreover, the

other two evaluating index are used in our experiments, which is R2 Square and false alarm rate
(FAR). R2 Square is shown as follows:

R2 Square(ypred ,ytrue) = 1−

n∑
i=1

(
yitrue− yipred

)2

n∑
i=1

(
yitrue− ȳ

)2 (23)

which can evaluate the degree of change and accuracy of data, measuring the prediction quality

of model. FAR is an index measuring error rate. In this paper, if

∣∣∣yipred−yitrue
∣∣∣

yitrue
>0.3, the sample i

will be a false sample, FAR is the proportion of false samples in the total number.

5.2.2 Experiment Setting
In this experiment, RNN, LSTM and GRU are selected as our baseline. Then we set the

neurons of every layer as 200, where the number of layers is set as 3. Adam is chosen as the
activation function; the dropout is 0.25 while the epoch is 200. Each result is taken for 10 rounds
of the average value. When training, the weight matrices will be stored if the loss of the past
epoch is greater than that of the current epoch. In addition, all the deep learning models use the
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early stop condition in the training process. If the loss of validation data does not change in 10
training epochs, the training step will be stopped.

Table 1: The RMSE value of different methods in six cities or regions

Beijing Shanghai Nanjing Guangdong Hangzhou Shenzhen

DTR 15.42 14.57 14.72 13.86 14.60 14.31
RF 13.05 13.62 13.56 12.22 12.99 12.47
SVR 14.57 14.23 14.51 14.85 14.85 13.89
RNN 8.84 8.12 9.49 8.93 8.24 9.63
LSTM 7.20 7.56 7.94 7.87 8.35 7.40
GRU 6.83 6.99 7.18 7.06 7.11 7.24
RNN-PTB 8.23 8.14 8.01 8.04 8.23 8.57
LSTM-PTB 7.12 7.23 7.20 7.38 8.04 7.17
GRU-PTB 6.76 6.76 6.92 6.80 7.08 7.05

Table 2: The false alarm rate of different methods in six cities or regions

Beijing Shanghai Nanjing Guangdong Hangzhou Shenzhen

DTR 0.24 0.26 0.26 0.20 0.26 0.24
RF 0.22 0.22 0.24 0.21 0.22 0.22
SVR 0.22 0.23 0.23 0.20 0.21 0.22
RNN 0.16 0.18 0.16 0.17 0.17 0.17
LSTM 0.14 0.15 0.14 0.14 0.15 0.15
GRU 0.15 0.15 0.14 0.14 0.13 0.13
RNN-PTB 0.12 0.12 0.12 0.11 0.12 0.13
LSTM-PTB 0.10 0.09 0.10 0.10 0.10 0.10
GRU-PTB 0.10 0.10 0.09 0.10 0.09 0.09

Table 3: The R2 square of different methods in six cities or regions

Beijing Shanghai Nanjing Guangdong Hangzhou Shenzhen

RNN 0.79 0.79 0.80 0.81 0.80 0.80
LSTM 0.82 0.84 0.82 0.86 0.83 0.82
GRU 0.82 0.82 0.82 0.81 0.82 0.82
RNN-PTB 0.83 0.83 0.84 0.84 0.84 0.83
LSTM-PTB 0.85 0.86 0.85 0.84 0.85 0.86
GRU-PTB 0.85 0.85 0.86 0.86 0.84 0.86
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(a)

(c)

(b)

(d)
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(e)

Figure 6: The forecasting of all features. (a) The forecasting of PM2.5 value. (b) The forecasting
of PM10 value. (c) The forecasting of SO2 value. (d) The forecasting of NO2 value. (e) The
forecasting of CO value

5.3 Forecasting Results and Analysis
5.3.1 The Overall Results

To verify the accuracy of the PTB loss function, we compared the results on the original
models and the variants combining the loss function proposed, and proved the superiority of the
loss function by comparing the two results. First of all, we test on single feature prediction PM2.5.
In this experiment, PM2.5 is seen as the regression value, the other data is seen as the training
data. The results are shown in Tab. 1. From Tabs. 1 and 2 we can observe that: Firstly, compared
with deep learning models, the traditional regression models cannot perform well in forecasting
air quality data, which may be because these models ignore the sequential effects which are the
most significant factor in the original data. Secondly, in deep learning methods, RNN achieved
the worst result due to its hysteresis. However, when the PTB loss function replaced the original
loss function, the performance got better, which to some extend shows the effectiveness of the loss
function proposed in this paper. Due to this reason, LSTM and GRU were used in sequential data
instead of RNN. Moreover, each RNN model and its derivative with PTB loss function performs
better than those with original loss function. Thirdly, FAR was used to measure the stability of
the model. Tab. 2 confirmed the stability of RNN models with PTB loss function, which may be
because the trend loss controls that the predicted value of the model does not differ from the
real value too much, which also shows the effectiveness of our loss function. Then, we start to
verify the accuracy of multi-dimension prediction. In this experiment, all the air quality data of
the day will be used as a unified label, and the training data remains the same. Considering that
multiple labels cannot be measured by a single RMSE index, we use R-square index to measure
the stability of the model. Moreover, the traditional method will not participate in this experiment
because these methods cannot regress multiple labels well. The results of different deep neural
networks are shown in Tab. 3.

From Tab. 3 we can observe that with the addition of PTB loss function, the fitting ability
of the model is greatly improved. This is because the new loss function not only considers the
accuracy of prediction value, but also considers the accuracy of prediction trend, similar to the
first-order information and second-order information at the same time. It has been proved that
this is beneficial to the accuracy and stability of the model prediction. Moreover, there is little
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difference in R2 Square between each city in the same method, which means the method in this
paper has good prediction effects in all kinds of weather conditions.

5.3.2 Prediction of Various Characteristics
In this section, we will show the specific prediction of each feature of this model, as shown in

Fig. 6. From Fig. 6 we can find that our model gets accurate results in most forecasts, especially
in PM2.5 value, SO2 value and CO value. However, the model is difficult to predict some values
with large changes, such as in PM10 value. This shows that the prediction of data with large
fluctuation in this paper is still not accurate. The possible reason is that the trend of data with
large fluctuations is also large. However, the loss function proposed in this paper hopes that the
trend of change will be gentle and stable. This is also our main work in the future.

6 Conclusion

This paper analyzed the air quality model of IoT monitoring which can realize prediction
and analysis. Through the IoT monitoring and data prediction, a dynamic monitoring technology
architecture integrating information collection, transmission, processing and prediction is con-
structed. This paper also proposed a novel loss function called predicted-trend-based (PTB) loss
function which is used to replace the traditional loss function in RNN models. Through the
double restriction of numerical accuracy and trend accuracy, the loss function proposed realized
more accurate prediction. At the same time, this function was extended to multi-dimension feature
prediction, therefore realized the stable prediction of the model. Then RNN related models
were used on air quality data in Beijing from 2018-01-01 to 2020-01-01 and achieved good
performance. The experiment also proved the stability of the model in multi-dimension prediction.
Finally, we will focus on how to quantify and visualize the changing trend in future work.
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