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Abstract: By embedding secret data into cover images, image steganography can
produce non-discriminable stego-images. The turtle shell model for data hiding is
an excellent method that uses a reference matrix to make a good balance between
image quality and embedding capacity. However, increasing the embedding capa-
city by extending the area of basic structures of the turtle shell model usually
leads to severe degradation of image quality. In this research, we innovatively
extend the basic structure of the turtle shell model into a three-dimensional
(3D) space. Some intrinsic properties of the original turtle shell model are well
preserved in the 3D version. Theoretic analysis shows that the new proposed
models have good performance both in the image quality and in the complexity
of the reference matrix. Our experimental results justify the theoretic conclusions.
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1 Introduction

Due to the rapid development of portable devices, wireless communications, and social networks, the
transmission of huge amounts of digital information over the internet has become a daily routine.
Because hiding data in an image and transmitting it over the internet or posting it to the social media will
not get noticed, image steganography provides a good way for secret communication.

According to the processing domain, data hiding schemes for digital images can be classified into three
categories, including the compressed [1–3], frequency [4–6], and spatial domain methods. Among them, the
spatial domain methods can be further divided into the least significant bit substitution [7–9], the pixel value
differencing [10–12], and the reference matrix (RM) methods [13–17].

In this research, we focus on the RM-based data hiding approach. The exploiting modification direction
method [13] and its improved versions [14,18] produce high-quality stego-images; however, their RMs are
too simple and regular in the aspect of security. The Sudoku-based methods [15,19] effectively increase the
complexity of their RMs. But, the quality of the stego-images degrades significantly. The turtle shell model
[16] provides a compromise solution between image quality and security level. Later, the turtle shell model is
expanded to the octagon-shaped shell models [17,20] with various sizes. Although the octagon shape
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effectively preserves the compactness property of the turtle shell model, the image quality degrades
dramatically as the embedding capacity increased with the size of the fundamental octagons.

In order to expand the embedding capacity of the turtle shell model, in this paper, we extend the RM into
a three-dimensional (3D) space. The rest of this paper is organized as follows. We will briefly introduce the
turtle shell-based and the octagon-shaped shell-based data hiding schemes and discuss their defects in
Section 2. In Section 3, we will propose a generalized embedding rule for determining the optimal
associated set for the mentioned schemes above that can make the embedding process more efficient.
Two 3D turtle shell models for data hiding based on the generalized embedding rule will be presented in
Section 4. We will discuss some intrinsic properties of the two new models. Theoretic analysis and
experimental results of the proposed models will be given in Sections 5 and 6, respectively. Finally,
conclusions are made in Section 7.

2 Related Works

In this section, first, we will introduce two related data hiding schemes, including the turtle shell-based
scheme and the octagon-shaped shell-based scheme. Some defects in their embedding rules are also
discussed. Then, we try to derive a more general and efficient data embedding rule. In addition, inspired
by these schemes, we will propose 3D multilayered turtle shell models to improve the quality of stego
image and the embedding capacity of the RM-based approach.

2.1 The Turtle Shell-Based Scheme
In the turtle shell-based scheme proposed by Chang et al. [16], the pixels of the cover image P with size

of H �W are rearranged to obtain the cover pixel set P ¼ piji ¼ 1; 2; . . . ; H �Wð Þf g. The binary stream
of secret message is transformed into S ¼ sjjj ¼ 1; 2; . . . ; n

� �
, where sj is an 8-ary secret digit. Before

embedding, a reference matrix M with size of 256� 256 consisting of a number of hexagons, called
turtle shells, is constructed as shown in Fig. 1. The elements in the matrix M are classified into two types,
i.e., regular and special elements. The regular elements are located on the turtle shells and further divided
into back digits and edge digits. Then, the following rules are applied to find the corresponding
associated set G of each element Mðpi; piþ1Þ.

Case 1: For regular elements

R1. If Mðpi; piþ1Þ is a back digit within a turtle shell, the associated set G is the collection of all
digits in this turtle shell.

Figure 1: The reference matrix of the turtle shell-based scheme
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R2. If Mðpi; piþ1Þ is an edge digit involved in at least one turtle shell, the associated set G is the
collection of all digits that belong to the involved turtle shells.

Case 1: For special elements

R3. If Mðpi; piþ1Þ does not involve in any turtle shell, the associated set G is the collection of all
digits in its nearest 3� 3 sub-matrix.

To embed secret digit sj, apply the gray level values of a cover pixel pair ðpi; piþ1Þ as the coordinate to
locate the currently processed elementMðpi; piþ1Þ inM. By employing its corresponding rule, the associated
set G is obtained and the cover pixel pair ðpi; piþ1Þ is modified to p

0
i; p

0
iþ1

� �
, where M p

0
i; p

0
iþ1

� � 2 G and
M p

0
i; p

0
iþ1

� � ¼ sj. If there are multiple solutions, the shortest distant one which will lead to the least
modification is selected.

However, the given rules will not produce optimal solutions for some cases. Two examples are shown in
Fig. 1. When the currently processed element is (5, 3) and the secret digit is 1, its corresponding rule R1 will
modify the pixel values to (5, 5). However, the optimal solution is (4, 2). The error vectors are (0, 2) and (−1,
−1), respectively. Under the square error measurement, the solution (4, 2) is better than (5, 5). Another
example is at position (7, 0). If the secret digit to be embedded is 5, the corresponding rule R3 will
modify the pixel values to (8, 2). However, the optimal solution is (5, 0).

The embedding rules are hard to design because there are too many different cases of hexagon in the
reference matrix. In Fig. 1, we can’t find any pair of hexagons having the same configuration of numbers,
although their contents are the same. In the positive direction of pi-axis, the value of each neighboring
element is incremented by 1 with modulo-8 rightward, i.e., Mðpi þ 1; piþ1Þ ¼ Mðpi; piþ1Þ +1. Therefore,
the matrix will repeat itself with a period of 8 in the pi-direction. On the other hand, the incremental
value is an alternation of 2 and 3 in the positive piþ1-direction. Thus, it requires a total number of
2þ 3ð Þ � 8 ¼ 40 incremental values to achieve a whole cycle. The period of repetition in the
piþ1-direction is, therefore, 2� 8 ¼ 16.

To simplify the analysis, we use an algebraic expression to represent the local relationships of a currently
processed element with its nearest neighbors. For a pair of cover pixels ðpi; piþ1Þ, assume its corresponding
value Mðpi; piþ1Þ on the reference matrix M is x. We assign the matrix values around the element
Mðpi; piþ1Þ according to the construction rule of Chang et al. [16], as shown in Fig. 2. Due to the
alternating increment of 2 and 3 in the piþ1-direction, the general combinations of ðpi; piþ1Þ could be
classified into two cases: (1) piþ1 ¼ 1þ 2n and (2) piþ1 ¼ 2þ 2n, where n denotes any proper integer

� 2 � 3 � 4

� 1 � � 1

� 3 � 2 � 1

(a) 

� 1 � 2 � 3

� 1 � � 1

� 4 � 3 � 2

(b) 

−

−

−

− −

− −

−

+ + +

+

+++

+

Figure 2: The associated setG for two different cases of regular elements in the turtle shell model. (a) TheG
of the element Mðpi; piþ1Þ ¼ x for piþ1 ¼ 1þ 2n, (b) The G of the element Mðpi; piþ1Þ ¼ x for
piþ1 ¼ 2þ 2n
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value that makes piþ1 within the defined domain. The associated set G of the elementMðpi; piþ1Þ ¼ x is the
painted area as shown in Fig. 2. Thus, we can simplify the associated set G to these two cases for regular
elements.

To define the associated set G of the element Mðpi; piþ1Þ ¼ x, we seek to find a set of nearest elements
that contains all distinct values of a secret digit. The precise meaning of the ‘nearest’ element is the one that
produces minimum sum of square errors under embedding. The procedure is to sequentially include the
distinct-valued neighboring elements in the ascending order of square error. Fig. 3 provides a fast look-up
table of the sum of square errors Dp2i þ Dp2iþ1 for deciding the including order. By mapping Figs. 3 to 2a
with their center aligned, we sequentially include x, xþ 1, xþ 3, x� 1, x� 2, xþ 4, xþ 2 and x� 3 by
referring to their sum of square errors 0, 1, 1, 1, 1, 2, 2, and 2, respectively. In this way, we get the
optimal associated set for embedding. The optimal associated set for the case of Fig. 2b can be obtained
by including x, xþ 1, xþ 2, x� 1, x� 3, xþ 3, x� 4 and x� 2 sequentially with the same rule. The
xþ 1 in the upper left corner is skipped because a same valued element with a lower square error has
been included.

For the cases of either pi or piþ1 = 0 or 255, the associated set could be determined in a similar manner.
An example is shown in Fig. 4. Assuming the currently processing element is the ‘x’ at the center of bottom,
then, the optimal associated set G is the painted area.

By applying the modified associated set for regular and special elements, the turtle shell-based scheme
could get its optimal solution and result in a slightly higher image quality.

2.2 The Octagon-Shaped Shell-Based Scheme
In the octagon-shaped shell-based scheme [17], as shown in Fig. 5, the incremental values in the positive

x1-direction are periodic series of 4, 4 and 5, where x1 and x2 denote the values of the cover pixel pair. Kurup
et al.’s embedding rules follow the same concept of Chang et al.’s rules [16]. An example is marked in Fig. 5
that the cover pixel pair is (4, 2) and the secret digit is ‘11’. SinceM 4; 2ð Þ is a back digit, the cover pixel pair
will be modified to (6, 1) according to R1, instead of the optimal solution (2, 2).

To obtain the optimal solution with an efficient way, we apply the algebraic expression again to find the
optimal associated set. As mentioned above, the incremental values in the x1-direction are periodic series of

8 5 4 5 8

5 2 1 2 5

4 1 0 1 4

5 2 1 2 5

8 5 4 5 8

Figure 3: A look-up table for sum of square errors

� 3 � 4 � 5 � 6 � 7

� � 1 � 2 � 3 � 4

� 2 � 1 � � 1 � 2− −

+ + + + +

+ + + +

+ +

Figure 4: The associated set for a special element in the turtle shell model
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4, 4 and 5. It results in three cases of neighboring relationships. Assume M x1; x2ð Þ ¼ k and let n be any
proper integer value that makes x1 within the defined domain. Fig. 6 shows the three possible cases: (a)
x1 ¼ 2þ 3n, (b) x1 ¼ 3þ 3n and (c) x1 ¼ 4þ 3n. The painted area in each case corresponds to its
optimal associated set.

For the special elements that x1, x2 = 0, 1, 254 or 255, the optimal associated set can be obtained in a
manner like in Fig. 4. They are rare cases and with various types, so we can’t give them all here. Another
feasible way is to expand the associated set slightly to a rectangular shape that guarantees to contain the
optimal set. However, under such situation, a secret digit sj may match with more than one solution in the

Figure 5: The reference matrix of the octagon-shaped shell-based scheme

− 11 − 10 − 9 − 8 − 7

− 7 − 6 − 5 − 4 − 3

− 2 − 1 + 1 + 2

+ 2 + 3 + 4 + 5 + 6

+ 6 + 7 + 8 + 9 + 10

(a)

− 11 − 10 − 9 − 8 − 7

− 6 − 5 − 4 − 3 − 2

− 2 − 1 + 1 + 2

+ 2 + 3 + 4 + 5 + 6

+ 7 + 8 + 9 + 10 + 11

(b)

− 10 − 9 − 8 − 7 − 6

− 6 − 5 − 4 − 3 − 2

− 2 − 1 + 1 + 2

+ 3 + 4 + 5 + 6 + 7

+ 7 + 8 + 9 + 10 + 11

(c)

Figure 6: The optimal associated set G for three different cases of regular elements in the octagon-shaped
shell model. (a) x1 ¼ 2þ 3n, (b) x1 ¼ 3þ 3n and (c) x1 ¼ 4þ 3n
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associated set. Multiple solutions should be compared to obtain the least square error one. Details of this
problem will be discussed in the next section.

3 A Generalized Embedding Rule

According to the discussions in the previous section, we can devise a generalized embedding rule for the
turtle shell model, the octagon-shaped shell model or any enlarged octagon-shaped shell model. The
proposed rule is summarized as follows.

Step 1: Construct the RM.

Step 2: According to the construction rule of the RM, determine the number of different cases for regular
elements. Then, find the optimal associated set for each case.

Step 3: For special elements in the margin of the RM, a suitable sized rectangular matrix is applied to be
its associated set.

Step 4: Embed a secret digit to each cover pixel pair based on the obtained associated set.

The number of different cases for regular elements depends on the construction rule of the RM. In the
turtle shell model and the octagon-shaped shell model, different spacing of element values in any direction of
axis will lead to different neighborhood configurations in the algebraic expression. Therefore, we should
derive the associated set for each case.

The optimal associated set derived in Step 2 has a complete set of distinct numbers. Therefore, in the
embedding process, just find the only matching element M x

0
1; x

0
2

� � ¼ sj and modify the pixel values
to x

0
1; x

0
2

� �
.

On the other hand, the rectangular matrix in Step 3 should have enough elements so that the optimal
associated set belongs to the matrix. The example cases for the turtle shell model is 5� 3 and the
associated set for the octagon-shaped shell model could be a matrix of size 5� 4, which has its long
sides coincide with the direction of the margin.

In general, the design of associated set G for a special element can refer to Fig. 7, where d denotes the
distance of the special element to the boundary of the RM. We choose proper values of m and n such that the
rectangular matrix contains the optimal associated set. To embed the secret digit sj to the cover pixel pair
x1; x2ð Þ, we search in the associated set to find the nearest element, and thus minimize the square error
satisfying M x

0
1; x

0
2

� � ¼ sj and modify the cover pixel values to x
0
1; x

0
2

� �
.

4 The Proposed 3D Multilayered Turtle Shell Schemes

In this section, we will first introduce some intrinsic features of the turtle shell model. It is noted that we
can treat the octagon-shaped shell model as a generalization of the turtle shell model even though there are
still something different between them. Then, we try to devise two new 3D multilayered turtle shell models
for data hiding that meet the same features of the original turtle shell model. For each model, we also show
how the generalized embedding rule can be incorporated to embed secret data.

( 1 , 2)

Figure 7: An example of rectangular associated set for a special element
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4.1 Intrinsic Features of the Turtle Shell Model
4.1.1 2n-Sized Basic Structures

All the image data hiding schemes based on the turtle shell model or the octagon-shaped shell model
share the same feature that all the basic structures of repetition are 2n of size in order to reduce the
computational complexity of the embedding process. Since the secret digits are usually stored in the
binary format, the embedding process of a 2n-sized basic structure does not require any conversion
between number systems.

4.1.2 Compactness
A major index for the performance of image steganography is the peak signal-to-noise ratio (PSNR)

value. To ensure a high PSNR value, the basic structures of repetition in the RM should be compactly
connected. Both the turtle shell model and the octagon-shaped shell model meet the feature of
compactness and can produce stego-images of high PSNR values.

4.1.3 Partition of Space
In the turtle shell model, the basic constructing hexagons are closely connected to each other without any

redundant elements. That is, the hexagons constitute a perfect partition of the defined space, while the
octagon-shaped shell model leaves some corner elements that do not belong to any octagon and, thus, do
not form a space-partition.

4.1.4 Translation Invariance
In Chang et al.’s scheme [16], although they treated the turtle shell model as a fixed mesh on the RM, the

mesh can be randomly translated in the pi or piþ1 direction of axis without losing its properties. As
discussed in Section 3, the proposed generalized embedding rule is irrelevant to the precise location of
this virtual mesh. On the other hand, the octagon-shaped shell [17] model cannot be translated randomly
in its x1 and x2 directions of axes. Only being translated with integer multiples of its repeating periods
can preserve the required properties of an octagon.

4.2 The 3D Multilayered Turtle Shell Models
In this sub-section, we will propose two 3D multilayered turtle shell models for data hiding based on our

generalized embedding rule, which share the same properties with the original model [16]. These properties
are the 2n-sized basic structures, the compactness, the partition of space, and the translation invariance.

4.2.1 The 2-Layered Model (Size of 24)
The first model we will introduce here is the 2-layered turtle shell model, whose RM M is a

256� 256� 256 3D array as shown in Fig. 8. The number system here is radix-24, that is, each number
should be represented in a 16-ary format. For the base plane of z ¼ 0, the value of the origin is zero, i.e.,
M 0; 0; 0ð Þ ¼ 0. Then, each element value is incremented by 1 in the positive y direction of axis, while
incremented by 7 in the positive x direction of axis, i.e., M x; yþ 1; 0ð Þ ¼ M x; y; 0ð Þ þ 1 and
M xþ 1; y; 0ð Þ ¼ M x; y; 0ð Þ þ 7, respectively. After completing the plane of z ¼ 0, we successively
construct the plane of zþ 1 by simply adding 4 to its previous plane z, i.e.,
M x; y; zþ 1ð Þ ¼ M x; y; zð Þ þ 4. Two examples of the basic structure in the 3D RM are painted
with different colors for illustration. Two aligned hexagons of the consecutive layers constitute a
basic structure which has distinct values of 0~15 in the number system. Since the proposed 2-layered
model is translation-invariant, any basic structure can be randomly translated within the RM in any
directions of axes without losing its properties. Two example basic structures are illustrated by different
colors in the figure.
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According to the construction rule, the neighborhood of a regular element M x; y; zð Þ ¼ k is shown in
Fig. 9a. The order for including elements to the optimal associated setG can refer to the 3D square error array
in Fig. 10b, where the sum of square errors are given by Dx2 þ Dy2 þ Dz2. Mapping Figs. 9b to 9a with their
center aligned, we can successively include the values k, k þ 1, k � 7, k � 1, k þ 7, k þ 4, k � 4, k � 6,
k þ 6, k þ 8, k þ 5, k þ 3, k � 3, k � 5, k � 2, and k þ 2 with the corresponding square errors 0, six
‘1’s, seven ‘2’s, and two ‘3’s to constitute the optimal associated set G.

4.2.2 The Data Embedding and Extraction Scheme for 2-Layered Model (Size of 24)
In this subsection, the secret data embedding and extraction scheme for the 2-layered 3D turtle shell

model are provided. To further demonstrate the actual executoin of the embedding scheme, an example
case is also given.

Data embedding scheme

Input: A cover image P with size of H �W , the binary secret stream B with length L.

Output: A stego-image P0.

Before embedding, the pixels of the cover image P with size of H �W are rearranged to obtain the
cover pixel set P ¼ piji ¼ 1; 2; . . . ; H �Wð Þf g. The binary stream B of secret message is transformed
into S ¼ sjjj ¼ 1; 2; . . . ; L=4

� �
, where sj is an 16-ary secret digit. By applying the generalized

embedding rule to this model, the data embedding scheme is provided as follows:

Figure 8: The 2-layered turtle shell model
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Step 1: Construct the RM M according to the equations

M 0; 0; 0ð Þ ¼ 0; (1)

M xþ 1; y; 0ð Þ ¼ M x; y; 0ð Þ þ 7; (2)

M x; yþ 1; 0ð Þ ¼ M x; y; 0ð Þ þ 1; (3)

M x; y; zþ 1ð Þ ¼ M x; y; zð Þ þ 4: (4)

Step 2: According to the construction rule of the RM, the unique neighborhood configuration for a
regular element is shown in Fig. 9a. The corresponding optimal associated set G is the painted region.

Step 3: For special elements in the margin, i.e., x, y, z = 0 or 255, a 3D associated set of 3� 5� 2 array
with the special element at the center of the 3� 5 plane aligned with the margin is suggested. A special case
of z ¼ 0 is shown in Fig. 10, where the painted region is its optimal associated set G.

− 4 − 3 − 2 3 2 3

+ 3 + 4 + 5 2 1 2

+ 10 + 11 + 12 3 2 3

+ 1 plane + 1 plane

− 8 − 7 − 6 5 2 1 2 5

− 2 − 1 + 1 + 2 4 1 0 1 4

+ 6 + 7 + 8 5 2 1 2 5

plane plane

− 12 − 11 − 10 3 2 3

− 5 − 4 − 3 2 1 2

+ 2 + 3 + 4 3 2 3

− 1 plane − 1 plane

(a) (b)

x x

x

xx

yy

y y

y y

Figure 9: The optimal associated set G with its corresponding square error array for a regular element in the
2-layered model. (a) Optimal associated set and (b) Square error array

− 4 − 3 − 2

+ 3 + 4 + 5

+ 10 + 11 + 12

= 1 plane

− 8 − 7 − 6

− 2 − 1 + 1 + 2

+ 6 + 7 + 8

= 0 plane

x

x

y

y

Figure 10: The optimal associated set G for a special element in the 2-layered model
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Step 4: To embed secret digit sj into the cover pixel set x; y; zð Þ ¼ pi; piþ1;piþ2

� �
by applying the 2-

layered turtle shell model, use the pixel values x; y; zð Þ to locate the currently processed element
M x; y; zð Þ in the RM M. Then, move the center of the 3D mask in Fig. 9a to M x; y; zð Þ and let
k ¼ M x; y; zð Þ. Find the only element in the optimal associated set that satisfies M x0; y0; z0ð Þ ¼ sj, then
modify the cover pixel set x; y; zð Þ to x0; y0; z0ð Þ.

Data extraction scheme

Input: A stego-image P0 with size of H �W , the RM construction information.

Output: The secret binary stream B with length L.

Step 1: Construct the RM M according to the Eqs. (1)–(4).

Step 2: The pixels of the stego-image P0 with size of H �W are rearranged to obtain the cover pixel set
P0 ¼ p

0
iji ¼ 1; 2; . . . ; H �Wð Þ� �

.

Step 3: Consecutively utilize each triplet pixels of P0 as the coordinates x0; y0; z0ð Þ ¼ p
0
i; p

0
iþ1; p

0
iþ2

� �
and

find the secret digit sj ¼ M x0; y0; z0ð Þ.
Step 4: Convert the 16-ary secret stream S ¼ sjjj ¼ 1; 2; . . . ; L=4

� �
back into the binary secret stream

B with length L.

The processing diagrams for data embedding and extraction are shown in Figs. 11a and 11b,
respectively. An example of data embedding is shown in Fig. 12, where the RM M in Fig. 8 is replotted.
As discussed in Sections 2 and 3, although the 24-ary distinct numbers are compactly arranged in the
two-layered turtle shells, the embedding does not necessarily execute within the basic structure. Instead,
the optimal associated set G is the actual processing region. Let the triplet cover pixels are
x; y; zð Þ ¼ 2; 7; 1ð Þ. We move the mask in Fig. 9a to be centered at the currently processing element. If
the secret digit to be embed is sj ¼ 7. According to the embedding rule, we seek the optimal associated
set to find the matching elementM 1; 8; 2ð Þ ¼ 7 and modify the gray level values from 2; 7; 1ð Þ to 1; 8; 2ð Þ.

4.2.3 The 4-Layered Model (Size of 25)
The 4-layered turtle shell model can be constructed in a similar way with the 2-layered model. This time,

the number system is radix-25 and each number is represented in a 32-ary format. Refer to Fig. 13, the
incremental value for the positive x, y, and z directions are 12, 4 and 1, respectively. Two examples of the
basic structure are also illustrated in the figure. The basic structure has 4 consecutive layers of aligned
hexagons and contains distinct values of 0~31. In addition, the 4-layered turtle shell model is also
translation-invariant. We can move the basic structure through the defined space of the RM without
losing its intrinsic properties.

(a) (b)

Cover image P

Triplet pixels 2n-ary secret SRM M

Stego-image P’

Binary secret B

Triplet pixels 2n-ary secret SRM M

Stego-image P’

Binary secret B

Figure 11: Flow diagram of data embedding and extraction. (a) Data embedding diagram and (b) Data
extraction diagram
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By applying the algebraic expression, the neighborhood configuration of a regular element can be
uniquely represented as shown in Fig. 14a. Its corresponding look-up table of square errors is shown in
Fig. 14b. By sequentially including procedure, we can obtain the optimal associated G set as illustrated
by painted region.

4.2.4 The Data Embedding Scheme for 4-Layered Model (Size of 25)
In this subsection, the secret data embedding and extraction scheme for the 4-layered 3D turtle shell

model are provided. To further demonstrate the actual executoin of the embedding scheme, an example
case is also given.

Data embedding scheme

Input: A cover image P with size of H �W , the binary secret stream B with length L.

Output: A stego-image P0.

Before embedding, the pixels of the cover image P with size of H �W are rearranged to obtain the
cover pixel set P ¼ piji ¼ 1; 2; . . . ; H �Wð Þf g. The binary stream of secret message is transformed
into S ¼ sjjj ¼ 1; 2; . . . ; L=5

� �
, where sj is an 32-ary secret digit. By applying the generalized

embedding rule to this model, the data embedding scheme is provided as follows:

Figure 12: An embedding example for the 2-layered model

CMES, 2020, vol.125, no.2 889



0 1 2 3 4 5 6 7 8 9 10

0 4 8 12 16 20 24 28 0 4 8 ……
1 16 20 24 28 0 4 8 12 16 20 ……
2 28 32 4 8 12 16 20 24 28 0 ……
3 8 12 16 20 24 28 0 4 8 12 ……
4 : : : : : : : : : :

0 1 2 3 4 5 6 7 8 9 10

0 3 7 11 15 19 23 27 31 3 7 ……
1 15 19 23 27 31 3 7 11 15 19 ……
2 27 31 3 7 11 15 19 23 27 31 ……
3 7 11 15 19 23 27 31 3 7 11 ……
4 : : : : : : : : : :

0 1 2 3 4 5 6 7 8 9 10

0 2 6 10 14 18 22 26 30 2 6 ……
1 14 18 22 26 30 2 6 10 14 18 ……
2 26 30 2 6 10 14 18 22 26 30 ……
3 6 10 14 18 22 26 30 2 6 10 ……
4 : : : : : : : : : :

0 1 2 3 4 5 6 7 8 9 10

0 1 5 9 13 17 21 25 29 1 5 ……
1 13 17 21 25 29 1 5 9 13 17 ……
2 25 29 1 5 9 13 17 21 25 29 ……
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Figure 13: The 4-layered turtle shell model
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Step 1: Construct the RM M according to the equations

M 0; 0; 0ð Þ ¼ 0; (5)

M xþ 1; y; 0ð Þ ¼ M x; y; 0ð Þ þ 12; (6)

M x; yþ 1; 0ð Þ ¼ M x; y; 0ð Þ þ 4; (7)

M x; y; zþ 1ð Þ ¼ M x; y; zð Þ þ 1: (8)

Step 2: According to the construction rule of the RM, the unique neighborhood configuration for a
regular element is shown in Fig. 14a. The corresponding optimal associated set G is the painted region.

Step 3: For special elements in the margin, i.e., x, y, z = 0, 1, 254 or 255, a suitable sized 3D associated
set is applied. Special cases of z ¼ 0 and z ¼ 1 are shown in Figs. 15a and 15b, respectively, where the
painted regions are their optimal associated sets. The cases of y ¼ 0 and y ¼ 1 are given in Figs. 16a and
16b. The general rule is that any 3� 3� 5 array contains the whole set of distinct numbers, the optimal
associated set is a sub-set of this array.
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− 2 + 2 + 6 5 4 5
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z+2 plane z+2 plane
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Figure 14: The optimal associated set with its corresponding square error array for a regular element in the
4-layered model. (a) Optimal associated set and (b) Square error array
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Step 4: To embed secret digit sj into the cover pixel set x; y; zð Þ ¼ pi; piþ1; piþ2

� �
by applying the 4-

layered turtle shell model, use the pixel values x; y; zð Þ to locate the currently processed elementM x; y; zð Þ
in the RMM. Then, move the center of the 3D mask in Fig. 9a toM x; y; zð Þ and let k ¼ M x; y; zð Þ. Find the
only element in the optimal associated set that satisfies M x0; y0; z0ð Þ ¼ sj, then modify the cover pixel set
x; y; zð Þ to x0; y0; z0ð Þ.

Data extraction scheme

Input: A stego-image P0 with size of H �W , the RM construction information.

Output: The secret binary stream B with length L.

Step 1: Construct the RM M according to the Eqs. (5)–(8).

Step 2: The pixels of the stego-image P0 with size of H �W are rearranged to obtain the cover pixel set
P0 ¼ p

0
iji ¼ 1; 2; . . . ; H �Wð Þ� �

.
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Figure 15: The optimal associated set for two different types of special elements in the 4-layered model. (a)
z = 0 and (b) z = 1
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Step 3: Consecutively utilize each triplet pixels of P0 as the coordinates x0; y0; z0ð Þ ¼ p
0
i; p

0
iþ1; p

0
iþ2

� �
and

find the secret digit sj ¼ M x0; y0; z0ð Þ.
Step 4: Convert the 32-ary secret stream S ¼ sjjj ¼ 1; 2; . . . ; L=5

� �
back into the binary secret stream

B with length L.

The processing diagrams for data embedding and extraction are the same as Fig. 11. An example of data
embedding is shown in Fig. 17, where the RM M in Fig. 13 is replotted. Let the triplet cover pixels are
x; y; zð Þ ¼ 2; 6; 2ð Þ. We move the mask in Fig. 14a to be centered at the currently processing element. If
the secret digit to be embed is sj ¼ 12. According to the embedding rule, we seek the optimal associated
set to find the matching element M 2; 5; 0ð Þ ¼ 12 and modify the gray level values from 2; 6; 2ð Þ to
2; 5; 0ð Þ.
5 Theoretic Analysis

Before applying the proposed models to real images, we will analyze their theoretic measures of image
quality and security level in the section. The theoretic PSNR of stego images and complexity of RMs for the
proposed models are compared with the related works as follows.

5.1 PSNR
In Section 3, we proposed a generalized embedding rule. Based on this rule, we give a new definition to

the associated set of a currently processed element for each model under discussion. The possible cases of the
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Figure 16: The optimal associated set for two different types of special elements in the 4-layered model. (a)
y = 0 and (b) y = 1
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associated set G for the regular elements are simplified in a translation-invariant model. This makes the
theoretic value of PSNR possible to analyze. In the following, we calculate theoretic PSNR values of
Chang et al.’s model, Kurup et al.’s model, and the two proposed models, respectively.

0 1 2 3 4 5 6 7 8 9 10
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Figure 17: An embedding example for the 4-layered model
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5.1.1 Chang et al.’s Model
In the turtle shell model, two cases of associated set G for regular elements are shown in Fig. 2. Assume

all elements in the RM is equally likely to be located and the 8 possible values of the secret digit sj are also
equally likely to be encountered. Then, the theoretic value of MSE can be computed by mapping Figs. 2a–3.
The 8 possible values of the secret digit are mapped to one ‘0’, four ‘1’s, and three ‘2’s. MSE is therefore

MSE ¼ 1

2

1

8
� 0þ 4

8
� 1þ 3

8
� 2

� �
¼ 5

8
: (9)

The number is divided by 2 because the square error in Fig. 3 is the sum of two cover pixels. Although
the configuration of Fig. 2b is different from 2a, mapping 2b to 3 leads to the same MSE equation as in
Eq. (9). Substitute MSE into the definition of the PSNR will get its theoretic value:

PSNR ¼ 10log10
2552

MSE
dBð Þ ¼ 50:172: (10)

The special elements are more complex to analyze. However, the occasions of applying the
special elements are very rare. Therefore, the theoretic value is very close to real experimental value
by our experience.

To further explain, an example case is shown in Fig. 18. If the cover pixel pair is 5; 4ð Þ, its optimal
associated set is the painted region. Assuming all outcomes of the secret digit to be embedded are equally
likely to occur. Modifying the pixel values to embed 7, 0, 1, 6, 4, 2, 3, and 5 will result in the sum
of square errors 0, 1, 1, 1, 1, 2, 2, and 2, respectively. Then, its MSE and PSNR are coincide with
Eqs. (9) and (10). The PSNR of all regular elements can be derived in a similar manner and will lead to
the same conclusion.

5.1.2 Kurup et al.’s Model
Based on the same approach and referring to Fig. 6, MSE of the Kurup et al.’s model can be calculated by

MSE ¼ 1

2

1

16
� 0þ 4

16
� 1þ 4

16
� 2þ 4

16
� 4þ 3

16
� 5

� �
¼ 43

32
: (11)

It’s corresponding theoretic PSNR value is given by

PSNR ¼ 46:8476: (12)

: : : : : : : : : : :
9 66 7 0 1 2 3 4 5 6 7 ……
8 44 5 6 7 0 1 2 3 4 5 ……
7 11 2 3 4 5 6 7 0 1 2 ……
6 77 0 1 2 3 4 5 6 7 0 ……
5 44 5 6 7 0 1 2 3 4 5 ……
4 22 3 4 5 6 7 0 1 2 3 ……
3 77 0 1 2 3 4 5 6 7 0 ……
2 55 6 7 0 1 2 3 4 5 6 ……
1 22 3 4 5 6 7 0 1 2 3 ……
0 00 1 2 3 4 5 6 7 0 1 ……

0 1 2 3 4 5 6 7 8 9 ……

Figure 18: An example to illustrate the theoretic analysis of the PSNR for turtle shell model
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5.1.3 The 2-Layered Turtle Shell Model (Size 24)
The associated set with its corresponding square error array for a regular element in the 2-layered turtle

shell model is shown in Fig. 10. By mapping the optimal associated set into the square error array, MSE and
PSNR can be conducted as follows.

MSE ¼ 1

3

1

16
� 0þ 6

16
� 1þ 7

16
� 2þ 2

16
� 3

� �
¼ 26

48
: (13)

PSNR ¼ 50:7935: (14)

Since the square error is contributed by 3 cover pixels for the 3D model, the sum of square errors is
divided by 3 to get MSE.

Without loss of generality, the example triple cover pixels 2; 7; 1ð Þ with its optimal associated set is
shown in Fig. 19. Modifying the pixel values to embed 9, 10, 2, 8, 0, 13, 5, 3, 15, 1, 12, 14, 4, 6, 7 and
11 will result in the sum of square errors ‘0’, six ‘1’s, seven ‘2’s, and two ‘3’s, respectively. Then, its
MSE and PSNR are coincide with Eqs. (13) and (14). The PSNR of all regular elements can be derived in
a similar manner and will lead to the same conclusion. Comparing with the Kurup et al.’s model, piling
the 16 basic structural elements to a 3D space efficiently improves the PSNR value from 46:85 dB to
50:79 dB with an expense of using an additional cover pixel.

y

x

x

y

x

y

Figure 19: An example to illustrate the theoretic analysis of the PSNR for 2-layered turtle shell model
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5.1.4 The 4-Layered Turtle Shell Model (Size 25)
Referring to Fig. 13, the MSE and PSNR of the 4-layered turtle shell model are given by

MSE ¼ 1

3

1

32
� 0þ 6

32
� 1þ 11

32
� 2þ 6

32
� 3þ 2

32
� 4þ 6

32
� 5

� �
¼ 84

96
: (15)

PSNR ¼ 48:7107: (16)

Comparing the PSNR value of the Kurup et al.’s model with the proposed 3D 2-layered and 4-layered turtle
shell models, we can find that the PSNR value could be effectively improved by extending the RM to a 3D space.

5.2 Complexity
The series of models expanded from the turtle shell model discussed in the previous sub-section share the

same feature that they are all based on the RM. Security of such models relies on the complexity of the RM.
In this sub-section, we will analyze the periodicity of their RMs. Longer period means less repetition and,
therefore, is harder to attack. In addition, the number of distinct contents depends on the radix number of that
model, which also influences the complexity of the RMs. The periods of all axes and radix numbers are
analyzed and summarized in Tab. 1.

The octagon-shaped shell model has a long period on the x1 direction of axis. According to its construction
rule, the incremental values in the x1 axis are periodic series of 4, 4 and 5. This makes a total increment of
4þ 4þ 5 ¼13, which is a prime number. To go back to zero, we need a total increment of 13� 16, i.e.,
3� 16 ¼ 48 elements in length. As a result, we can conclude that, the RM of octagon-shaped shell model
is tiled by 48� 16 sub-matrices with 16 distinct contents. In the same way, the RM of the 2-layered turtle
shell model is piled up by 16� 16� 4 sub-blocks with 16 distinct contents. While the RM of the 4-layered
turtle shell model is piled up by 8� 8� 32 sub-blocks with 32 distinct contents.

6 Experimental Results

We apply the proposed 3D turtle shell models to the standard test images, including Lena, Boat,
Airplane, Sailboat, Elaine, Goldhill, Peppers, and Baboon, as shown in Fig. 20. All experiments are
implemented by MATLAB R2014b. Secret message S is produced by a random number generator. The
resulting stego images corresponding to the 2-layered and 4-layered turtle shell models for data hiding are
shown in Figs. 21 and 22. The PSNR values for full embedding are also given under the figures.

The experimental values precisely coincide with the theoretic values analyzed in Sub-section 5.1. Since
the proposed hiding scheme is homogeneous throughout the RM except for the rare boundary cases and
irrelevant to the cover image feature, the quality of stego image is fixed to a small random variation
around the predicted theoretic value. The detailed data, including the PSNR, the embedding capacity
(EC), and the structural similarity (SSIM) are listed in Tabs. 2 and 3 for 2-layered and 4-layered turtle
shell model, respectively.

Table 1: The periods and radices for different models

Tx Ty Tz Radix

Turtle 8 (pi) 16 (pi+1) — 8

Octagon 48 (x1) 16 (x2) — 16

2-layered turtle 16 16 4 16

4-layered turtle 8 8 32 32
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The definition of PSNR is the same as that in Eq. (10), while the MSE for real image applications is
obtained by averaging the square error of all pixels as given in Eq. (17), where H and W are the height
and width of the cover image; p i; jð Þ and p0 i; jð Þ are the pixel values of the cover image and the
corresponding stego image, respectively.

Figure 20: Eight test images with the size of 512� 512 (a) Lena (b) Boat (c) Airplane (d) Sailboat (e) Elaine
(f) Goldhill (g) Peppers (h) Baboon

Figure 21: Eight stego images using the 2-layered turtle shell model (a) Lena (b) Boat (c) Airplane (d)
Sailboat (e) Elaine (f) Goldhill (g) Peppers (h) Baboon
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MSE ¼ 1

H �W

XH

i¼1

XW

j¼1
p i; jð Þ � p0 i; jð Þð Þ2: (17)

The EC is measured in bits per pixel. The 2-layered turtle shell scheme can hide a 16-ary secret digit in 3
cover pixels, which is equivalent to 4 bits. While the 4-layered scheme can hide a 32-ary secret digit,
equivalent to 5 bits, in 3 cover pixels. Therefore, their embedding capacities are 4/3 and 5/3, respectively.

In addition, we use SSIM to measure the quality of stego images. SSIM is a perception-based model that takes
luminance, contrast, and structural information to evaluate similarity between two images. Let x be the cover image
and y be the stego image. The individual mean values lx, ly, standard deviations rx, ry, and the covariance rxy
between them are calculated firstly. Then, apply Eqs. (18)–(20) to compute the SSIM between cover image and
stego image, where L is the dynamic range of the pixel values, i.e., L ¼ 255, k1 ¼ 0:01, and k2 ¼ 0:03.

Figure 22: Eight stego images using the 4-layered turtle shell model (a) Lena (b) Boat (c) Airplane (d)
Sailboat (e) Elaine (f) Goldhill (g) Peppers (h) Baboon

Table 2: Experimental results of the 2-layered turtle shell model

Image Lena Boat Airplane Sailboat Elaine Goldhill Peppers Baboon

PSNR 50.7891 50.7913 50.7931 50.7911 50.7871 50.8004 50.7998 50.7971

EC 4/3 4/3 4/3 4/3 4/3 4/3 4/3 4/3

SSIM 0.9804 0.9908 0.9519 0.9868 0.9900 0.9892 0.9869 0.9977

Table 3: Experimental results of the 4-layered turtle shell model

Image Lena Boat Airplane Sailboat Elaine Goldhill Peppers Baboon

PSNR 48.7171 48.6976 48.7048 48.7261 48.7101 48.7126 48.7023 48.7039

EC 5/3 5/3 5/3 5/3 5/3 5/3 5/3 5/3

SSIM 0.9686 0.9852 0.9287 0.9793 0.9846 0.9830 0.9788 0.9962
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SSIM x; yð Þ ¼ 2lxly þ c1
� �

2rxy þ c2
� �

l2x þ l2y þ c1
� 	

r2x þ r2y þ c2
� 	 ; (18)

c1 ¼ k1Lð Þ2; (19)

c2 ¼ k2Lð Þ2: (20)

The two variables c1 and c2 are applied to stabilize the division with weak denominator. The resultant
SSIM index is a decimal value between −1 and 1, and value 1 is only reachable in the case of two identical
images and therefore indicates perfect structural similarity. A value of 0 indicates no structural similarity.

The resulting values listed in Tabs. 2 and 3 show that the stego images are very close to their
corresponding cover images. In Tab. 4, we compare the proposed models with the related works. To hide
16-ary secret digits, the 2-layered turtle shell model is better than the octagon-shaped shell model in
PSNR with a trade-off in embedding capacity. Fig. 23 shows the evolution of PSNR with respect to the

Table 4: Comparisons of EC and PSNR

Factor Turtle shell
model

Octagon-shaped
shell model

2-layered turtle
shell model

4-layered turtle
shell model

Radix 8 16 16 32

EC (bpp) 1.5 2 4/3 5/3

PSNR (dB) 50.1741 46.8476 50.7964 48.7096

Figure 23: PSNR comparisons on different ER values
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Figure 24: PDH of the 2-layered turtle shell model. (a) Lena (b) Boat (c) Airplane (d) Sailboat (e) Elaine (f)
Goldhill (g) Peppers and (h) Baboon
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Figure 25: PDH of the 4-layered turtle shell model. (a) Lena (b) Boat (c) Airplane (d) Sailboat (e) Elaine (f)
Goldhill (g) Peppers and (h) Baboon
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Figure 26: RS steganalysis of the 2-layered turtle shell model. (a) Lena (b) Boat (c) Airplane (d) Sailboat (e)
Elaine (f) Goldhill (g) Peppers and (h) Baboon
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Figure 27: RS steganalysis of the 4-layered turtle shell model. (a) Lena (b) Boat (c) Airplane (d) Sailboat (e)
Elaine (f) Goldhill (g) Peppers and (h) Baboon
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embedding rate (ER). To make a fare comparison, the ER is defined as the ratio of currently embedded bits to
the total cover pixels instead of the percentage of each model’s EC.

ER ¼ Sk k
H �W

; (21)

where H and W are the height and width of the cover image; jjSjj is the number of embedded bits.

The PSNR decreases with increasing ER. The terminal points of each PSNR curve represents the
maximum ER, i.e., the embedding capacity (EC), of the corresponding model. Under the same technical
frame structure, the four curves show that there is a trade-off between PSNR and EC.

To estimate the performance of the proposed models under steganalysis, we apply the pixel-value
difference histogram (PDH) analysis [21] and the RS steganalysis [22] to our stego images. The PDH for
the 2-layered and 4-layered turtle shell models are given in Figs. 24 and 25. As shown in the figures, the
histograms are preserved well after embedding for all cases. Figs. 26 and 27 display the RS steganalysis
results for the two models. The curve RM is very close to R�M and SM is very close to S�M in all cases.
It represents that the proposed models are robust to steganalysis of different techniques.

7 Conclusions

In this paper, we proposed two novel 3D turtle shell models for image steganography. By extending the
reference matrix into a 3D space, more elements can be arranged within a compact space and therefore the
PSNR can be greatly improved. The generalized data embedding rule provides a more accurate and efficient
way to hide secret data. In addition, we proposed a theoretic analysis technique to estimate the PSNR value
before experiments. The real image applications validate that our theoretic estimation can precisely predict
the experimental PSNR values for all models under the same technical frame structure. The complexity
analysis of RMs for different models are also given. The SSIM shows that our stego images are very
close to the cover images. Finally, the PDH and RS analysis are applied to confirm the robustness of the
proposed models under steganalysis.
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