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Abstract: Convolutional Neural Networks (CNNs) are widely used in many
fields. Due to their high throughput and high level of computing characteristics,
however, an increasing number of researchers are focusing on how to improve
the computational efficiency, hardware utilization, or flexibility of CNN hardware
accelerators. Accordingly, this paper proposes a dynamically reconfigurable accel-
erator architecture that implements a Sparse-Winograd F(2 � 2.3 � 3)-based
high-parallelism hardware architecture. This approach not only eliminates the
pre-calculation complexity associated with the Winograd algorithm, thereby redu-
cing the difficulty of hardware implementation, but also greatly improves the flex-
ibility of the hardware; as a result, the accelerator can realize the calculation of
Conventional Convolution, Grouped Convolution (GCONV) or Depthwise Separ-
able Convolution (DSC) using the same hardware architecture. Our experimental
results show that the accelerator achieves a 3x–4.14x speedup compared with the
designs that do not use the acceleration algorithm on VGG-16 and MobileNet V1.
Moreover, compared with previous designs using the traditional Winograd algo-
rithm, the accelerator design achieves 1.4x–1.8x speedup. At the same time, the
efficiency of the multiplier improves by up to 142%.
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1 Introduction

At present, CNNs are widely used in various fields impacting different areas of people’s lives, such as
image classification [1], target recognition [2,3], semantic segmentation [4,5], and so on. However, with the
development of CNNs, networks have become deeper and deeper, with some even reaching tens to hundreds
of layers [6,7], introducing a huge workload to the system in terms of computing and storage. At the same
time, due to the emergence of new convolution methods such as DSC and GCONV, the flexibility of CNN
accelerators has become more and more important.

Many solutions have been proposed to solve the associated problems. These include using the Graphics
Processing Units (GPUs) [8], Application Specific Integrated Circuits (ASICs) [9–12], Field-Programmable
Gate Arrays (FPGA) [13–15] and other hardware to facilitate the acceleration of CNNs. However, GPUs are
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impacted by a high power consumption problem, while ASCIs are affected by high production costs and a
long development, which greatly limits their scope of application.

As face recognition, motion tracking and other applications have become widely used in both mobile
devices and embedded devices, the demand for CNNs in these devices is also increasing. Because
embedded and mobile devices have more limited hardware resources and higher power consumption
requirements, lightweight CNNs such as MobileNet [16,17], ShuffleNet [18], Xception [19] have been
proposed one after another. However, due to the high computing and high throughput characteristics of
CNNs, running even lightweight CNNs is also associated with huge challenges when it comes to
improving on-chip computing performance, storage, bandwidth, and power consumption. At the same
time, different CNNs or different convolutional layers usually have different convolution shapes, which
also presents challenges to ensuring the flexibility of hardware accelerators. As a result, hardware
architecture designers must improve data reusability and computing performance, reduce system
operating power consumption, or reduce the bandwidth requirements. Moreover, such hardware must
ensure that features are dynamically reconfigurable if it is to meet the system’s flexibility requirements
when adapting to different lightweight CNNs.

This paper proposes a fast decomposition method based on the Sparse-Winograd algorithm (FDWA);
this approach extends the applicability of the Winograd algorithm to various convolution shapes and
further reduces the computational complexity. Based on unified hardware implementation, it is able to
provide a high level of configurability, to realize fast switching between different configurations
for different convolution shapes at runtime. Generally speaking, the main advantages of this architecture
are as follows:

� Using the FDWA can not only reduce the number of multiplications and shorten the loop iteration of
the convolution, but also introduces dynamic sparseness into the network; this can reduce hardware
workload, improve the speed of convolution execution, expand the use scope of the Sparse-Winograd
algorithm, and simplify the hardware implementation. Moreover, compared with the conventional
accelerator design, the proposed hardware architecture design also enhances the adaptability and
flexibility of the accelerator, meaning that the accelerator can accelerate both Conventional
Convolutions and the new types of convolution (such as DSC or GCONV) without the need to
change the hardware architecture.

� This paper proposes a high-throughput 2D computing architecture with reconfigurable I/O
parallelism, which improves PE Array utilization. A linear buffer storage structure based on
double buffers is used to reduce the data movement overhead between all levels of storage and to
hide the data movement time, such that the computing performance of the entire system runs at the
peak computing speed of the PE Array.

The remainder of this paper is organized as follows. The second section summarizes the related work.
The third section briefly introduces the Winograd algorithm and outlines the operation of the FDWA in detail.
Section 4 details the architecture of the accelerator, while Section 5 provides the implementation results and
comparison. Finally, Section 6 presents the conclusion.

2 Related Work and Motivation

2.1 Related Work

Previous studies have proposed a wide range of CNNs accelerator architectures. The DianNao [20,21]
series achieved good end results by improving the parallel computing performance, enhancing the computing
arrays, optimizing the data flow patterns, and increasing data reuse rates. Eyeriss [22] reduces data movement
by maximizing local data reuse, applying data compression, implementing data gating, and achieving high
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energy efficiency. The Efficient Inference Engine (EIE) [23] introduces a sparse network to speed up the fully
connected layer’s operation speed. Sparse CNN (SCNN) [24] accelerates the speed of convolution
calculation under sparse network conditions by improving the coding and hardware structure. Zhang et al.
[25] improve the convolution calculation by mapping the Fast Fourier transform (FFT) algorithm; for
their part, Shen et al. [26] improve the computing speed of both 2D and 3D convolution by mapping the
Winograd algorithm, thereby achieving good results on FPGA. The work of Wang et al. [27], based on
the Fast Finite Impulse Response Algorithm (FFA), reduces the number of multiplication operations in
the convolution operation; however, the flexibility of this design is so weak that it can only be accelerated
for a fixed type of convolution. Lu et al. [28] designed an accelerator based on the fast Winograd
algorithm, but primarily used F(6, 3) and F(7, 3) as the basic calculation unit. Due to the large number of
parameters, the hardware accelerator in this case is required to use 16-bit fixed-point operands, along with
more complex pre-calculations. Even so, however, very few accelerator designs for lightweight neural
networks have been developed, although there are some designs for light-weight CNN acceleration or
that aim to increase accelerator flexibility.

In this article, in order to speed up operation, save on hardware resources, and improve the calculation
efficiency, we designed the FDWA as a basic hardware design based on the Sparse-Winograd algorithm.
Moreover, we go on to test the algorithm acceleration effect and hardware resource consumption via
SystemC [29].

2.2 Motivation

Firstly, it is feasible in practical terms to accelerate CNNs at the algorithm level. Various advanced
convolution algorithms have therefore been applied to accelerator design. Taking Winograd, FFT, and
FFA algorithms as examples, these approaches reduce the number of multiplication operations by
reducing the computational complexity, thereby further saving on resources. Compared with the FFT and
FFA algorithms, the Winograd algorithm can achieve better results when the convolution kernel is smaller
[8]. In this paper, our approach is to solve different types of volume integrals and use fixed Sparse-
Winograd F 2� 2; 3� 3ð Þ for calculation; this not only simplifies the implementation, but also expands
the application range of the Winograd algorithm.

Secondly, the speed of CNN updating has accelerated of late, and there are usually great differences
between the different convolutional layers in CNNs, meaning that higher requirements are placed on the
flexibility of the accelerator. However, most studies based on algorithm acceleration typically only
support a specific and fixed convolution type. At the same time, lightweight CNNs such as MobileNet
and ShuffleNet have seen widespread use on mobile devices or embedded platforms, thereby reducing
both the number of parameters and the computational complexity; one example is MobileNetV1 [16],
which achieves acceptable results with less than 50% of the MAC operations and parameters utilized by
comparison methods. This was primarily made possible due to the use of new convolution methods in the
MobileNetV1 structure, including Group Convolution (GCONV) and Depthwise Separable Convolution
(DSC). Accordingly, there is an urgent need to solve the acceleration problem of the new convolution
method when designing hardware accelerators. This paper therefore proposes a hardware architecture
design for accelerating various types of CNNs based on FDWA; this approach solves the algorithm
flexibility problem, thereby facilitating adaptation to different convolution types, and also solves the
problem of the need to speed up the new type of convolution.

3 Algorithm Analysis, Mapping and Improvement

At present, there have been few studies on hardware accelerators for lightweight CNNs. While Bai et al.
[30] and Zhao et al. [31] realized the acceleration of convolution calculations for lightweight CNNs on
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FPGA, the main drawback of these works is that the overall performance and flexibility remain insufficient.
In light of this, the present paper proposes a block parallel computing method based on the Sparse-Winograd
algorithm and a reconfigurable decomposition method for lightweight CNNs, which solves the problems
associated with accelerating different convolution types.

3.1 GCONV and DSC

CNNs are primarily composed of convolutional layers, Rectified Linear Units (ReLUs), pooling layers,
fully connected layers, etc. Of these components, the convolution layer has made a major contribution to
CNN operation; however, it also takes up most of the calculation time.

Following the emergence of lightweight CNNs, new convolution method have been widely used due to
their outstanding advantages. DSC was first proposed in MobileNet V1, while GCONV first appeared in
AlexNet. As shown in Tab. 1 [16], MobileNet achieves image recognition accuracy that is almost as high
as, or even higher than, that of comparison methods, while still using fewer parameters and less
calculations; this is achieved by means of DSC, which demonstrated its outstanding advantage on
embedded platforms or mobile devices.

Fig. 1 presents the execution process of Conventional Convolution, GCONV and DSC. In particular,
Fig. 1b describes the specific process of GCONV. This process involves dividing the input feature map
into g groups according to the number of channels, such that the size of each input feature map group
becomes M� H�W=g, while the size of the convolution kernel becomes M� K2=g. During the
execution process, the filter only performs convolution operations with input feature maps from the same
group; in this way, it can reduce the number of parameters required during the convolution operation.
Fig. 1c further describes the specific process of DSC. This process involves dividing the convolution
process into two sub-processes: Depthwise Convolution and Pointwise Convolution. Firstly, each channel
of the input feature map is independently convoluted via channel-by-channel convolution with a
convolution kernel size of M� K � K � 1ð Þ, after which it is deepened by point-by-point convolution.
The weighted combination is then used to generate the output feature map, where the point-wise
convolution kernel size is N� 1� 1�Mð Þ.

Tab. 2 specifically illustrates the difference in the number of parameters and the total amount of
calculation for the three different convolution methods. Compared with Conventional Convolution, the
new convolution method requires fewer resources and requires less external memory bandwidth
requirements to achieve tolerable accuracy. Therefore, it is urgently necessary to develop a hardware
architecture design hat can handle both Conventional Convolution and the new types of convolution.

Table 1: Comparison of MobileNet with popular models

Model ImageNet accuracy Million Mult-Adds Million parameters

MobileNet-224
MobileNet-160
GoogLeNet
VGG-16
AlexNet
SqueezeNet

70.6%
60.2%
69.8%
71.5%
57.2%
57.5%

569
76
1550
15300
720
1700

4.2
1.32
6.8
138
60
1.25
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3.2 Sparse-Winograd Algorithm

The Winograd algorithm is a new, fast algorithm for CNNs, which reduces the number of multiplication
operations by transforming the input feature map and executing a series of transformations on the filter.
Taking the one-dimensional Winograd algorithm as an example, the specific operation process can be
expressed as follows:

y ¼ AT Gwð Þ � Btxð Þ½ � (1)

In Eq. (1), � indicates the multiplication between corresponding elements. Moreover, A, B, and G are
constant transformation coefficient matrices, which are determined by the size of the input data.

Similarly, the operation process of the 2DWinograd algorithm F m�m; k� kð Þ can be described by Eq.
(2). In summary, the input feature matrix X and the filter matrix W are converted into the Winograd domain
by the matrices B and G, After the dot product operation is performed, the A matrix is used for
transformation. The transformation matrices B, G, and A are determined by the size of the input feature
map and the size of the filter.

Figure 1: Conventional convolution, GCONV and DSC

Table 2: Parameter and calculation amount of different convolution methods

Model Input feature Filter Parameters Calculation amount

Conventional Convolution H�W�M K2 �M� N M� N� K2 H�W�M� N� K2

GCONV H�W�M M� N� K2=g H�W�M� N� K2=g

DSC H2 �M H2 �MþM� N ðH2 � NþM� NÞ � K2
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y ¼ AT GwGT
� �� BTxB

� �� �
A (2)

It can be concluded from Eq. (2) that the 2D Winograd algorithm only needs to execute mþ k� 1ð Þ2
multiplication operations, while m2 � k2

� �
operations are required for Conventional Convolution. Fig. 2 [28]

describes the calculation process and pseudocode implementation of the convolution based on the 2D
Winograd algorithm and Conventional 2D convolution; in this case, the convolution stride of the
Winograd convolution algorithm is 1. It can be seen from observing at the the algorithm level that the
Conventional Convolution method requires six layers of loops, while the Winograd algorithm-based
convolution only requires four layers of loops and reduces the amount of necessary multiplication by
more than 60% [28].

By conducting further research into the Winograd algorithm, Liu et al. [32] and others proposed the
Sparse-Winograd algorithm, based on the original algorithmic structure. As shown in Fig. 3 [32], there
are different methods of applying the Winograd algorithm to a sparse network. The linear transformation
of neurons and convolution kernels will reduce the sparsity of the original network. Therefore, if the
Winograd algorithm is used to directly accelerate the sparse network, the number of multiplication
operands in the network will increase, such that the ensuing performance loss will outweigh the benefit of
using the Winograd acceleration algorithm.

Fig. 3c describes the specific operation steps of the Sparse-Winograd algorithm in the case where
F 2� 2; 3� 3ð Þ. Here, the ReLU activation function is moved to the Winograd domain, so that the CNNs
are sparse during the multiplication operation, The number of multiplications is reduced, while the
weights are pruned following the Winograd transform, meaning that the weights remain sparse during the
multiplication operation. The algorithm can be expressed as follows:

y ¼ AT Prune GwGT
� � �� ½ReLU BTxB

� �� �� �
A (3)

Figure 2: Comparison of conventional and Winograd convolution algorithms
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By moving ReLU and Prune to the Winograd domain, the number of multiplication operations can be
reduced, while the overall efficiency can be further improved when the Winograd algorithm is used for
acceleration; thereby, the acceleration of a sparse network based on the Winograd algorithm can be realized.

3.3 Sparse-Winograd Algorithm Mapping and Improvement

Although convolution operations based on the Sparse-Winograd algorithm can reduce the number of
required multiplication operations and improve the operational efficiency, for different types of
convolutions, the operation process is overall the same as the Winograd algorithm but requires more
complex pre-operations, primarily as regards the calculation of the conversion matrix A, B and G.
Moreover, the calculation of the conversion matrix is also difficult to realize via hardware; in addition,
with increases in size of the input feature map or the convolution kernel, the data range of the parameters
in the conversion matrix becomes very large, which presents challenges for the design of hardware,
storage, bandwidth, and power consumption. The above problems restrict the development of CNN
accelerators based on the Sparse-Winograd algorithm.

Figure 3: The Winograd algorithm applied to different sparse network situations
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1
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1
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3
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In order to solve the above problems, we propose a method of FDWA based on the Sparse-Winograd
algorithm, which operated by decomposing the input feature map and filter on the basis of the Sparse-
Winograd F 2� 2; 3� 3ð Þ algorithm. As shown in Eq. (4), the decomposition is based on F 2� 2; 3� 3ð Þ
and chiefly considers that the parameters in the transformation matrices A, B and G are 0;�1;�1=2ð Þ.
This is easy to achieve by shifting or adding hardware; not only is this hardware implementation simple
and easy to control, but it also reduces the hardware cost.

Fig. 4 describes the process of F 2� 2; 5� 5ð Þ, where the Conventional Convolution steps after the
input feature map and the filter are expanded by 0, along with the meaning of the parameter
representation. Accordingly, Conv K;Wð Þ can be expressed by Eq. (5); moreover, Eqs. (6) to (9) outline
the methods by which specific parameters are calculated.

Figure 4: Explanation of parameters in the conventional convolution process
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Fig. 5 describes the FDWA process in detail, with F 2� 2; 5� 5ð Þ as an example. As shown in the figure,
firstly, the input feature map and the filter are expanded to 7 × 7 and 6 × 6 scaled by zero, after which the four
corner 4 × 4 scale blocks on the feature map (K1, K2, K3, K4) are respectively convoluted with the four 3 ×
3 scale blocks(W1, W2, W3, W4) on the convolution kernel; subsequently, the F 2� 2; 5� 5ð Þ can be
calculated by a set of F 2� 2; 3� 3ð Þ. Eqs. (10) to (13) describe each F 2� 2; 3� 3ð Þ calculation result
and the significance of the corresponding figures.

Conv K;Wð Þ ¼ Conv K1;Wð Þ Conv K2;Wð Þ
Conv K3;Wð Þ Conv K4;Wð Þ

� 	
(5)

Conv K1;Wð Þ ¼ Conv K11;W1ð Þ þ Conv K12;W2ð Þ þ Conv K13;W3ð Þ þ Conv K14;W4ð Þ (6)

Conv K2;Wð Þ ¼ Conv K21;W1ð Þ þ Conv K22;W2ð Þ þ Conv K23;W3ð Þ þ Conv K24;W4ð Þ (7)

Conv K3;Wð Þ ¼ Conv K31;W1ð Þ þ Conv K32;W2ð Þ þ Conv K33;W3ð Þ þ Conv K34;W4ð Þ (8)

Conv K4;Wð Þ ¼ Conv K41;W1ð Þ þ Conv K42;W2ð Þ þ Conv K43;W3ð Þ þ Conv K44;W4ð Þ (9)

Figure 5: FDWA
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F 2� 2; 3� 3ð Þ k1;w1ð Þ ¼
Conv k1;w1ð Þ0 Conv k1;w1ð Þ1
Conv k1;w1ð Þ2 Conv k1;w1ð Þ3

� 	
(10)

F 2� 2; 3� 3ð Þ k2;w2ð Þ ¼
Conv k2;w2ð Þ0 Conv k2;w2ð Þ1
Conv k2;w2ð Þ2 Conv k2;w2ð Þ3

� 	
(11)

F 2� 2; 3� 3ð Þ k3;w3ð Þ ¼
Conv k3;w3ð Þ0 Conv k3;w3ð Þ1
Conv k3;w3ð Þ2 Conv k3;w3ð Þ3

� 	
(12)

F 2� 2; 3� 3ð Þ k4;w4ð Þ ¼
Conv k4;w4ð Þ0 Conv k4;w4ð Þ1
Conv k4;w4ð Þ2 Conv k4;w4ð Þ3

� 	
(13)

As shown in Tab. 3, the parameters are equivalent to Eqs. (6) to (9) and Eqs. (10) to (13). From Tab. 3,
we can also get the final process of the F 2� 2; 5� 5ð Þ calculation based on F 2� 2; 3� 3ð Þ in Fig. 6.

Fig. 7 describes three situations based on the above FDWA, specifically for
F 2� 2; 5� 5ð Þ; F 2� 2; 6� 6ð Þ; and F 2� 2; 7� 7ð Þ. As can be seen from Fig. 7b, the FDWA with filter
size of 6 × 6 is the same as that of F 2� 2; 5� 5ð Þ; i.e., the filter size is between 3 and 6, while the
partition method is the same. Fig. 7c describes the FDWA process in the case of F 2� 2; 7� 7ð Þ, which
is also applicable to filter sizes between 7 and 9. When utilizing FDWA, it is easy to realize the
accelerator design with F 2� 2; 3� 3ð Þ as the hardware core. This design is not only simple to control,
but also requires less pre-operation, expanding applicability and reducing hardware consumption.

4 Accelerator Architecture Design

In this chapter, the accelerator scheme will be comprehensively introduced.

4.1 Overview of Accelerator Design

Fig. 8 illustrates the system-level architecture of the accelerator. The key components of the three
modules are the processor, DRAM, Processing Units, and system interconnection bus.

Table 3: Relationships between parameters for conventionl and new convolutions

Conv k1;w1ð Þ0 ¼ Conv K11;W1ð Þ Conv k2;w2ð Þ0 ¼ Conv K12;W2ð Þ Conv k3;w3ð Þ0 ¼ Conv K13;W3ð Þ Conv k4;w4ð Þ0 ¼ Conv K14;W4ð Þ

Conv k1;w1ð Þ1 ¼ Conv K21;W1ð Þ Conv k2;w2ð Þ1 ¼ Conv K22;W2ð Þ Conv k3;w3ð Þ1 ¼ Conv K23;W3ð Þ Conv k4;w4ð Þ1 ¼ Conv K24;W4ð Þ

Conv k1;w1ð Þ2 ¼ Conv K31;W1ð Þ Conv k2;w2ð Þ2 ¼ Conv K32;W2ð Þ Conv k3;w3ð Þ2 ¼ Conv K33;W3ð Þ Conv k4;w4ð Þ2 ¼ Conv K34;W4ð Þ

Conv k1;w1ð Þ3 ¼ Conv K41;W1ð Þ Conv k2;w2ð Þ3 ¼ Conv K42;W2ð Þ Conv k3;w3ð Þ3 ¼ Conv K43;W3ð Þ Conv k4;w4ð Þ3 ¼ Conv K44;W4ð Þ

F(2 × 2,5 × 5) =
( 1, ) ( 2, )
( 3, ) ( 4, )

( 1, ) = 1, 1) + ( 2, 2) + 3) + 4, 4)

( 2, ) = 1, 1) + ( 2, 2) + 3) + 4, 4)

( 3, ) = ( 1, 1) + ( 2, 2) + ( 3, 3) + ( 4, 4)

( 4, ) = ( 1, 1) + ( 2, 2) + ( 3, 3) + ( 4, 4)

1, 1)

1, 1)

( 1, 1)

( 1, 1)
F(2 × 2,3 × 3) , )

( 2, 2)

( 2, 2)

( 2, 2)

( 2, 2)
( , )

3)

3)

( 3, 3)

( 3, 3)
( , )

4, 4)

4, 4)

( 4, 4)

( 4, 4)
( , )( F(2 × 2,3 × 3) F(2 × 2,3 × 3) F(2 × 2,3 × 3)

Figure 6: Decomposition calculation method of F 2� 2; 5� 5ð Þ
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1) Control module: This component is responsible for receiving the task information sent by the CPU.
When the task is loaded on to the accelerator and calculations begin, the module will distribute the task to the
calculation module, and prompt the DMAmodule to either move the data to the buffer or write to the external

Figure 7: Decomposition calculation method of F 2� 2; 5� 5ð Þ; F 2� 2; 6� 6ð Þ; and F 2� 2; 7� 7ð Þ

Figure 8: The structure overview of accelerator

CMC, 2021, vol.66, no.1 527



DDR through the interconnection configuration. After calculation is complete, the module will move the
result to the external DRAM and notify the CPU.

2) Data read (write) and conversion module: The input feature tile data is read from the buffer, after
which the input is transferred to the Winograd domain through the input conversion module via the
implementation of ReLU BTxB

� �
. The filter data is read from the external memory by the filter buffer.

Conversion to the Winograd domain is then completed by performing Prune GwGT
� �

. Because these two
data conversion processes only involve changes to symbol bits and shift operations, the calculation
module does not need to be too complex. After the data operation is completed, the ATð ÞA operation
is executed to transform the resulting data into a 2 × 2 convolution; after the configurable accumulator
operation, the expired data is finally overwritten in the input characteristic graph buffer and written back
to the external memory.

3) Data calculation module: After conversion to the Winograd domain, the data input operation module
completes the point product operation, after which the data flows to the accumulation module. In terms of the
process of performing the accumulation operation, the information from the controller is received, and
GCONV and DSC are completed by separating the channels. In the Sub-Channel operation of DSC, the
data from all input channels are converted directly and then saved to the on-chip buffer. For GCONV,
moreover the input channels are divided into several groups, after which the data in each group is
aggregated and stored in the on-chip buffer following conversion.

4.2 Structural Design of Computing Module

The calculation module is used to process the converted data of the input feature map and filter. Fig. 9
illustrates the overall architecture design of the calculation module, which can be further divided into two
main calculation sub-modules—namely, the Multi_Channel Wise Summation and Multiplication
Calculation Array modules—that respectively complete the calculation of the accumulation and dot
product by configuring different accumulator functions, and can thereby achieve the calculation of the
DSC, GCONV, and Conventional Convolution.

Figure 9: The architecture of the computing module
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In the multiplication calculation array module, since the accelerator uses FDWA based on
F 2� 2; 3� 3ð Þ, its core calculation is the dot product calculation between two matrices of size 4 × 4.
Since the Sparse-Winograd algorithm introduces a lot of sparsity into the point product calculation, the
point product calculation of the 4 � 4 matrices can be realized with fewer multipliers. Thus, in this
design, 3 � 3 multipliers are used to realize the 2D dot product calculation; that is, 9 multipliers are
designed in the PE. This is mainly because both the input feature block and the convolution kernel block
are converted to ReLU and Prune respectively following the Winograd domain conversion. The overall
density of the original parameters will decrease by about 40% to 50%. Therefore, it is reasonable to
choose 9 multipliers. This meets most of the multiplication requirements in one cycle. Of course, there
are certain (albeit very few) cases in which the multiplication operation needs to be greater than 9. When
this occurs, two more cycles are required to pause a single PE pipeline. The dot product calculation unit
in the entire calculation module is composed of 8 × 8 such PEs; this means that 64 F 2� 2; 3� 3ð Þ
calculations can be performed simultaneously. In order to efficiently and accurately realize FDWA, after
the input data is converted to the Winograd domain, a highly efficient and effective parallel operation
module can be realized by inputting the feature map channel selector and the filter data distributor.

The input data is calculated and output by means of a dot product calculation module to a specific
configurable accumulator for processing purposes. Through the setting of different multi-channel
accumulator functions, the convolution acceleration calculation of the lightweight CNNs can be realized;
this process also ensures the configurability of the accelerator.

As shown in Eq. (4), the parameters in the conversion matrix based on F 2� 2; 3� 3ð Þ only have
0;�1;�1=2ð Þ; thus, the multiplication and division operations can be replaced by shift, addition and
subtraction operations, which reduces the computational complexity and saves on hardware resources.
Fig. 10a presents the conversion template of the conversion matrix B, while Fig. 10b outlines the
conversion template of the conversion matrix B; the combination of the two is the conversion module of
the input feature block. Similarly, transformation matrices A and G, along with their transposition
matrices, can also be used to obtain transformation templates consiing of addition, subtraction and shift.

Figure 10: Conversion template of the conversion Matrix B
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4.3 Line Buffer Module Design

Since the on-chip storage space is insufficient to store the entire input feature map and filter, a specific
storage structure is required if we are to improve the degree of data reuse and improve the smooth data
transfer between storage structures at all levels. Fig. 11 illustrates the linear buffer module used in this
design. For the input feature map H�W, there is only a low correlation between the data of each
channel. After tiling is complete, the horizontal linear buffer contains M × W elements. In the buffer
zone, after the input feature map has been divided into tiles according to the block algorithm, the
Winograd domain conversion module completes the conversion and inputs the result into the PE to
perform the calculation. Moreover, in order to improve the calculation efficiency, the data handling time
is hidden in the data calculation. The input feature map buffer further adopts a ‘double buffer’ setting;
that is, when the slider slides in m linear buffers, the other m linear buffers are ready for the next
calculation. In the convolution kernel buffer, the convolution kernel is independently decomposed
according to each channel of the decomposition method, while the Sparse-Winograd algorithm is
executed on the subsequent input feature block.

5 Experimental Analysis and Results

5.1 Experimental Analysis

In this section, an analysis model will be established to help with theoretical analysis of the accelerator
performance. Tab. 4 presents the meaning of each parameter expression.

In theory, the total number of multiplication (Countermulti) operations performed by a single-layer
convolution in the accelerator design scheme can be calculated by Eq. (14), as follows:

Countermulti ¼ M� N� W� K þ 1ð Þ H� K þ 1ð Þ � ½K=3�2 � 16� q (14)

The data throughput of the entire accelerator in a single cycle is 16� 16� 4� 4ð Þ data points; thus, the
required clock cycle can be expressed as follows:

Cycle ¼ M� N� W� K þ 1ð Þ H� K þ 1ð Þ � ½K=3�2 � q
n o

=r2 (15)

Figure 11: Storage architecture overview
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Furthermore, the time required for the whole accelerator to run a single-layer convolution Ttotal can be
expressed as follows:

Ttotal ¼ M� N� W� K þ 1ð Þ H� K þ 1ð Þ � ½K=3�2 � q
n o

=Freq� r2 (16)

5.2 Experimental Results

SystemC is a collaborative software/hardware design language, as well as a new system-level modeling
language. It contains a series of C++ classes and macros, and further provides an event-driven simulation
core enabling the system designer to use C++ morphology in order to simulate parallel processes. In this
paper, system C is used to accurately simulate each module and thread to facilitate counting of the number
of cycles under a specific load. In order to fully consider the accelerator’s acceleration effect under various
convolution conditions, this paper utilizes workloads that are typically representative of both Conventional
Convolution and new convolution applications, which are named VGG-16 and MobileNet v1 respectively.
The architecture parameters of each network are listed in Tab. 5. Each layer of DSC consists of DSC and
SC, while the number of output channels is the convolution kernel size of SC, i.e., 1 � 1 � n.

Table 4: The meaning of each parameter

H The height of the feature map

W The width of the input feature map

M The number of channels of the input feature map

K The size of the filter

N The number of channels of the filter

Freq The clock frequency

q The sparsity of the Sparse-Winograd matrix

r The scale of the Accelerator PE

Table 5: The network architecture parameters of VGG-16 (left) and MobileNetV1 (right)

M N H(W) K M N H(W) K

Conv1.1 3 64 224 3 DSC1 32 64 112 3

Conv1.2 64 64 224 3 DSC2 64 128 112 3

Conv2.1 64 128 112 3 DSC3 128 128 56 3

Conv2.2 128 128 112 3 DSC4 128 256 56 3

Conv3.1 128 256 56 3 DSC5 256 256 28 3

Conv3.2 256 256 56 3 DSC6 256 512 28 3

Conv3.3 256 256 56 3 DSC7 512 512 14 3

Conv4.1 256 512 28 3 DSC8 512 512 14 3

Conv4.2 512 512 28 3 DSC9 512 512 14 3

Conv4.3 512 512 28 3 DSC10 512 512 14 3

Conv5.1 512 512 14 3 DSC11 512 512 14 3

Conv5.2 512 512 14 3 DSC12 512 1024 14 3

Conv5.3 512 512 14 3 DSC13 1024 1024 7 3
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The first layer of the network, as the original input, does not pass through either the ReLU layer or the
Prune layer, and its parameter density is 100%. In the simulation process, the accelerator operating frequency
is set to 200 MHz, while the data itself is represented by 8-bit fixed points. Fig. 12 plots the running time after
hardware implementation based on Conventional Convolution (in blue), the Winograd algorithm (in red), the
Sparse-Winograd algorithm (in green), and FDWA (purple) under VGG-16. It can be seen from the figure
that the dynamic sparseness introduced by the Sparse-Winograd algorithm both reduces the hardware
workload and improves the execution speed. The Sparse-Winograd algorithm and FDWA achieve the
fastest running times; accordingly, it can be seen that FDWA does not significantly reduce the running
speed in exchange for improving the hardware applicability and reducing the hardware consumption.
However, it should be noted that the FDWA is slow in the first layer of convolution operations; this is
mainly due to the insufficient sparsity of the first layer of convolution parameters, which results in the
interruption of pipelines and an increased number of empty and other cycles.

Moreover, Fig. 13 plots the running time after hardware implementation based on deep separable
convolution (in blue), the Winograd acceleration algorithm (in red), Sparse-Winograd acceleration
algorithm (in green), and FDWA (in purple) under the MobileNet V1 load. The figure shows us that the
Sparse-Winograd acceleration algorithm and FDWA can still obtain a very good acceleration effect.
However, as MobileNet V1 subsequently performs DSC, although the input image size decreases due to
the large number of channels, the number of convolutional layer operations also increases due to the
increase in accelerator control time and storage time, resulting in an overall increase in total operation time.
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Figure 12: Running time of VGG-16 under different convolution methods
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Figure 13: Running time of MobileNet V1 under different convolution methods
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From the comparative analysis of Figs. 12 and 13, it can be seen that MobileNet V1 requires a shorter
running time than the traditional VGG-16, which demonstrates the advantages of the new convolution
method, as well as showing that the lightweight neural network is more suitable for embedded or mobile
devices. It should however be noted that the actual running time of both is longer than the theoretical
derivation time. This is mainly due to the fact that it is not possible to hide the time spent on system
initialization, pipeline suspension, and data handling. However, for both Mobilenet V1 or VGG-16, it can
be seen that the FDWA has an acceleration effect of 3x–4.15x, and further achieves an improvement of
between 1.4x–1.8x compared with the traditional Winograd algorithm. Moreover, an accelerator that
utilizes the FDWA has unparalleled advantages in terms of hardware flexibility: it is not only compatible
with different convolution methods, but also capable to being adapted to different types of convolution sizes.

Tab. 6 presents a comparison between the design scheme of this paper and several mainstream
accelerator design schemes, with a particular focus on the difference in hardware resource consumption
and utilization rate. From the table, it can be concluded that the accelerator design scheme proposed in
this paper not only resolves the issue of the accelerator being insufficiently applicable, but also exhibits a
great advantage in terms of its utilization of hardware resources; this is mainly due to the dynamic
sparsity brought about by the Sparse-Winograd algorithm and the skip 0 module in the calculation
module, which reduce the amount of multiplication required, save on hardware consumption and improve
the hardware (particularly multiplier) utilization.

6 Conclusion

Based on the Sparse-Winograd algorithm, a highly parallel design of a reconfigurable CNN accelerator
based on Sparse-Winograd F 2� 2; 3� 3ð Þ is realized in this paper. Our proposed model not only
improves the applicability of the algorithm, but also avoids the complex pre-operation generally associated
with Winograd series algorithms and reduces the difficulty of hardware implementation. After experimental
verification, it can be concluded that the Sparse-Winograd algorithm decomposition method not only
improves the operational efficiency of the algorithm in terms of hardware, but also realizes an acceleration
of 3x–4.15x for VGG-16 and MobileNet V1, which is 1.4x–1.8x better than the Winograd algorithm.
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Table 6: Hardware utilization of different design schemes

Design Working
frequency (MHz)

Throughput
(GOPS)

Multiplier
amount

Utilization

Shen et al. [26] 200 943 756 120%

Aydonat et al. [33] 303 1382 1476 93%

Zhang et al. [34] 150 137 780 18%

Zhang et al. [35] 200 266 1058 25%

This article 200 945 576 142%
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