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Abstract: Over the past 10 years, lightning disaster has caused a large number of
casualties and considerable economic loss worldwide. Lightning poses a huge
threat to various industries. In an attempt to reduce the risk of lightning-caused
disaster, many scholars have carried out in-depth research on lightning. However,
these studies focus primarily on the lightning itself and other meteorological ele-
ments are ignored. In addition, the methods for assessing the risk of lightning dis-
aster fail to give detailed attention to regional features (lightning disaster risk).
This paper proposes a grid-based risk assessment method based on data from mul-
tiple sources. First, this paper considers the impact of lightning, the population
density, the economy, and geographical environment data on the occurrence of
lightning disasters; Second, this paper solves the problem of imbalanced lightning
disaster data in geographic grid samples based on the K-means clustering algo-
rithm; Third, the method calculates the feature of lightning disaster in each small
field with the help of neural network structure, and the calculation results are then
visually reflected in a zoning map by the Jenks natural breaks algorithm. The
experimental results show that our method can solve the problem of imbalanced
lightning disaster data, and offer 81% accuracy in lightning disaster risk assessment.
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1 Introduction

Lightning is one of the most serious public safety hazards, behind only drought and flooding. The direct
and indirect losses caused by lightning disasters increase every year. Therefore, how to protect against a
lightning disaster is a major concern among the scientific community. Regionalization of the lightning
disaster risk refers to the method of a comprehensive analysis of relevant data, such as lightning data,
lightning disaster data and geographic environment data, to delineate the spatial extent of the risk
according to the Jenks natural breaks classification algorithm. Meteorological departments can formulate
plans to prevent lightning based on the generated zoning map, and take certain actions in order to reduce
the number of casualties and economic losses caused by lightning disasters.
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The remainder of the paper is arranged as follows. Section 2 provides a brief description of the work
related to lightning disaster risk assessment. Section 3 presents a machine learning algorithm for lightning
disaster risk assessment. Section 4 describes the core data and schemes used in the experiment. In Section
5, the performance of the method is evaluated. We offer our concluding remarks in Section 6.

2 Related Work

The risk assessment of lightning disasters is one of the most important ways to improve our ability to
reduce and prevent lightning disasters. Some relevant researches analyze the factors that cause lightning
disasters and the vulnerability of lightning-prone objects, and build appropriate models by combining
lightning data, human casualties and economic property damage data, etc., to realize the risk division of
lightning disasters. The core of risk assessment of lightning disaster lies in the method of weight
assignments and in the establishment of an index evaluation system [1,2]. Li et al. [3] used lightning
density, frequency of lightning disaster, loss of property and loss of lives to conduct the division of
lightning disaster for Sanming City, with a weighted comprehensive evaluation method. Chen et al. [4]
combined the weighted comprehensive evaluation method with statistical methods, disaster analysis and
expert scoring to evaluate influencing factors. They used thunderstorm day (a meteorological term defined
as a day in which thunder is heard) and lightning area density as two factors to analyze which zones are
most vulnerable to lightning disaster in Anhui Province. According to the standard mathematical formula
of natural disaster risk and the conceptual framework for flood disaster risk, Cui et al. [5] used the
weighted comprehensive evaluation method and hierarchy analysis to evaluate the disaster risk and the
vulnerable zones in Nanjing. The analytic hierarchy process (AHP) is based on opinions from experts and
scholars in various areas of the field. Wang et al. [6] regarded states and cities as the analysis unit and
used the information quantity method to evaluate the vulnerability of regional lightning disaster, then
used the inverse deduction method to evaluate the vulnerability and division in Yunnan Province.
Recently, Chen et al. [7] and Liu et al. [8] leveraged previous studies, and introduced population
distribution, soil conductivity and other parameters to conduct a more comprehensive regionalization
study. Although there are few relevant studies in this field in countries other than China, several
international scholars have offered some significant ideas. Biswas et al. [9] proposed a GIS and IDW
statistical model for the spatial vulnerability analysis of lightning hazards, and as a result, were able to
determine the spatial heterogeneity of lightning risk. Nastos et al. [10] processed the lightning data by
using the precision lightning network (PLN) to analyze the movement of thunderstorms from both
temporal and spatial perspectives.

In summary, the study of lightning disaster assessment suffers from three deficiencies. First, when
considering the weight of the evaluation index, the model uses the forms of expert scoring and
questionnaire surveys, which rely on subjective factors to some extent. Second, some relevant studies
focus on the lightning data itself, but ignore other conditions such as the demographic and economic
factors of a region. Third, most lightning risk regionalization models use county (city, district) level
administrative regions as basic units.

With the evolution of machine learning, the use of neural network algorithms in various research fields
has increased, particularly in meteorology [11–13]. Researchers in the field of meteorology are using
machine learning methods to identify meteorological cloud map, lightning clustering, rainfall prediction
and air quality prediction [14]. A neural network is mainly divided into an input layer, a hidden layer and
an output layer [15]. There can be multiple output layers, and each layer can contain multiple neurons.
How to set the number of hidden layers and the number of neurons in each layer depends on the actual
situation. The neural network usually involves two steps: Forward propagation and backpropagation. The
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weight of the network is updated by first forward passing the input to the final layer to calculate the error
between the output and the real label, and then a backpropagation algorithm is used to minimize the error.

In response to the shortcomings of the current research, this paper proposes a rasterized lightning
disaster risk assessment model for imbalanced sample sets based on neural networks. The rasterization
refers to the rasterization of the entire Hunan Province, which is divided into 8953 geographic grids, each
with a length of 5 km, and generates 8953 data objects. Fig. 1 shows the original geographic area
rasterized in four geographic grids. Data grid processing enables the model to reflect the characteristics of
small areas more deeply and finely, representing an improvement over the other researches, which were
based only on administrative areas. During the experiment, we note that the data of lightning disaster are
imbalanced. Some researchers in the fields of big data and machine learning have studied the problem of
data imbalance with good results [16–18]. This paper proposes a method based on K-means algorithm to
eliminate the imbalance of data and then trains the lightning disaster risk assessment model based on a
neural network. This paper provides a reliable scheme for the assessment and prediction of lightning
disaster that is much more objective than other models. The data used in this experiment include
lightning data, lightning disaster data, geographical environment data, and population economic data to
resolve the shortcoming of the previous researches focusing only on lightning data.

3 Risk Assessment Method

The risk assessment method of lightning disaster in this paper mainly consists of three tasks: data
preprocessing, balancing the unbalanced data pertaining to lightning disaster and lightning, and a
calculation method based on neural network. The flowchart of our method is shown in Fig. 2.

3.1 Data Preprocessing

To more finely reflect the differences between the regions, our method rasterizes all the data from the
data source, where the Hunan Province is sliced and divided into 8953 geographical grids of 5 km
lengths. Each grid has longitude and latitude to the lower left and upper right corner for positioning, so
that the location of each grid and the region can be determined. The method calculates the risk
probability of each grid, so that the characteristics of each small grid can be analyzed, and the results of
the risk assessment will be more accurate.

Rasterization

(a) (b)

Figure 1: Geographical area rasterization. The (a) shows the original geographic area, and the (b) shows the
area divided into four small grids
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The specific data processing steps to be performed in order to obtain the data structure for the method are
as follows:

� Step 1: Put the data into the corresponding grid

According to the range of each grid and with the longitude and latitude of lightning, the lightning in each
grid can be determined. In the same way, the data of lightning disaster are gridded to determine the
corresponding grid. At the same time, using the ArcGIS geographic information system, the elevation
value and variance value of the grid are obtained in our experiment.

� Step 2: Grid data averaging

According to the actual situation, each geographic grid will contain multiple lightning data. The
lightning data of each grid is averaged as

Gk¼
Pn

i¼0 Si
n

(1)

where k is an integer, Gk represents the average lightning intensity in grid k, and n represents that there are n
lightning data in grid k. Si is the intensity of the i lightning data in grid k.

� Step 3: Label the grid

According to the lightning disaster data, the grid with lightning disaster is marked 1, which represents
positive samples; the grid without lightning disaster is marked 0, which represents negative samples.

� Step 4: Dimensionless data

In order to calculate the data with different dimensions together, this paper selected the min-max
standardized method for dimensionless data. The log function is used to normalize the data. The
processing formula is

Database

Data preprocessing and 
balancing the unbalanced data

The processed 
data

Neural 
Network

The risk assessment 
calculation result

The computational 
model for lightning 

risk assessment

Select the 70% 
data randomly

Remaining 30% 
data

The 
training set

The testing 
set

Test the model

Figure 2: Flowchart of our risk assessment method
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X�¼ log10xi
log10xmax

(2)

where, X� is the normalized data; xi is the data in the iith sample data; and xmax is the maximum value of the
sample data.

After the aforementioned four steps are performed, the standard data structure is constructed.

3.2 Processing Imbalanced Data

Compared with all the data on lightning, the proportion of data specifically related to lightning disaster is
very small. In addition, the statistical work is very difficult, which aggravates the problem of data
imbalanced. This problem makes it difficult to research and assess lightning disaster risk. To solve this
problem, the processing flow proposed in this paper is as follows:

� Step 1: Negative samples clustering

There are 150 positive samples in the dataset, in order to balance the negative and positive samples,
negative samples are clustered into 150 categories in this experiment using K-means clustering algorithm
[19]. Given the k value, that is, the center point of the k initial cluster, each point xi is divided into
clusters represented by the nearest cluster center point, which satisfies the following formula:

Dxi¼ argminj xi�urj jj22; r ¼ 1; 2; 3 . . . kselected (3)

Once all points are distributed, the center point of the cluster is recalculated according to all the points in
this cluster, and then we perform an iterative process for assigning and updating the center point of the cluster
until the central point of the cluster changes little, or the specified number of iterations is reached, where ur
represents the cluster center of each cluster.

� Step 2: Select the real lightning data points

The generation of lightning data is a result of the collection of data pertaining to real phenomena in the
natural world by observation instruments. However, the center of each cluster after K-means clustering is
virtual and calculated, not the real data. Therefore, in our experiment, after clustering 8803 negative
samples into 150 categories, we selected the real lightning data closest to the cluster center as negative
samples in each cluster, thereby generating a positive-and-negative sample set with 150 pieces of data.
After combining the negative and positive sample sets, a total of 300 pieces of data are mingled
randomly. The pseudocode of the algorithm is shown in Tab. 1.

Table 1: Pseudocode of algorithm for the risk assessment method

Algorithm 1

Input: An array of length n, storing n “cluster center” objects

Output: An array of grid numbers in n clusters closest to their cluster centers

1 function Distance(ArrayA, ArrayB)

2 xi2 ← 0

3 for i = 0 → ArrayA.length() – 1

4 xi2 ← xi2 + square(ArrayA[i] − ArrayB[i])

5 end for
(Continued)

CMC, 2021, vol.66, no.1 567



3.3 Build the Neural Network

Our method uses a neural network to assess the risk of lightning disaster in each area. Once the data have
been processed through the two processes described in Sections 3.1 and 3.2, the data requirements for the
training of the neural network have been met. At this time, the data will be mixed randomly, with 70% of
the data randomly selected to train the neural network, and the remaining 30% of the data will be used as
the test set. Once the model training is completed, the test set will be put into the model to test the model
performance. The structure and parameters of the neural network model used in the experiment are
shown in Fig. 3.

In our experiment, the input layer of the neural network model was composed of seven neurons, each of
which represents the data pertaining to lightning, geographical environment, population and the economy.
The output of the input layer was the input of the hidden layer. The first hidden layer used seven neurons
as the input and eight neurons as the output; both the second and third layers of the hidden layer contain
16 neurons. At the output layer, we used two neurons, one representing the probability of occurrence of
lightning disaster and the other representing the probability of non-occurrence of lightning disaster.
Because the data were ultimately represented as a probability value, the output activation function used
the softmax function. The calculation formula of softmax function [20] is shown as follows:

Si¼ eiPn
j¼1 ej

(4)

where ei represents the value of a neuron in the output layer, and Si represents the final result.

Table 1 (continued).

Algorithm 1

6 return(sqrt(xi2))

7 end function

8 for i = 0 → n − 1 do

9 mindis ← 10000

10 Dimensions[] ← Array[i].GetDimensions()

11 Grids[] ← Array[i].GetGrids()

12 for k = 0 → Grids.length() – 1

13 gDimensions[] ← Grids[k].GetDimensions()

14 dis ← Distance(Dimensions[], gDimensions[])

15 if dis < mindis then

16 mindis ← dis

17 mindisk ← k

18 end if

19 end for

20 Out[i] ← Grids[mindisk].GetNum()

21 end for

22 return(Out[])
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4 Experiment

4.1 Introduction to Data Sources

The experiment in this paper used three types of data: lightning meteorological data, geographic
environment data, and population and economic data. Lightning meteorological data were the main body
of our experimental data and included lightning data and lightning disaster data. This experiment
collected a total of 80,000 pieces of lightning data from 2015 to 2016 in Hunan Province. The
geographic environment data included elevation value and variance value, soil utilization type and
geographic grid slice data. Grid data refer to the slice division of Hunan Province, and the data were
filled into their own grid according to the longitude and latitude of lightning disaster data. This process is
called data rasterization.

It was difficult for us to obtain the data for the population and economy of small areas due to various
restrictions. Han et al. [21] proposed a model using maximum likelihood estimation to build a population
assessment model based on a hot keyword crawler. Our experiment used this population assessment
model to calculate the population and economic data of each grid in Hunan Province through an estimate
based on the number of keywords in each grid. The data used in our experiment are shown in Tab. 2.

The training 

data

7*1
8*1

16*1 16*1 16*1

8*1

16*1 16*1
16*1

Assessment 

model

7*1

The testing 

data

Train the 

model

Test the 

model

Data visualizationJenks natural breaks 

classification

Figure 3: Hierarchical structure of the neural network in this experiment

Table 2: The description of data used in the experiment

Index Data name Remarks

1 Geographic grid data of Hunan Province 8953 grids with 5 km side length

2 Lightning disaster data of Hunan
Province

Total of 150 pieces of lightning disaster data
from 2015 to 2016

3 ADTD lightning location data Including lightning intensity and lightning density data

4 Grid population data Evaluated with probabilistic model

5 Grid economic data Evaluated with probabilistic model

6 Grid soil utilization type data Judged by analytic hierarchy process

7 Grid drainage data Provided by China Meteorological Administration
Serviced and processed by data gridding treatment8 Grid elevation and variance data
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4.2 Experimental Schemes

To determine the impact of population data, economic data and geographical environment data on the
occurrence of lightning and lightning disaster, four schemes were designed in this experiment. Each scheme
was trained with different data using the control variates method. The four experimental schemes obtained
different experimental results, and the final data selection and parameter setting of the risk assessment model
were determined according to the experimental results. The specific experimental scheme is shown in Tab. 3.

5 Risk Assessment Model of Lightning Disaster Results

5.1 Binary Processing and Experimental Accuracy

There are two neurons in the output layer of the model. One represents the probability of occurrence of
lightning disaster Pi, and the other represents the non-occurrence of lightning disaster Pj in this grid, after the
model’s calculation of the test data. For a more accurate comparison of the experimental results, the
probability of thunderstorm in this paper is binarized using the following method:

R ¼ 1; Pi> 0:5
0;Pj< 0:5

�
(5)

Definition: If the value R equals to the value on an actual label, then the prediction made by the model is
a correct prediction; otherwise, it is an erroneous prediction. The overall accuracy of the model is calculated
as follows:

Paccuracy¼N

T
�100% (6)

where N represents the number of correct predictions, and T represents the total number of the test data. This
accuracy rate P reflects the reliability of the model used for risk assessment of lightning disasters.

5.2 Experimental Results and Analysis

In this experiment, 70% of the dataset was selected as the training set, and the remaining 30% of the data
functioned as the test set. After the training of the neural network model, the test set was sent to the neural
network for testing. The histogram of the accuracy of several experimental schemes is shown in Fig. 4.

Table 3: Description of lightning disaster risk assessment model

Experimental
scheme

Negative sample data
selection

Data dimension Training and testing

Scheme 1 150 K-means clustering
centers

Seven-dimensional data of lightning,
population economy, and geographical
environment

70% data for training
set, 30% data for
testing set

Scheme 2 In each cluster, the real
data closest to the
cluster center

Seven-dimensional data of lightning,
population economy, and geographical
environment

70% data for training
set, 30% data for
testing set

Scheme 3 In each cluster, the real
data closest to the
cluster center

Five-dimensional data of lightning and
geographical environment

70% data for training
set, 30% data for
testing set

Scheme 4 In each cluster, the real
data closest to the
cluster center

Five-dimensional data of lightning,
population and economy

70% data for training
set, 30% data for
testing set
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When only lightning disaster data and demographic data were taken into account, without the presence of
geographical data, the accuracy of the risk assessment model was reduced by 15% but maintained at 65.56%.

When only lightning disaster data and geographical data were considered, not demographic data, the
accuracy of the risk assessment model was reduced by 15% after many experiments.

When dealing with imbalanced data, if the 150 cluster center points were directly used as a sample set to
perform calculations on the neural network, the accuracy was maintained at 58.89%.

Based on the analysis of our comparative experiments, lightning data hold the dominant position in the
assessment of lightning disasters. The occurrence of lightning disasters is also relatively sensitive to
geographical factors and demographic factors. The results show that the occurrence of lightning disasters
depends not only on the meteorological data conditions, but also on the geographical environment and
human activities. In other words, high-rise buildings and densely populated areas are more prone to
lightning disasters. Therefore, analyzing the risk of lightning disasters in a certain area cannot be
analyzed only from the lightning data itself. When lightning data, economic data, demographic data and
geographical data are taken into consideration, the model is deemed to be relatively stable and accurate.

In constructing the aforementioned model, we used the K-means clustering algorithm to deal with the
imbalance of some meteorological data. After several experiments, assume that a piece of data is composed
of multiple meteorological data dimensions Pðx1;x2; . . . ;xnÞT, where P represents a multidimensional
meteorological data and x1 to xn are n meteorological data dimensions. Unlike traditional methods that
process imbalanced data in the computer field, the real meteorological data closest to the clustering center
in the high-dimensional data space are to be selected when dealing with imbalanced data, so as not to
affect the results of subsequent experiments. We believe the reason for this phenomenon is that the
meteorological data being the product of nature, can be considered the natural data, while the cluster
center is the calculated virtual point. This method can be considered in the feature when dealing with
imbalanced meteorological data.

5.3 Data Visualization

In this paper, Hunan Province is divided into 8593 geographical grids. The lightning risk of each
geographical grid is calculated by the model proposed in this paper, and then the Jenks natural breaks
classification algorithm is used to divide the lightning disaster risk of Hunan Province into three risk
levels: high-risk (red area), medium risk (yellow area), and low-risk (green area). The blue area in Fig. 5
represents the water system.

58.89%

81.11%

65.56% 65.56%

0.00%

50.00%

100.00%

scheme1 scheme2 scheme3 scheme4

Accuracy of experimental scheme

Figure 4: Accuracy of four experimental schemes
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From Fig. 5, it can be inferred that the risk of lightning disasters in Changsha City, Xiangtan City and
Hengyang City is relatively high. The northeastern part of the map, consisting of Changde City, Yiyang City
and Yueyang City, also has a high risk of lightning disasters. The risk of lightning disaster is higher in densely
populated areas and areas with high-rise buildings. Furthermore, the closer the populated areas to the water
system, the more frequent the lightning activity, and higher probability of a lightning disaster. In Western
Hunan, Loudi and other sparsely populated areas, the risk of lightning disaster damage is relatively low.
Although the frequency of lightning in some areas is very high, the possibility of causing a lightning
disaster could be low if the population is relatively scattered in these areas.

6 Discussion

It is useful to analyze all the different types of data that affect the occurrence of lightning disasters.
However, the problem is that the weight distribution of each model in the previous research is not
scientific enough. In this paper, meteorological data, geographic data, demographic data and disaster data
are organically combined. After solving the problem of data imbalance, a neural network model is
introduced to analyze the data. Now, the weight of our model is calculated by the neural network from
the learning of the former data. Experiments have proved that when meteorological data, geographic data,
population data, and economic data are comprehensively taken into account, the accuracy of the neural
network for risk assessment of thunderstorm disaster is more than 80%, but when only meteorological
data itself is considered, the accuracy of experiment is maintained at 65%, and the accuracy of the model
is greatly reduced. When analyzing thunderstorm risk, it is also necessary to consider geographical and
demographic factors. Unlike previous research on provinces, cities, counties, the analysis of geographic
grid data can better analyze the details of geographic space, highlight the differences between smaller
areas, and quantify the thunderstorm risk of each grid.

Figure 5: Zoning map of lightning disaster risk
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The combination of computer technology and meteorology has a bright future. Historically,
meteorological research relied heavily on numerical and statistical calculation methods. However, the
emergence of big data analysis and machine learning techniques can form new strategies that will allow
researchers in the field of meteorology to conduct more in-depth studies. And we expect to conduct more
researches in the interdisciplinary field of computer technology and meteorology.
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