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Abstract: Recently, an increasing number of works start investigating the combi-
nation of fog computing and electronic health (ehealth) applications. However,
there are still numerous unresolved issues worth to be explored. For instance,
there is a lack of investigation on the disease prediction in fog environment
and only limited studies show, how the Quality of Service (QoS) levels of fog ser-
vices and the data stream mining techniques influence each other to improve the
disease prediction performance (e.g., accuracy and time efficiency). To address
these issues, we propose a fog-based framework for disease prediction based
on Medical sensor data streams, named FogMed. This framework aims to
improve the disease prediction accuracy by achieving two objectives: QoS guar-
antee of fog services and anomaly prediction of Medical data streams. We build a
virtual FogMed environment and conduct comprehensive experiments on the pub-
lic ECG dataset to validate the performance of FogMed. The experiment results
show that it performs better than the cloud computing model for processing tasks
with different complexities in terms of time efficiency.
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1 Introduction

Both remote and in-hospital healthcare mechanisms use body sensors and patient monitoring devices to
collect and display the continuous signals of multiple physiological parameters, which are usually presented
in the form of data streams. These data streams will be referenced by doctors or intelligent medical decision
systems to detect or predict diseases, and to give accurate prognosis decisions in time [1]. The elders or
patients having chronic diseases usually need to be monitored consistently. For example, it is of great
value to predict abnormal heartbeats as early as possible and send a response to user terminals as soon as
possible. Care workers can take effective measures in advance, so that the survival chance of patients
with heart diseases can be increased. This work aims to develop an ehealth system based on IoTs to
provide robust healthcare support for those people.
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Some researches [2,3] apply cloud computing techniques to ehealth industry. Cloud computing enables
on-demand utilization of software and hardware resources [4]. The centralization of cloud resources and their
flexible provision facilitates the analyzing of a large volume of Medical data streams. For example, it is
possible to easily perform deep learning algorithms for big data processing and mining. In addition, cloud
computing reduces the costs of building high performance servers and databases for individual service
users. An obvious disadvantage of just applying cloud computing to solve ehealth problems is that cloud
resources are usually far away from end users. This may result in slow answers for a diagnosis event,
which can cause terrible consequences in a real-time Medical event.

Fog computing is the current optimal solution for ehealth services [5]. The design of fog computing is
especially adaptive to the applications requiring fast answers. Fog computing is a combination of edge
computing and cloud computing. The tasks demanding low latency and few resources will be distributed
to edge devices. The tasks requiring a large amount of resources will be delivered to the cloud computing
center (CCC). In an ehealth system, data streams consistently collected from body sensors can be
monitored, displayed and processed by edge devices. A large volume of historical data can be stored in
cloud databases for further analysis. Existing fog-based data analyzing [6,7] and QoS controlling [8]
techniques have dramatically improved the machine-based health monitoring and anomaly detection.
However, there are still a number of unresolved issues worth to be explored. For example, there lacks an
investigation on anomaly (e.g., heart disease) prediction based on Medical data streams in fog computing;
and limited studies show how the Quality of Service (QoS) optimization of fog services and the anomaly
prediction of Medical data streams influence each other to improve the prognosis accuracy.

In this paper, we propose an environment-friendly Medical data stream management system based on
fog computing, called FogMed. It can collect and store patients’ physical information, analyze and predict
anomalies based on the information, and optimize QoSs of fog services. The purpose of monitoring
patients is to detect or predict their anomalies as early as possible, so that the accurate treatments can be
taken in advance to maintain patient health. Therefore, we focus on two problems: anomaly detection and
prediction of Medical data streams, and QoS optimization of fog services. To demonstrate the efficiency
of FogMed, we illustrate an example of Atrial Fibrillation (AF) prediction from Electrocardiogram (ECG)
data streams. A two-layer stacked long short term memory (LSTM) model is proposed for AF prediction
(abbreviated as SLAP). Based on the AF prediction results, we evaluate the response time of fog nodes
for processing simple Medical tasks and that of CCC for processing complex Medical tasks. At last, we
build a virtual FogMed environment and conduct comprehensive experiments. Experiment results show
that FogMed performs better than the cloud computing model for processing both complex and simple
Medical tasks. Overall, this work has the following contributions:

� We introduce a fog-based disease prediction framework to explore the correlation between QoS
optimization of fog computing and the performance of disease prediction.

� We illustrate an example of heartbeat anomaly prediction based on FogMed and introduce a deep
learning model for anomaly prediction.

� We conduct comprehensive experiments to validate the efficiency of FogMed for processing both
complex and simple Medical tasks.

The structure of this paper is: Section 2 describes the architecture, functions and characteristics of
FogMed, and illustrates an example of abnormal heartbeat prediction based on FogMed; Section 3
demonstrates the efficiency of FogMed based on experiments. Section 4 reviews state-of-the-art; and
Section 5 concludes this paper.
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2 A Fog-Based Framework for Disease Prognosis Based on Medical Data Streams

This section introduces the key physiological parameters that need to be monitored and analyzed in
ehealth. We propose a system of analyzing, mining and managing Medical sensor data streams based on
fog computing techniques, namely FogMed, and introduce the structure of a fog device in FogMed. We
summarize the main notations used in this paper in Tab. 1.

2.1 Types and Collections of Medical Data Streams

Advanced handheld or wearable monitors can help collect different types of physiological signals of
patients or elders. For example, a handhold multi-parameter patient monitor [9] is capable of consistently
monitoring pulse rate, information of blood constituents (e.g., arterial carbon monoxide saturation and
arterial oxygen saturation), plethysmograph data, and perfusion quality. This information is normally
presented in the form of data streams. A number of medical devices [10] have been developed to store
and analyze these data streams.

2.2 Requirements on Computing Model for Processing Medical Data Streams

Real-time generated healthcare data streams have features of variety, large volume, and high velocity
[11]. Some researches propose cloud-based methods to process this type of data. However, the
centralization of cloud resources and the inflexibility of cloud network structures make the cloud
incapable of handling healthcare data streams rapidly. Low velocity may result in serious consequences in
healthcare contexts [11]. The computing model capable of handling such healthcare data streams must
satisfy the following requirements [12,13]: (1) Easy to achieve very low latency. Fast responses can save
treatment costs and patient lives, which requires not only the speed of data transmission and analysis, but
also the right places to make decisions. Places close to the data generation mobile devices are more
appropriate for fast decision making than remote clouds. (2) Reduce the waste of network resources. Not
all the data need to be sent to the cloud. (3) Guarantee data security. Healthcare data are the privacy of

Table 1: Summary of the main notations in this paper

Notation Meaning

fo a fog node

gi the ith complexity of a task

Ctrfo a controlling fog device

CCC cloud computing center

AF Atrial Fibrillation

SLAP stacked LSTM for AF detection

ilower input of the bottom hidden layer of SLAP

Wlower
n weight of an edge connecting upper-layer and bottom-layer cells

on output of a cell of SLAP

xji the ith signal of the jth ECG sample

x̂ji true value of xji
eji eji ¼ xji � x̂ji

�� ��
p eð Þ probability distribution of error e

e an error threshold for distinguishing normal and abnormal ECG samples
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patients, so they should be secured during collection, transmission, storage and analysis. (4) Ensure data
accuracy and reliability. Healthcare data determine the correctness of diagnosis. They are usually
collected by mobile devices in geographically dispersed locations, which may cause the collected data
noisier and less integral than the data collected inwards. (5) Capable of communicating with different
types of mobile devices. Cloud devices use the Internet Protocol (IP) to communicate with each other
[12]. However, different mobile devices may use different communication protocols.

2.3 Overview of the Architecture of FogMed

The architecture of FogMed is shown in Fig. 1. The sensor layer is the edge of the architecture, where
different types of sensors consistently sense the physiological signals of patients. We use the wearable health
monitoring sensors [14] to monitor a patient’s physical status. A wearable hub [14] is used to communicate
these data streams with mist devices, such as mobile devices (e.g., laptops or mobile phones),
microcomputers or microcontrollers that have data processing and storage capabilities. These mist devices
are at the bottom of the fog layer. They can analyze a small amount of data and make fast decisions.
Tasks requiring more computing resources are forwarded to the second fog layer. Cloud resources are far
away from sensors, which can process non-urgent tasks requiring a large amount of resources. Both fog
and cloud layers have capabilities of analyzing and summarizing data, making diagnostic decisions, and
determining service scheduling strategies.

We use the round-robin database (RRDB) in fog layer to store small and temporal data streams; and use
both the RRDB and the journal database (JDB) in cloud layer to store large and long-term historical data [1].
For example, an RRDB stores physical data streams from sensors of a patient, and a JDB stores the
information of important medical events, e.g., an illness breaking or a device failure.

2.3.1 Geographical Partition and Function Components of Fog Devices
FogMed works in a constrained geographic area. It further partitions devices of a wide area into a

number of subareas and manages each subarea through some controlling devices. Fig. 3 shows
geographical partitions of fog devices. There is at least one controlling fog device in a subarea, which has
the following functions:

Figure 1: FogMed: A framework for fog-based disease prognosis and Medical sensor data stream
management
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� Resource management: Manages both practical and virtual resources to guarantee successful
executions of multiple Medical tasks, by simultaneously optimizing QoS levels [15].

� Power management: Power management is critical in an ehealth system. Both cloud and fog devices
have power constraints [16], so it is necessary to develop an appropriate energy saving strategy by
considering the power drain and battery lifetime of fog nodes [17] to guarantee the success of real-
time Medical tasks.

� Monitoring devices: Monitor both resource utilization and energy consumption. The monitoring data
can be used for real-time resource and energy management. It can be stored in a cloud JDB for
subsequent system analyses.

� Medical data stream management: Pre-process, store, and analyze Medical data streams. Especially,
by cooperating with the resource management, energy management and status monitoring
components, a fog node should be capable of determining which data streams and tasks should be
sent to cloud and which should be processed by fog devices.

Basically, non-controlling fog devices in a subarea have functions of Medical data stream management,
status monitoring and power management. They execute instructions from controlling devices and send
information to places designated by controlling devices (e.g., databases, other fog devices, user terminals
or cloud devices).

2.3.2 Architecture of a Fog Device in FogMed
Fig. 2 shows the structure of a controlling fog device of FogMed, which references the fog node

architecture defined by [18]. This structure takes into account resource management (including hardware
and software resources), QoS optimization, data processing and analyzing, database management,
interfaces to the Web, connections to the other fog nodes and the cloud layer, data organization, network
communication and data security [19] for designing both hardware and software.

The structure of a non-controlling fog device is similar to that of a controlling fog device, but based on
its specific functions, it might be configured by different software or hardware.

Figure 2: Structure of a controlling fog device
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2.4 Main Challenges and Solutions in FogMed

2.4.1 Workflow of Medical Data Stream Processing and Analyzing
The application scenario of FogMed is to monitor physiological conditions of patients by using sensors

and monitors inside or outside a hospital. The workflow of Fogmed is as follows:

� By using monitor components (see Fig. 2), a fog device directly connects to one or more sensors on
the body of a patient. The fog device is managed by an operating system and deployed by a number of
software services. The monitors, coupled with the protocols/services of the network communication
and device interaction, collect data streams generated by sensors in certain generating rates. The data
streams collected in a time interval are pre-processed (e.g., removing noises), formatted, compressed,
and stored in the random access memory (RAM) or the RRDB. In this step, we need to develop
advanced techniques to organize (i.e., format, compress, federate and store) different types of data
streams collected from sensors or patients.

� A fog device is deployed by a system of Medical data stream management, which includes the
services of real-time processing and analyzing consistently generated data streams. Based on
specific requirements, the fog device calls corresponding services to analyze data streams. If this
analyzing task requires a short-term history information, the fog device accesses the RRDB.
However, if a long-term history information is required and the fog device cannot provide such
information, this analyzing task is sent to CCC. In this step, we need to develop innovative
techniques to predict or detect anomalies in data streams to diagnose diseases as early as possible.

� As soon as an anomaly is detected, the system calls services of analyzing anomalies and making
treatment decisions. It then sends alarms or corrective treatments to end-devices of the patient
based on some pre-determined confidence thresholds. If the system cannot automatically make
right decisions based on the confidence thresholds, the anomaly will be sent to end-devices, and
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Figure 3: Geographical partition and controlling of fog devices
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then artificial decisions will be made and sent to patients. In this step, we need to develop techniques
of anomaly prediction and treatment decision making.

2.4.2 Resource Management, QoS Optimization and Energy Saving
The other two objectives of this work are QoS optimization and energy saving. FogMed guarantees that

the requested tasks are completed, and the best trade-off among multiple quality measuring parameters (e.g.,
response time, latency, and availability) of services (e.g., cloud, fog and network resources) is achieved. The
satisfaction degrees of a service user (e.g., a patient, a doctor, or a service using the measured services) are
then optimized. Simultaneously, FogMed aims to minimize the energy (e.g., power) consumption on the
premise of QoS optimization and accurate decision making.

To achieve QoS optimization, we explore techniques of resource management, including both software
and hardware resources. Software resources refer to virtual resources, e.g., virtual machines on a fog or cloud
platform, virtual fog nodes by separating an actual fog node or a geographically constrained area, and virtual
local area networks. Hardware resources include the actual fog and cloud processors, memories, and
networks. FogMed must be able to dynamically determine how many and which fog and cloud
processors to be used, how many fog and cloud databases to be built, and how to distribute tasks and
balance loads on fog and cloud devices. We will show the efficiency of FogMed for performing Medical
tasks by comparing it with a CCC in Section IV.

2.5 Components and Functions of Cloud Layer in FogMed

A cloud computing device in cloud layer processes complex services and a large amount of data that
cannot be processed in fog devices. In our medical context, the data stream mining services that do not
require fast responses but require high computing power or depend on certain historical information are
most probably processed by cloud computing devices. In addition, cloud layer is deployed with both JDB
and RRDB, which store long-term information and time-critical information respectively. Components of
cloud layer are shown in Fig. 4, which include controlling devices (represented by the oval shape) and
non-controlling devices (represented by the round shape). A controlling device accepts services coming
from the fog layer and allows services to non-controlling devices based on some service allocation
strategies. Its functions are similar to the functions of controlling fog devices. Non-controlling cloud
device has the same functions as controlling fog devices. Controlling and non-controlling cloud devices
communicate with each other, and also communicate with cloud storage devices (i.e., cloud RRDBs and
JDBs). We describe an example of building a deep learning model to predict AFs based on ECGs in the
cloud layer of FogMed.

Figure 4: Components and functions of cloud layer
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2.5.1 A Deep Learning Model for Predicting Atrial Fibrillation in Cloud Layer
In cloud layer, we store a large amount of history ECG data streams in JDBs, and train a deep learning

model, a stacked LSTM, to predict AFs based on ECG data streams. We call this model a stacked long short
term memory architecture for AF prediction (abbreviated as SLAP). The structure of SLAP is shown in
Fig. 5, which contains two sub-layers of LSTM. Each edge connecting two cells has a weight value.
Fig. 6 shows details of SLAP, where a hidden layer of LSTM overlays the other hidden layer, and the
upper layer outputs information to the lower layer. A cell represents a time unit. The input layer inputs a
multivariate time series to each cell and the output layer outputs a time series with N (N > 0) time units.

Eq. (1) shows the data transformation between cells [20], where ilower is the input to the bottom
hidden layer; f is an activation function; Wlower

n is the weight of the edge connecting the upper-layer cell
and the bottom-layer cell; N is the output number of the upper layer; on is the output of a cell; and blower

is a bias value.

ilower ¼ f
XN

n¼1
Wlower

n � on þ blower
� �

(1)

SLAP takes advantage of the multiplicative structure of LSTM, in which each cell is capable of
controlling the information flow. Based on the output of a time unit and the new ECG signals, SLAP
predicts signal trends in next time unit with variable time lengths.

2.5.2 Modelling Errors of the Predicted Samples for Classifying Normal and Abnormal Samples
After training a SLAP model, we determine whether the predicted samples are normal or abnormal. To

achieve this, we assume that the errors of the predicted samples from the true samples fit the multivariate

Figure 5: Structure of SLAP

Figure 6: Details of SLAP
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Gaussian distribution. Suppose we have n predicted ECG samples x1; . . . ; xnf g, and each sample has m
digital signals xi ¼ fx1i ;…; xmi g; i 2 1; . . . ; nf g. Let the true alues of the n samples be x̂1; . . . ; x̂nf g, the
error of the jth element in the ith sample is eji ¼ xji � x̂ji

�� ��. Eq. (2) defines the multivariate Gaussian
distribution P of the error vector ei of a predicted sample xi.

p ei;l; �ð Þ ¼ 1

2pð Þn2�1
2

e�
1
2 ei�lð ÞT� �1ð Þ ei � lð Þ (2)

where l is an n × 1 vector and � is an n × n matrix, which are defined by Eqs. (3) and (4) respectively.

l ¼ 1

m

Xm

j¼1
eji (3)

� ¼ 1

m

Xm

j¼1
eji � l
� �T

(4)

If p eið Þ < e, we say xi is a normal sample, or else, xi is an abnormal sample, where e is an error
threshold and will be introduced in detail in the next section.

2.5.3 Steps of Model Learning and AF Prediction
Steps of building SLAP are as follows: (1) Data processing. At first, we divide a set of multivariate ECG

samples into four subsets, S1, S2, S3 and S4, to train the SLAP parameters, the multivariate Gaussian
distribution of sample errors, and an error threshold E for distinguishing normal and abnormal samples,
and to test the trained SLAP model respectively. (2) Learn SLAP parameters and the multivariate
Gaussian distribution. We use sample set S1 to learn the SLAP model and use S2 to validate the model
and simultaneously fit the multivariate Gaussian distribution. (3) Determine E. After fitting the
multivariate Gaussian distribution, we determine the value of E based on S3. The final E should maximize
the f-score in Eq. (5) [21].

Fb ¼ 1þ b2
� � ApAr

b2Ap þ Ar
(5)

whereAp andAr are defined by Eqs. (6) and (7) respectively; and b is a trade-off parameter between Ap andAr.

Accuracy ¼ TruePositive

TruePositiveþ FalsePositive
(6)

Recall ¼ TruePositive

TruePositiveþ FalseNegative
(7)

3 Experiment

Our experiment contains two main parts: Experiment-I: evaluate the deep learning model SLAP for AF
prediction; and Experiment-II: Evaluate the response time of fog layer and cloud layer for processing AFs.
We describe the results of these two parts separately.

3.1 Experiment-I

Experiment-I is based on two public ECG databases: the long-term AF database (LTAF) and the AF
terminal challenge database (AFTC) [22]. LTAF includes the long-term ECG recordings of 84 subjects
who have the sustained or paroxysmal AFs [23], and the duration of LTAF records are in the range of 24
to 25 hours. A record in AFTC contains two ECG signals, where the sample frequency of each signal is
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128 samples/second; and a record only sustains one minute. We separate the two datasets into four subsets:
S1, S2, S3 and S4.

The settings for training an SLAP are defined as follows: divide a long term ECG into short segments
(1~2 minutes), where each segment has the length of 100 unit time (1 unit time = 1 second); and input the
segments into the input layer of SLAP consistently. SLAP has two hidden layers. Each layer has 55 cells. Let
the learning rate to be 0.01, the termination error to be 0.00001, and b to be 0.1. We then train the SLAP
based on S1. The trained SLAP can predict the trend of the ECG signals in future 10 time units. The
experiment runs on a computer with a GPU of NVIDIA GeForce 10501.

Based on the above settings, we train an SLAP model and use this model to test the performance of AF
prediction and then to determine E. We take about 45 seconds to fix the optimal Fb = 0.92 and E = 0.015. And
then we validate the anomaly prediction results based on S4. We compare the AF prediction performance of
SLAP, single-layer LSTM and RNN in Tab. 2. The accuracy recall and f-score of SLAP are higher than those
of RNN and LSTM, because the stacked LSTM layers in SLAP can extract high-level features that can result
in a richer output than RNN and LSTM [21].

Tab. 3 shows the performance of SLAP with different number of layers. SLAP with two layers achieves
the highest performance. SLAP with one layer does not have enough weight variables to support the feature
diversity. SLAP with more than two layers can cause under-fitting. Experiment results demonstrate that a
stacked structure can enhance feature extraction accuracy, and support the modeling of ECGs by using
various weight variables and biases.

3.2 Experiment-II

We build a virtual FogMed environment, whose topology is shown in Fig. 7. This network topology has
one cloud data center and 16 fog areas (WAN1, …, WAN16). Each fog area contains 32 fog nodes that are
connected with each other. Each fog area contains 16 hospitals, and each hospital contains 500 edge nodes,
where an edge node represents a patient that being monitored and sends data streams to its connected fog
node. The configurations of the virtual FogMed environment are shown in Tab. 4, where the computing
core numbers of the cloud data center (cdcCoreNum) and a fog node (fogCoreNum) is 64 and 4
respectively; the average sizes of a task packet or a query packet from a fog node to cloud
(aveTaskSizeF2C) and to an RRDB (aveQuerySizeF2DB) are both 1 KB; the average sizes of a response

Table 2: Compare AF prediction performance of RNN, LSTM and SLAP

Model RNN LSTM SLAP

Accuracy 0.83 0.87 0.92

Recall 0.87 0.88 0.92

F-score 0.83 0.87 0.92

Table 3: Compare AF prediction performance of LSTM with different number of layers

Layer number 1 2 3

Accuracy 0.87 0.92 0.84

Recall 0.88 0.92 0.7

F-score 0.87 0.92 0.84
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packet from cloud (aveCloudRespSize) and an RRDB (aveDBRespSize) are 10 KB and 50 KB respectively;
the average transmission rates from a fog node to cloud (aveTransRateF2C), an RRDB (aveTransRateF2DB),
and an edge node (aveTransRateF2E) are 1 Mb/s, 10 Mb/s and 5 Mb/s respectively; and the average time of
querying an RRDB (aveDBQueryTime) is 1 ms.

In the virtual FogMed, patients are monitored to detect the abnormal heartbeats. By using ECG detection
sensors, a patient generates heartbeat data streams consistently. These data streams are sent to and analyzed
by a mist device connected with the sensors. If an abnormal heartbeat happens, a warning signal is sent to a
connected fog node fo. In a certain time period (e.g., 1 ms), fo integrates the warning signals from the 500
edge nodes and establishes tasks to process these abnormal signals based on the abnormal complexities.
We divide the abnormal complexity into 20 grades: g1 � g20 where g1 represents the simplest task. After
determining gi i 2 1; . . . ; 20f gð Þ, fo evaluates the computing resources needed to finish gi. If fo has

Figure 7: Topology of a virtual FogMed

Table 4: Configurations of the virtual FogMed

Configuration Value Configuration Value

cdcCoreNum 64 aveTaskSizeF2C 1 (KB)

fogCoreNum 4 aveQuerySizeF2DB 1 (KB)

aveTransRateF2C 1 (MB/s) aveCloudRespSize 10 (KB)

aveTransRateF2DB 10 (MB/s) aveDBRespSize 50 (KB)

aveTransRateF2E 5 (MB/s) aveDBQueryTime 1 (ms)
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enough capacity, it will start this task, or else, it will send this task to the controlling fog device Ctrfo in this
fog area. Based on the task complexity, Ctrfo makes decisions to allocate other fog devices to gi. or send this
task to CCC.

We test AFs in this experiment, and define the number (n) of AFs happened in 1 ms as a variable of the
abnormal complexity: g ¼ g1 if n 2 1; 25½ �; g ¼ g2 if n 2 26; 50½ �;…; and g ¼ g20 if n 2 426; 500½ �.
And we use a simple scenario in this experiment for testing the performance of FogMed: We set two
complexity thresholds: t1 ¼ 60% and t2 ¼ 90%. The complexity of a task will be determined by a fog
device. The complexity of a task being less than t1, between t1; t2½ �, and more than t2 means the task is
simple (tasks), moderately complex (taskm) and very complex (taskc) respectively.

Test-I: a fog node sends all arrived tasks (including tasks, taskm and taskc) to CCC. The action loop time
(i.e., a time period from the point of sending a task to the point of getting a response) of CCC for tasks with
different complexities is shown in Fig. 8. We can see that whatever the complexity of a task is, the average
response time of CCC for the task is around 250 ms, which means the task complexity does not influence
much on the processing time of CCC. And since we have defined that the packet size and the
transmission rate of distributing a task on the Internet is fixed, and they cannot be influenced by task
complexities, so sending a simple task from fog to cloud takes similar time to send a complex task.

Test-II: a simple task (tasks) is processed by the fog device holding the task or fog devices close to the
holding device; a moderate task (taskm) needs to query ancillary data from a hospital RRDB and then is
processed by the fog device holding the task or fog devices closing to the holding device; and a complex
task (taskc) will be sent to cloud by a fog controlling device. We define that the complexities of a tasks, a
taskm and a taskc are less than 60, in [60,90], and more than 90 respectively. Fig. 9 shows the action loop
time of 12 taskss, 6 taskms and 2 taskcs, where the average response time (i.e., average loop time) of
taskss, taskms and taskcs are around 50 ms, 90 ms and 150 ms respectively. On one hand, locally
processing a simple task by a fog device takes little transmission time and transmitting a task from fog to
cloud needs much time. On the other hand, though the processing power of CCC is stronger than that of
a fog device, CCC needs to process more complex tasks than fog devices.

From Figs. 8 and 9, we can see that CCC takes 250 ms on average to process all types of tasks
simultaneously, and 150 ms on average to just process complex tasks. This is because sending more tasks
to CCC increases the occurrence possibility of network congestion in one time period, and tasks may
need to be queued to wait for the free processing power.

Figure 8: Response time of Cloud with respect to different task complexities
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From this experiment, we can see that distributing all tasks to cloud has to solve problems of remote
transmission, network congestion and task overwhelming. However, FogMed takes advantage of both fog
and cloud resources, which solves the problem that the fog layer lacks computation and storage
resources, and eases network congestion and task overwhelming for the cloud layer. In addition, for small
hospitals or individuals, it is simpler and more practical to build or use cheap fog devices near to them.
Overall speaking, fog computing is more appropriate to solve ehealth problems and FogMed is an
efficient and practical framework for disease diagnosis and prognosis.

4 Related Work

This section reviews state-of-the-art about the fog-based ehealth, focusing on discussing disease
prognosis, Medical data stream mining, QoS optimization and energy saving. Based on the literature
review, we point out some unresolved issues.

4.1 QoS Optimization and Energy Saving in Fog-Based ehealth

Many scholars explored the problem of QoS optimization in fog environment. Muhammed et al. [24]
proposed a network management framework to solve the QoS optimization of network latency,
bandwidth, and reliability in the IoT-based ehealth system. It uses an edge device called cloudlet [25] to
implement the fog framework. Different to [24], Rahmani et al. [26] designed a gateway as an intelligent
fog device to connect end users and resource centers. The gateway-based healthcare system considers
these QoS parameters: End-device mobility, energy saving, service availability and resource scalability.
Gu et al. [27] applied the fog computing to Medical intelligent systems, and explored the problems of
task allocation, virtual machine distribution, and resource collaborations among root stations. Shukla et al.
[28] developed a fuzzy model for latency minimization of the fog network in healthcare IoTs. Petrakis
et al. [29] developed an IoT as a Service (iTaaS) to collect and process sensor data. They applied iTaaS to
Medical sensor data stream management to speed up the answering of Medical services. Asif-Ur-Rahman
et al. [30] designed a five-layer framework based on fog computing to optimize the resource usage and
the Medical task distribution. Wei et al. [31] proposed a model-free reinforcement learning method to
solve the problem of formulating and balancing the computation offloading in a mobile edge environment.

Sensor-based fog computing faces an important problem: How to balance the limited power of fog
devices and the requirements on processing a large amount of data. To solve this problem, Sodhro et al.
[32] proposed an adaptive power control algorithm that can save more power, reduce packet loss and

Figure 9: Response time of FogMed with respect to different task complexities
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calculation complexity, and improve link reliability. Qu et al. [33] summarized the main challenges, analyzed
corresponding solutions proposed by existing works, helped readers have a deeper understanding on the
concepts of different computing models and studied the techniques of QoS optimization and energy
saving in these models. In 2017, work [34] proposes two green and sustainable algorithms to improve the
battery life in the transmission of the Variable Bit Rate (VBR) video in wireless body sensor networks.
Later, an algorithm of processing various postures of subjects [35] and considering power control was
proposed. Further, the work [16] designs two advanced algorithms, named Hybrid Adaptive Bandwidth
and Power Algorithm and Delay-tolerant Streaming Algorithm. In addition, the work [16] explores the
problem of power control in sensor-based smart healthcare, which introduces an adaptive transmission
power control algorithm and a battery and power gathering model for body sensors.

4.2 Medical Data Stream Analysis in Fog-Based ehealth

Farahani et al. [18] did a survey on the fog-driven ehealth. Based on the review, they introduced an
architecture of IoT ecosystem and discussed challenges in building this system. This work discusses
applications of the existing resource management and data analysis techniques to the ecosystem, and
reviews multiple Medical problems based on different types of Medical data. Borthakur et al. [36]
introduced a fog architecture for unsupervised mining of the physical data. Nguyen et al. [37] developed
a health management system for heart diseases based on low-cost fog nodes. However, this work neither
investigates the data stream analysis and fog computing techniques in detail, nor designs advanced QoS
optimization and energy saving strategies. Our work is different to the above works because we focus on
making accurate and time-efficient predictive decisions for disease prognosis. We aim to develop new
algorithms of anomaly prediction in Medical data streams, and new QoS optimization and energy saving
techniques to improve the prediction accuracy and efficiency.

4.3 Disease Prognosis Based on Data Stream Mining

Some researchers explored the disease prognosis techniques without considering the network
environment and the computing paradigm. For example, Yoon et al. [38] proposed a forecasting system
for prognosis decision making, which monitors patients in hospitals and analyzes the disease status based
on the monitored data streams of physical parameters. Tashkandi et al. [39] explored similarity
calculation techniques among patients having similar diseases, aiming to improve the prognosis results
based on the historical information of the other patients. Sow et al. [40] investigated the techniques of
fast online predictions in a short period based on the live data of patients in hospitals. One problem of the
above work is that they only discuss the disease prognosis in hospitals, but do not consider the cases of
remote monitoring of the patient status. Wang et al. [41] discussed big data processing and analysis
according to different service requirements and introduced the detailed cloud computing service system
based on big data. Yin et al. [42] analyzed the feature and problem of finite state automata and improved
nondeterministic finite automata by reducing the conversion edge to reduce the memory usage.

4.4 Differences of the Above Works to FogMed

The main objective of FogMed is to support disease prediction based on Medical data streams. The
above works are not appropriate for solving the problem considered in FogMed. To achieve the objective,
FogMed should have a mechanism to automatically segment a long-term Medical data stream precisely,
learn association rules between a preceding segment and a future abnormal segment, and allocate and
store the segments and rules properly to support fast information query. Therefore, QoS optimization
strategies for making predictive Medical decisions should consider how to transmit, allocate and store the
correlated segments and rules in a fog environment, and when to perform predictions and make decisions
based on the rules and the current QoS levels of fog services. In addition, few of the existing works
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investigate how fog computing techniques will affect the design of Medical data stream mining algorithms,
and then affect the disease prediction performance. Therefore, it is necessary to design adaptive Medical data
stream mining algorithms to fit the dynamic environment variables of fog computing.

In this work, we implemented a deep learning algorithm for anomaly prediction and validated the
capability of Fog computing processing anomalies in Medical data streams in terms of the average
response time. In the future, we will consider more QoS variables and explore how these QoS variables
influence disease prediction tasks.

5 Conclusion

We proposed FogMed, a fog-based framework for disease prognosis based on Medical sensor data
streams. FogMed aims to improve the prognosis accuracy by achieving two objectives: QoS optimization
of fog services, and anomaly detection and prediction based on Medical data streams. In addition, we
built a virtual FogMed environment and conduct comprehensive experiments on the public ECG dataset.
In the future, we will consider power constraints of fog devices and develop advanced power saving
techniques in FogMed. Furthermore, we will explore power-aware task allocation algorithms to improve
the anomaly prediction performance in power-constrained environment.
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