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Abstract: In this study, we classify the genera of COVID-19 and provide brief
information about the root of the spread and the transmission from animal (natural
host) to humans. We establish a model of fractional-order differential equations to
discuss the spread of the infection from the natural host to the intermediate one,
and from the intermediate one to the human host. At the same time, we focus on
the potential spillover of bat-borne coronaviruses. We consider the local stability
of the co-existing critical point of the model by using the Routh—Hurwitz Criteria.
Moreover, we analyze the existence and uniqueness of the constructed initial
value problem. We focus on the control parameters to decrease the outbreak from
pandemic form to the epidemic by using both strong and weak Allee Effect at
time t. Furthermore, the discretization process shows that the system undergoes
Neimark—Sacker Bifurcation under specific conditions. Finally, we conduct a ser-
ies of numerical simulations to enhance the theoretical findings.

Keywords: Allee Effect; coronavirus; fractional-order differential equations; local
stability; Neimark—Sacker bifurcation

1 Introduction

In the last few months, nature has showed its laws in establishing the environment of the 21st century. It
is out of our primary objective whether the coronavirus (COVID-19) is used as a biological weapon or not.
The main point is now that humans are fighting against something to survive that has a genome size of 27 to
34 kilobases. Coronaviruses are members of the sub-family coronavirinae in the family coronaviridae and the
order Nidovirales [1,2]. They show four genera, which are given in Tab. 1.

The natural host of SARS-CoV, MERS-CoV, HCoV-NL63, and HCoV-229¢ are bats, while HCoV-
OC43 and HKU1 have originated from rodents [3,4]. In the spread of transmission, domestic animals
have only intermediate host role from the natural host to the human one. Covid-19 was not considered as
highly pathogenic, until the outbreak of SARS-CoV in 2002 and MERS-CoV in 2012. The spread of
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SARS-CoV in China (Guangdong) showed a COVID-19 that was transmitted from bats to an intermediate
host, like market civets from which the transmission spreads to the human host. At the same time, the
outbreak of MERS-CoV in the Middle East Countries also came from bats to dromedary camels as an
intermediate host, and from the dromedary camels to humans [5—8]. These viruses cause respiratory and
intestinal infections, with symptoms including fever, dizziness, and cough. In December 2019, a novel
Coronaviridae was reported in China (Wuhan). The outbreak was associated again with intermediate
hosts like reptilians, while the natural host was assumed as bats. This virus was designated later as
Covid-19 by the WHO.

Table 1: Genera of COVID-19 and the pathogenic class

Coronavirinae genera a-CoV p-CoV y-CoV 0-CoV
Pathogenic class Mammals Mammals Both non-mammal Both non-mammal
and mammals and mammals

Covid-19 was characterized by two members of B-coronavirus; the human-origin coronavirus (SARS-
CoV Tor2) and bat-origin coronavirus (bat-SL-CoVZ(C45). Intensive studies show that it was most closely
related to the bat-origin coronavirus [9]. Thus, the primary assumption formed was that the natural host of
Covid-19 spreads by infected bats of genus Rhinolophus that are mainly in the area of Shatan River Valley.

Domestic animals, like snakes in that area, were hunted for the food market in Wuhan, which played an
intermediate host role in the transmission. Finally, this virus spillover from the intermediate hosts to cause
several diseases in human. A virus that started with an endemic pathogenic behavior in China (Wuhan)
reaches somehow to a pandemic point worldwide with the infection from human-to-human.

2 The Model Description

It has been realized that the dynamics of many biological and medical phenomena can be characterized
via mathematical models. Over the years, many models are formulated mathematically to analyze events in
biological and medicine such as infections, treatments, or environmental phenomena [10—13]. The study of
these phenomena has been restricted to models of integer-order differential equations (IDEs). However, it is
seen that many problems in biology, as well as in other fields like engineering, finance, and economics, can
be successfully formulated by the so-called fractional-order differential equations (FDEs); see, for instance,
the papers [14-20]. The nonlocal property of models of FDEs is not only depending on the current state but
also provides an adequate description for the historical ones. It is evidenced that FDEs can model certain
phenomena that cannot be modeled by IDEs. Thus, FDEs are mainly used on biological models since
they are relevant to systems with memory and hereditary [21-27].

In this paper, we establish a model that describes the pandemic infection, which occurs when the virus is
transmitted from the human body to the intermediate host and continues to spread from human-to-human.
The model consists of five fractional differential equations. The first three equations show an SI
(susceptible-infected) model to explain the transmission from human-to-human, where S is the susceptible
class, C; is the infected type that does not know they are infected because of the late occurred symptoms
of COVID-19 and C, shows the infected class that knows they are infected. The spillover from the
intermediate infected class M to the human host S denotes a predator-prey mathematical model, while for
the transmission from the natural host N, which is the bat population, to intermediate host M is a host-
parasite model of Holling Type II.
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Indeed, the mathematical model of this biological phenomena has the form:

D*S(t) = r1S(t)(p — wyS(t)) — B1S(HCi(t) — BM()S(t) + o1 M (1)S(t)

D*Ci(t) = 1Ci(1)(1 — o Ci(2)) + B (1 — &1)S(t)Ci(2) — OC1(2) 4 o (1 — e2)M(2)S(2)

D*Cy(t) = Co(t) (1 — 3 Ca(t)) + OC; (£)Ca(t) + B1e1S(2)Ci (t) + BreaM(1)S(t) (1)
D*M(t) = M(t)r5(1 — wyM(t)) — a2M(t) — 3f ()N (2)

D*N(t) = N(t)ra(1 — pusN(2)) + of (£)N (1)

where

M(1)

IO =T heom (@

@

represents the Holling type II function and all the parameters of the model (1) belong to R™ and t € [0, o).

The susceptible S is composed of individuals that have not contacted the infection but can get infected
through contacts from the human that does not know they are infected and from the intermediate hosts. The
parameter 1 is the population growth rate of the susceptible population and ., denotes the logistic rate. p is a
rate of the susceptible population per year. The susceptible lost their class following contacts with infectives
C and the intermediate host M at a rate 3, and [3,, respectively. The parameter o links the parameter of the
interaction between the hunted M class and the predator S population.

The C; class does not know that they have COVID-19. In this equation, r, is the population growth rate
of the class, while ., is the logistic rate. The population of this class decreases after screening at a rate 6 and
be aware of the infection. Another possibility is that after the S-C; contact, the symptoms occur in early
stages so that both classes noticed that they are infected, which is given with the rate ¢;. The intermediate
host infected group could also show early symptoms to be aware of the infection, which is provided by a
rate of &,. The logistic rate of C; is denoted as ;.

M is the domestic animal as an intermediate class in the corona transmission spread. r3 is the intrinsic
growth rate of the population, while ., is the logistic rate. o, shows the effect on the hunted M during the
interaction between the intermediate host and susceptible class. y denotes the predation rate in the host-
parasite scheme.

N represents the natural host (bat population) of COVID-19 in this dynamic system. r4 is the intrinsic
growth rate and s is the logistic rate of the population. 6 shows the conversion factor of the natural host. e is
the attack rate of the bat population to infect the M, while @ (0 < w < 1) represents the fraction of the
potential infectivity of the natural host. / is the rate of average time spend on infecting the domestic
intermediate class, which is also known as the handling time.

Tab. 2 shows description of the parameters that are given in system (1).

Table 2: Description of the parameters

Parameter Symbol rate
The growth rate of S(z) ] 0.012
The growth rate of Cy(#) Iy 0.009
The growth rate of M(t) 13 0.014
The growth rate of N(t) I4 0.01
Logistic rate of S(¢) U 0.05
Logistic rate of C () W 0.1

(Continued)
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Table 2 (continued).

Parameter

Symbol rate

Logistic rate of C,(t)

Logistic rate of M(t)

Logistic rate of N(t)

Rate of the §(¢) population per year
Parametric lost from class S(¢) to Cy ()
Rate of interaction

between S(¢) — M(t)

Predation rate

Rate of screening

Recognition of infection

A conversion factor of N(t)

The attack rate of N(t) to M(t)

Rate of average time on infecting M(t)
Potential infectivity of N(t)

M3

Hy

Hs

p

B1, B2

01,02

&1, &
o
e

h
w

0.15

0.01

0.01

1.6

0.00134, 0.00044
0.0001

0.0044
[0.01, 0.05]
[0.1, 0.4]
0.0045
0.15

0.15

w € (0,1]

Definition 2.1 Podlubny [25] The fractional integral of order & > 0 of a function f : R — R is given by

B (x) = % / = (o),

defined on R™.

)

Definition 2.2. Podlubny [25] Let f : Rt — R be a continuous function. The Caputo fractional

derivative of order & € (n — 1, n) is given by
d

D'f(x) = I D" D="".
f() = DY (), D=2

Definition 2.3. Podlubny [25] The function

X Zk
E“(Z) —;m, OCG(C, R(OC) >OandZ€<C

with C being the set of complex numbers is called the Mittag—Leffler function of one parameter.

“4)

)
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3 Stability Analysis of the Co-Existing Critical Point
Consider the model
D*S(1) =f(S(2), Ci(2), Ca(1), M(2), N (1))
—rlS()(P I (t)) BiS()Ci(t) — B,M(2)S(2) + a1 M (2)S(2)
D*Cy(1) = g(S(2), Ci (1), Co (1), M (1), N(1))
—Vzcl()(l — R Ci(1) + B (1 —e)S()Ci(1) — OC1 (1) + B (1 — e2)M(2)S(2)
DACa(e) = H(S(0), C1(0), Cal0). M(1), N (1) ©
= G(0)(1 - usCz(t)) +0C, (1) C2(2) + Bre1S(1)Ci (1) + PreaM (1)S(2)
D*M(t) = j(S(1), Ci(1), Ca(2), M (1), N(¢))
= M(t )7’3(1 - M4M(f)) — oM (t) — pf (H)N(2)
D“N() k(S(2), Ci(2), Ca(2), M (t),N(t))
\ N(#)ra(l — pusN (1)) + of ()N (2).

To analyze the stability of model (6), we perturb the equilibrium point by adding
&(t) >0,i=1,2, 3,4, 5 thatis,
S(t) =8 =¢1(t), Ci(t) — Cy = &(1), Ca(t) — Cy = &3(t), M(¢) — M = e4(t) and N(t) — N = &5(t)  (7)
Thus, we have

D61 (6) ~= £ (5, T, Ca, 11, V) +8f(S C,Cy, M, N) 9f (S,C1,Cy, M, N) )+8f(S ,C1,C3,M,N)

a5 @) + ac, el ac, &(0)
I (S,C,Cy,M,N) of (S,C1,Cy, M,N)
+ M 84(t) + N 85(I)a
___ 9¢(5,C1, G, M,N 9g(S,C1, Gy, M, N 9g(S,C1, Gy, M, N
D*(e2(1)) ~ (8, Cy, Co, M,N) + e P ) o,y + 2% })cf ) ey + 221 ;C; ) ea(t)
0g(S,Cy, G, M, N) 0g(3,C1,C3, M, N)
+ oM 84(1) + ON 85(1),
. 0n(S,C, G, M,N oh(S,C1, Gy, M,N oh(S,C1, Gy, M,N
D (ex(0)) = h(S.Tr, o, 1. + 21 s Jor() + 214 oc ooy + 21 oc. ) oyt
Oh(S,Ci,Cy, M,N) Oh(S,C1,Cy, M,N)
+ oM 84(1) + ON 85(t),
o 9(5,C, G, M N 0j(S,C1, Gy, M, N 0j(S,C1, Gy, M, N
D*(e4(1)) ~ (S, C1, Co, M,N) + i( 18S2 >81(t LU laclz )Sz(f L lacj )83(0
81(3'7?1;?27M7N) aj<S7a,€2,M,N)
8M 84(t) + aN 85(t)a
and
o 0k(5,C1, G, M,N Ok(S,Cr, Gy, M, N Ok(S,Cr, Gy, M, N
D7(s5(0) = k(5. 00, G 1. ) + 24 s Lo+ 24 e ost + 2L ic Lo
Ok(5.C1, Ca, M,N) Ok (5.1, G, M,N)
+ oM 84(1) + N 85(1).

Thus, we obtain a linearized system about the equilibrium point of the form

D7 =JZ, ®)

where Z = (&,(¢), e2(t), €3(¢), €a(2), &5(¢)). Moreover, J is the Jacobian matrix at the equilibrium:
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U(B.C.GMN) YSC.OMN)  US.C.GMN) 956G MN)  9(5.C.CM.N)
s S T LS N oM __ON
0g(5,C1,Co, M,N)  0g(S,C1,Co,M,N)  9g(S,C1,Co,M,N)  9g(8,C\,Co,M,N)  9g(S5,Cy,Ca, M, N)
oS __0G __0G oM __ON
J(A) = Oh(S,Cr,Co,M,N)  0h(S,C\,Cy,M,N)  0h(S,Ci,C;,M,N)  9h(S,Cy,Co,M,N)  9h(S,Cr,Co, M, N) )
__os oG G __oM __ON
9i(S,Ci, ¢, M,N)  9j(5,C1,Co,M,N)  9(S,C1,Co,M,N)  0j(5,C1,Co,M,N)  0j(S,C1,Co,M,N)
s a6 G oM N
Ok(S,C1,Co,M,N)  pk(S,Cy,Co, M,N)  0k(S,Cy,Co,M,N)  Ok(S,Ci,Co,M,N)  9k(S,C1,Co,M,N)
s ac, aC, M N

where the co-existing equilibrium point is 4 = (S, Cy, C;, M, N). Then, we have B~'JB = C, where C is
given by

A0 0 0 0
0 X 0 0 0
c=1]0 0 A3 0 0, (10)
0 0 0 oV 0
0 0 0 0 As
and \;(i = 1, 2, 3, 4, 5) are the eigenvalues and B the eigenvectors of J. Therefore, we get
D:’/ll = )‘1”/1 N
Da’72 /\2772 M,
D*ny = A3y, wheren = | u; |, andy =B7'Z, (11)
Ding = Aany N4
Dins = Asns s
whose solutions are given by Mittag—Leffler functions
x (/\l)ntna
t) = —————n,(0) = E,(A\*)n,(0), 12
i (?) nZ(:)F(nac—i—l)m( ) (M#*)n,(0) (12)
0 ()\2) tnoc
= 1
) = 2 1y 2(0) = Ea(a I (0), (13)
o ()\ )"tna
1) =) ————n3(0) = E,(As3t*)n5(0), 14
B0 =D O = B 0) (14
o0 ()\4)ntnoc
t) = ————14(0) = E,(Aat*)14(0 15
M4(?) ;P(noc—i—l)m() (Aat")114(0) (15)
and
150 = S 0) = B s 0), (16)
= T'(no+ 1)

By using the result of [28], if |arg(\;)| > o62—71(1' =1,2,3,4,5), then n,(t) i=1, 2, 3, 4, 5) are

decreasing and therefore we conclude that &(z) (i=1, 2,3, 4,5) are decreasing. Let
(e1(2),e2(),e3(¢), e4(t), e5(¢)) be the solution of Eq. (8). If the solution of Eq. (8) is increasing, then A is
unstable and if (& (¢), x(¢), &3(¢), e4(¢), &5(¢)) is decreasing, then A is locally asymptotically stable.
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Evaluating the Jacobian matrix (9) for the co-existing equilibrium point 4, we obtain

ar aip 0 daya 0
as| a 0 a;s 0
JA)=an axn a3 aun 0 (17)
0 0 0 ass  ass
0 0 0 asy ass

where

ay =1p — ZMIrE— Bla - (Bzi_ O'])M, ap = —BIS, a4 = _(BZ - 61)37
az1 = By (1 —&1)C1 + By(1 — &2)M,

an =1 = 2p,02C1 + By (1 — £1)S — 0, ax3 = B, (1 — &)S,

as1 = B1&1C1 + BreaM, azy = 0C; + Be1S, az3 = 1 —2p,Cy + 0Cy, azs = Byéa,

as =13 — 2Uu13M — 0y — Lﬂ, as4s = —L,
and . (1 + hewM) 1 + hewM
asq = m, ass = 14 — 2r4psN + T T heall
The characteristic equation of the matrix (17) is given as
{(a11 — A)(a22 — A) — anax H{(ass — N)(ass — A) — assasa} =0 (18)
and
A=as <0, (19)
if
1—2M36+96<0$6>9%;;1. (20)

From Eq. (18), we have two quadratic equations, which are

apna
)\2 — (a11 +6122))\ —l—a11a22<1 —M> =0

or apan
M+ (—ai —an)\ +ajan(l —Ry) =0 (21)
and
assa
N — (asq + ass)\ + asqass (1 -5 54) =0
or a444ss
N 4 (—aaq — ass)\ + aggass(1 — Ryy) = 0, (22)
apndng Aa45054 . . . .
where Ry = and Ry = . Ry; is the basic reproduction number, which represents the

apann a440ss
transmission potential of S — C class, while Ry, shows the transmission potential of the intermediate-
natural host classes M — N.
For the following theorems in this section, we consider the case, where both Ry; < 1 and Ry, < 1, which
hold for the following statements:
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NG 9—1‘2

WS> Bi2—e) ) )

(i) p > Bi(2 —&)Cy +2M1r1§+ (B2(2 — &) — Ul)M,
1

(111) a > Bl(z — SI)S — (9 _r2)7

2p,12

(iv) By >0y, 0>15,0> p,61 < landeg <1,
v) % <N <0.5ps" and M > 0.5p,".

Theorem 3.1. Let A be the co-existing critical point of system (6) and assume that (i)—(iv) hold such that

2 — 1—c¢ 0
Rp1 < 1 and Ry < 1. Moreover, letr; € (M,oo>,rz € <M,9>, 13 € <0,7>
2y 2, 24y + hew

2r4psy + 020
— 5 !

_ 1 —&)M+ 2w, S _ o [(6-2
C e (BZ( 2)M + 2 ,oo> and M ¢ <7M4r3 ,oo),
2ot — By (1 — &) 2 r3hem

and 13 +14 < f

where

e (Bl(2 —&)C1 +2unS + (B2 — &) —o)M  (By 4 2u12)C1 + (B, — 01)M>
I ’ I ’

then all roots of Eq. (18) are real or complex conjugates with negative real parts and
larg(\;)| > ocz_n, (i=1, 2,3, 4), is equivalent to the Routh-Hurwitz criteria. This implies that A is
locally asymptotically stable.

Proof. Let us consider the case for a;; + a5 < 0 to have eigenvalues with negative real parts.
Thus, we have

1 —
n s Pl =o) (23)
2
and
p< (B, ‘f‘zMzrz)?rl+ By — GI)M‘ (24)
1
From (ii) and Eq. (24), we obtain
c Bi(2 —e))Ci +2m11S + (B2(2 — &2) —o)M (By +2p,12)Ci + (B, — 01)M 25)
p rl b rl )
if
T > Bo(1 — )M +2p 1, S 26)

2u,ry — By (1 — &)
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Bi(1—e)

where r; > ———=,
2p,

In considering both (iii) and Eq. (26), we get
— Bl —e)M +2unS B2 —e)S— (0 —15)

C > , 27
: 2pory — By (1 — &) 2p,ry @)
2
where r; > M Moreover, the discriminant of Eq. (21) is, in this case, positive.
M1
Let us consider now the case for as4 + ass < 0 to have eigenvalues with negative real parts. Thus, from
< 0 2 r)M+ (r3 + 14 — 02) o NS <0 (28)
= — 213 3t —0y)— | ———= 41
1 + hewoM 4 (1 + hewM)’ 3
we obtain
_ 6-=2 0
M>7pL4r3 forr; < — (29)
2y r3hew 21y
and
N>m forry > oy > 13. (30)

2r4ps
From (v) and Egs. (28)—(29), we obtain

_ 0 =2 0 0
> 7}1,4& > O.50¢4‘1 forns<—— < —
2w r3hew 2y + hew 2y
and
_ — 2 0
05! > N > Lo Bz o bs) £030

6 21‘4 }LS 5

Since the discriminant of Eq. (22) is positive, the proof is complete.

Remark 3.1. Theorem 3.1. shows that among the human hosts, those who do not know they are
infected, are the control class in the spread. In contrast, between the animal hosts, the intermediate class
plays a dominant role, since that one has the essential role in transmitting from animal to human. The
transmission potential for both S — C; and M — N are Ry < 1 and Ry, < 1. Moreover, the susceptible
class and the C; class is stable based on two parameters, which are the awareness of the symptoms and
the screening rate.

Theorem 3.2. Let A be the co-existing critical point of system (6) and assume that (i)—(iv) hold such that

Bi(1—e) >Bl(1—51) 0
, T ,0 <T4 <13 <—— and
2, ? 2, S 2y + hew

Ro; <1 and Rgy < 1. Furthermore, let r1<

pe <(B1 +2uy12)Ci1 + (B, — o1)M oo). If
I
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— _ B(1 —&))M +2p1iS and 0 — 213

C > >M>05u,"",
: 2p,1 — By (1 — &) 2 r3hew Ha

. . : : o M
and the ratio between the susceptible and intermediate host is given by 35 >

— &)
32(1 — &)

| — <4 (rip — 218 — ByCy — (B, — 01)M) (r2 — 2p1,12C1 + By (1 — &1)S — 0) (1 — Ror)

(r1p+r2 —0— (B +2m12)Cy — (By — a))M + (B (1 — &1) — Zﬂlrl)g)z

and

N

1

_ _ oM
—2ursM — gy — —— —2t4usN + ——— | (1 — R
<r3 s ” (1+ hewM)2> <r4 s + hea)M>( )

tan | —

0 . Y
——— — 213 | M+ +14—0p) — | ————+2nu
((l + hewM 4r3> {(r3 H 2) ((1 + hew]\_/l)2 s

)

N

)

, where

)

N —

CMC, 2021, vol.66, no.1

AT

Then all roots of Eq. (18) are complex conjugates with positive real parts, which implies that 4 is locally

asymptotically stable.

Proof. Let us consider the case for a;; + ax; > 0 to have eigenvalues with positive real parts.

This holds if

< Bi(1—er)

I
2

and

(B +2pyr2)Ci + (By — UI)M.
Ir

p>

From (ii) and Eq. (32) we obtain
2 [ — oM
pe <(Bl + 2p,o12)Cy + (B, — 01) ,oo>

I
if
— 1 —&)M +2p1iS
Cr > Ba(l — &)M +2pr 7
2pr — By(1 —&1)
Bi(1—er) Sy )
where 1, > o In considering both (iii) and Eq. (34), we obtain
(]
C > Bo(1 — &)M + 21, S S Bi(2—¢)S—(0—rp) ’

2uory — By(1 —&1) 2py1y

€2))

(32)

(33)

(34)
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where
@ Bi(2—e1)
57 Ba(l—w) >

Additionally, we get \/4a11a22(1 — Ro1) — (a1 + a22)2 > 0, since Ry; < 1, where

1
" (4 (rip =211 S — B1Cr — (By — 01)M) (12 — 21,12Cy + By (1 — 1)S — 0) (1 — Roy) B 1)5 _om
(flp +12—0— (B +2112)Cr = (B — a))M + (By(1 — &1) — 2,u]r1)5')2

Similarly, let us consider the case for a44 + ass > 0 to have eigenvalues with positive real
parts. From

0 _ Y _

_— 2 M — - —+2 Ny >0 36
<1 + heawM Mr3) - {(r3 ) <(1 + hewM)’ - r4u5> } ©Ge)
we obtain
_ 6 =2 )
<SP < 2 (37)

2pyr3hew 21y
and

o mtn—o)(+ hewM)?
P+ 2raps (1 4+ hewM)2

for r; > r4 > o9. (38)

From (v) and Eqs. (37)—(38) we have

0 —2mgry - 1 0 0
—>M>05 i << —
2w r3hew Ha TOTT 2w, + hew  2py
and

(1‘3 + Iq — 0'2)

> 0.5p“5_1 >N > L4 for r; > o5.
2rgps

0

Moreover, we get \/4a44a55(1 — Rop) — (ass + (155)2 > 0, since Ry, < 1, where

13 — 213 M N (r 2r4p5N + oM )(1 Ro2) ?
—2puytsM — 0y — ————— | (14 = 2tapsN +————— (1 —
’ . ’ (14 hecuM)2 ° 1 + hewM 02 -

-1
7 —14 -1 >—.
an 5 - : - 3 >
7-—2,ur3>M+ 13+14—0y) — | ———— +2nus |N
<1 +hewM " ( ) (1 + hewM )’ :

This completes the proof.
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Remark 3.2. In Theorem 3.2., we emphasize that class C; should be more aware of the symptoms that
might become from the susceptible class as well as from the intermediate class, than the S class to stop the
outbreak. For the susceptible class, it is more important to keep the population rate per year non-infected. The
transmission of the virus to the offspring would reach an uncontrollable phenomenon worldwide.

Theorem 3.3. Let A be the co-existing critical point of system (6) and assume that (i)—(iv) hold such that
Ry < 1and Ry, < 1.

. Bi(2—e1) Bi(1—er) 0
Let —_ — 0 —and
(i) Let 1 € < 20 ,00 |, Ip € T 0,00 <14 <13 < 2y + hew an

)

pe <Bl(2 —&1)C1 +2un1S + (B2 — &) —o1)M  (B) 4 2py12)C1 + (B, — O'I)M>.

I I
If
— 1 —&)M +2p1,S 0—2 -
Cie (82( )M+ 2pn§ > OBl o i > 0.5p,!
2pr — By (1 — &) 2 r3hem
where
1
_ TN - oM 2
—23M — 6y ————— = 2r4pisN + —————= | (1 = R
. <r3 HyT3 02 0t hewM)2> <r4 T4pisV + 1+ heo M)( 02) o
tan -4 -1 >—.

2 2
5 _ . _
S ) V4 o) = — 40
<<1 + heoM “4r3> " {(r3 T o) ((1 heott) W5>N}>

then the S — C; class represents real or complex conjugates with negative real parts, while the M — N class
shows complex conjugates with positive real parts.

. Bi(1—a) Bi(1—ea) 0 2rapsy + 020
Let —_ L S 0 — <~ d
(i) Le r1< o , Ty 2 , I3 € s + hew)’ 341 < 5 an
2 C, —o )M
pe ((31 + 2u,12)Cy + (B, — 01) ,oo) .
I
If
> Bo(1 — )M + 2§ . (5—2pu4r3 OO)

2wt — By (1 —¢y) 2uyr3hen’

M 2 —
and the ratio between the susceptible and intermediate host is given by 3 > %, where
2L — &
1
an (4 (tip =208 = B1C1 — (By — )M (ts = 2py0Cy + B (1 —2)S = 0)(1 = Ro1) | 2 SO
(rp+12 = 0= (B +2,12)C1 — (B, — 01)M + (By(1 — &) — 2w, 5)° 2

then the S — C; class represents complex conjugates with positive real parts, while the M — N class shows
real or complex conjugates with negative real parts.
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Example. In this part, we present numerical simulations that are in good agreement with our theoretical results.
We assume the initial conditions of the system (1) as S(0) = 1000, C;(0) = 80, C,(0) = 40, M(0) = 30 and
N(0) = 10.

In Fig. 1 the blue graph denotes the susceptible class S and the red graph shows C; who does not know
they are infected. Fig. 1 represents the transmission of the infection that occurs as an epidemic case in some
areas, but it spreads intensively to a pandemic case and covers almost the susceptible class. Here we want to
emphasize the point of screening, where we assume that about %1 do testing in the hospitals before the
symptoms appear. Additionally, we consider that the symptoms appear late, and thus the awareness of the
infection is also at %1. This changes the endemic spread from epidemic to an uncontrolled pandemic form.

900 [
800 f &
700 :
600 f
500 |

400

S(t) and C1(Y)

300

200 [

100

Figure 1: Spread of the C) class and effect on the susceptible S class, where = 0.01 and ¢; =& = 0.1

In Fig. 2, we keep the screening parameter as 6 = 0.01, while we consider the case that the people
become aware of the virus and the symptoms of it through media and health organizations. An organized
and constant information flood from media might increase the awareness up to & = ¢, = 0.4.

1000

900

S(t) and C1(t)

Figure 2: Spread of the C; class and effect on the susceptible S class, where 0 = 0.01 and ¢y =¢ = 0.4
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This awareness of the people through media and health organizations let them go to hospitals for
screening so that the class who does not know they are infected decreases. Fig. 3 shows the effect of the
testing when it reaches to %5. The spread is under control and returns to an epidemic form.

700

S(t) and C1(t)

Figure 3: Spread of the C; class and effect on the susceptible S class, where § = 0.05 and ¢y = ¢ = 0.4

We considered in these examples the infection from human-to-human since the pandemic case reaches
from the human transmission. We want to emphasize the strong coordination between health organizations
and the media which is an essential tool for two critical parameters, which are 0 and ¢; (i = 1, 2)

The design of nature keeps the natural host and intermediate host in a stable dynamical system in the
habitat. The intermediate host had only a transmission role from animal to human, while the main spread
happens through human to human from the C; class who does not know they are infected.

4 Existence and Uniqueness of the Initial Value Fractional-Order Problem
Considering system (6) with the initial conditions S(0) > 0, C;(0) > 0, C»(0) > 0,M(0) >0 and
N(0) > 0, the initial value problem can be written in matrix form as

{ D*U(t) = AU(t) + S(t)BU(¢t) + C1(t)CU(t) + C2(1)DU(¢t) + M()EU(t) + N(¢t)FU(¢), (39)
U(0) = Uy
(1) 5(0)
Ci(1) C1(0)
fort € (0,T], where U(t) = | Cy(¢t) | and U(0) = | C,(0)
M(2) M(0)
N() N(0)

Let us assume that 0 < M(0) < ¢, and S(0) > 0, C;(0) > 0, C(0) > 0, N(0) >0,
when ¢ > ¢ > 0. In this case, the following definitions can be adopted to the main theorems in this section.

Definition 4.1. Let C*[0, 7] be the class of continuous column vector U(f) whose components
S(1), Ci(1),Ca(t), M(t), N(t) € C|0, T] are the class of continuous functions on the interval [0, 7]. The
norm of U € C*[0, T] is given by
| U ||= suple™"'S(¢)| + suple "' C ()| + suple "' Cy(¢)| + suple "M ()| + sup|e "' N (¢)|
when ¢ > o >0, we writeth;[O, T] and CUrO, T]. t t
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Definition 4.2. Let the initial value problem Eq. (39) has a solution given by U € C*[0, T]. If

@ (¢, U(t)) € D,t € [0, T] where D =[0,7] x K and

K = {(8(), C1(8), Ca(0), M(1), N(O)): | (O] < vi]C1(8)] < v, [Co(0)] < va, [M(0)] < 0, | N(0)| < vi}.

(i) U(?) satisfies Eq. (39).

Theorem 4.1. The initial value problem Eq. (39) has a unique solution U € C*[0, T].

Proof. Because of Eq. (39), we have

a4

dt

Operating /* on Eq. (40), we obtain

U(t) = U(0) + I*(AU(t) + S(t)BU(t) + C1(1)CU(¢t) + Co(1)DU(t) + M(t)EU(¢t) + N(t)FU(¢)).  (41)
Define the operator F : C*[0, T] — C*[0, T| by

FU(t) =U(0) +I*(AU(t) + S(t)BU(t) + C1(t)CU(t) + Co(t)DU(t) + M(t)EU(t) + N(¢t)FU(1)). (42)
It follows that

e " || FU = FV ||= " IM(A(U (1) = V(1)) + S()B(U (1) = V(1)) + Ci(1)C(U (1) = V(1)) + Ci(1)D(U (1)

—V(0) + M()EU(2) = V(1)) + M()F(U(z) — V(1))
1

I'* = U(t) = AU(t) + S(£)BU(t) + C1(t)CU(¢) + Co(t)DU(t) + M(t)EU(t) + N (t)FU(¢). (40)

< e )z(;_s)“ e M=) (U(s) — V(5))e ™ (4 + 01B + 02C + v3D + VE + v4F)ds
A+v,B D+ UE + 04 F

(4 + 1B+ 0,C + 13D + VE + v4F)
Woc

that W* > A + v;B + 0,C + v3D + UE + v4F, then we obtain || FU —FV |<k||U-V |, 0 <k < 1.

Therefore, using the Banach fixed point theorem, we conclude that the operator F' given by Eq. (42) has a

unique fixed point. Consequently, Eq. (41) has a unique solution U € C*[0, T]. From Eq. (41), we have

This implies that | FU — FV ||< || U— V| .Ifwechoose W such

U(t) = U(0) + <ﬁ (AU(t) 4 S(1)BU(t) + C\(1)CU(t) 4+ C,(1)DU (¢) + M()EU (1) + N(t)FU(t))>
+ TN AU (1) + S'(£)BU(¢) + S(¢)BU'(¢) + Cy'(t)CU(t) + C (1)CU'(¢)
+ G/ (1)DU (1) + Co(£)DU' () + M'())EU(f) + M(t)EU' (1) + N'(1)FU(¢) + N(t)FU'(¢))

and

% = 121(:) (AU(0) + S(0)BU(0) + C1(0)CU(0) + C2(0)DU(0) + M(0)EU(0) + N(0)FU(0))
+ AU (1) + S'(1)BU (1) + S(£)BU' (1) + C\)CU (1) + C,(1)CU () + C"DU(t) + C2(1)DU (1)

+ M'(t)EU(t) + M(¢t)EU'(¢) + N'(¢)FU(¢t) + N (t)FU' (1)),

which implies
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e M (%) =M (;(al) (AU(0) 4 S(0)BU(0) + C;(0)CU(0) + C»(0)DU(0) + M(0)EU(0) + N(0)FU(0))

+I*(U'(t) + S'(1)BU(t) + S(t)BU'(¢) + C\'(t)CU(¢t) + C1(t)CU' (¢) + G/ (1)DU (1)
+ C(t)DU'(¢) + M'(t)EU (t) + M(¢)EU'(¢) + N'(1)FU (¢) + N(¢)FU'(¢2)))

from which we can deduce that U’ € C:[0, T]. Thus, we have

‘”jh(t) _ %I“(A U (1) + S()BU(f) + CL())CU (1) + C>()DU(2) + MOEU(1) + N(O)FU (1)),

It follows that

= dljh(t) _ i %1& (AU(2) + S(BU(2) + C1(1)CU(2) + G (DU (1) + M()EU(#) + N(OFU (1)),

which implies

D*U(t) = AU(t) + S(t)BU(t) + C1(1)CU(t) + Co(t)DU(t) + M(t)EU(¢) + N(t)FU (¢t)

and thus

U(0) = Uy +I*(AU(0) 4+ S(0)BU(0) + C,(0)CU(0) + C,(0)DU(0) + M(0)EU(0) + N(0)FU(0))
=U,

Therefore, this IVP is equivalent to Eq. (39), which completes the proof.

5 The Case of Extinction via Strong Allee Effect

In 1838, Pierre Verhulst [29] considered the logistic growth function to explain mono-species growth.
Later on, it is demonstrated that the logistic equation needs modifications to explain the growth of the
population in low density-size, which is known as the Allee effect.

The Allee effect can be divided into two main types:
(1) strong Allee effect and
(i1) weak Allee effect.

A population with a strong Allee effect will have a critical population size, which is the threshold of the
population, and any size that is less than the threshold will go to extinction without any further aid. However,
a population with a weak Allee effect will reduce the per capita growth rate at lower population density or
size [30-34].

Let us incorporate an Allee function to the C;(¢) class at time ¢ such as

D*S(t) = niS(t)(p — i S(t) — FiS(OCI(t) — BM()S(t) + a1 M (1)S(t)
D¢y Et) H(CLON2Ci (1) (1 = 1,Ci (1)) + Bi (1 = )S(OC1(2) = OC1(1) + fr(1 — e2)M(2)S (1)}

(
D*Cy(t) = Ca(t)(1 — 3 Ca(1)) + OC1 (1)Ca(t) + B1e1S(£)Ci(t) + BreaM(1)S(t) 43)
D*M(t) = M(t)r5(1 — M (t)) — aaM(t) — pf (¢)N(2)
D*N(t) = N(t)rg(1 — usN(t)) + of ()N (¢)
where
10= 1~ ot @9

is a function of Holling Type II and H(C,(¢)) is an Allee function at time z.
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Let
M(0) =2t = HCUO) 12 = a1 0) 4 811 = 0)S(0 0+ Ball = a2) Y
where we obtain g'/(\:/l((g <0,if
1
Bu(1 = 0)S(0) = H(Cu(A)raps = ot (0 ) )
s < OO <grc ) @)
and dCy(t)
2
€0y (TACH) 1) 4 (TGN iy g e 0= »
Bu(1 e HLCH (1) il ) |
where
H(C/()
JH(C\ (1)~ (@7)
dC, ([)

Remark 5.1 The susceptible class and the classes who do not know they are infected are the main
populations that affect the Allee function in stabilizing the spread of transmission. While it is essential to
keep human non-infected, the other essential aim is to detect the infected class before the symptoms occur.

The characteristic equation of system (43) is given by

{(an =) (652 - )\) — ap ay }{(6144 = M(ass — A) —assass} = 0 (48)
and

/\:a33<0:>1—293?2+Ha<0:>?2>0§p:1, (49)
where

az =H(C1)(B1(1—&)Cy + By(1 — &2)M), arp = H(Cy) (r2 — 2p,12Cy + By (1 — &1)S — 0).
From Eq. (48), we have two quadratic equations, which are

Xt (—an = an )M+ anan (1 - Ry) =0 (50)

and

A2 + (—(144 — Cl55))\ + (144\1955(1 - ROZ) =0. (51)

where R\;l =Ro = a2 ail and Ry, = asdsa . Rvm is the basic reproduction number, which represents the
app an a44dss

transmission potential of the S — C; class in the case of early detection, while Ry, shows the transmission
potential of the intermediate-natural host classes. This indicates that the reproduction numbers are not
dependent on the Allee function.
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For a strong Allee effect, let us assume that the Allee function is given by

H(C(1)) = <C1—(” - 1), (52)

Ko

where K, represents the Allee threshold of the infected class, that do not know they are infected.
The following Theorem is given without proof since it is similar to the stability analysis of Section 3.

Theorem 5.1. Let A be the co-existing critical point of system (43) and assume that (i)—(iv) hold with
Egs. (45)—(47) such that Ry; < 1 and Ry, < 1.

. BIH(Cr)(2—&) B (2—H(Cy)—&) 0 2145y +020
(l) Let re < 2”1 ,00 |, E ZlezH (a) ,9 ,I3€ O,W , 13414 <f
and H(a)+81<2. If

= Bzﬁ—&)M—i-ZP«lrLg 00| and M € (m,oo)
2u2r2H(C1) — Bl (2 — H(Cl) — 81) 2M4I‘3h€a)
where
pe ([31(2 —&1)C1 +2un1S + (Ba(2 — &) —a)M  (By + 2par2)H(C)Cr + (B, — 01)M>
rl ’ rl ’

then all the roots of the system are real or complex conjugates with negative real parts.

1— 2—-H(C)) —¢ __
(i) Let 1 <M, 1€ B ( (1_) 1),0 o< <nn<—— H(C)+e <2
and 2py 2uyH(C) 2y + hew
((Bl + 2,00 H(C1) T + (B, — 01)M )
S ,00 |.
I
T 1 M + 21, S 0—2
C, Bz(_— )M + H1T10 ,00 | and M € (0.5@4_1,_—u4r3>,
2}L21‘2H(C1) — Bl (2 - H(Cl) — 81) 2p4r3hew
M 2 —
and the ratio between the susceptible and intermediate host is given by 3 > H, where
2l — &

1
tan—l _<4 (r1p72ulrlgiﬁlaf(ﬁZﬁgl)M)(Q*z.uZQa%’ﬁl(l761)3*0)7{(?1)(1*1301) _1>2 >gmj
(9 + H(C1) (12— 0) — (B + 221 (1)1 — (B — o)1 + (By(1 — ) H(Cr) — 200m)3)°

and
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1
13 — 2utsM — @ —L T4 —2r N—l—& (I —Rpa) ?
- T ’ (1 + hewh ) ! s 1+ hewM " um
tan 4 7 — >7.
0 _ y _
o |M o) — | —— 4 2 |N
<<1 + hewM ,u4r3> ” {(r3 T o) ((1 + hea)l\7[)2 * r4,u5> })
Thus, all roots of the system are complex conjugates with positive real parts.
H(C1)(2 —¢ 2—H(C)) —e
(i) Let 1, € [ P! (G a o). ne B ( (¢) 61)79 Oy < << —
2 2w, H(Ch) 2y + hew
H(C1) +¢& < 2and
c (B2 &1)C1 +2Wn1S + (B2 — &) —0)M  (By +2pyr2)H(C1)Ci1 + (B, — 01)M
p I ) I .
If
_ 1 — )M +2py11S _ 5—2
C e By(1 = e2)M +2p11S 00 | and M € (0.5a4—1,—”“r3),
2, H(Cr) — B (2 —H(C1) —&1) 2pyr3hew
where
1
1y — 2u,rsM w rs — 2raps + — M (1 - Ro2) ?
_ P o S _ " 1=
4 POE ’ (1+ hecuM)2 ! s I+ heoM ” om
tan —14 5 — ER
o _ y _
—  2urs |M —o) - [ ———— 42 N
((l + heoM ,u4r3> " {(r3 T o) <(1 + hew]\_/l)2 " r4,u5> })

then the S — C) class represents real or complex conjugates with negative real parts, while the M —N class
shows complex conjugates with positive real parts.

(iv)  Let r1<Bl

H(a) +¢&;<2 and

(By 4 21,y12)H(C1) Cr + (B,

If

C €

(2M2r27'( (?1) — B (2 - H(a)

1- 2—H(Cy)— b 2r4 sy +020
2 2uH(Cr) 2py+hew $
- O'])M )
,00 | .
I
1 — )M +2 S _ -2
Ba(1 — &2)M + 21, S oo |, i€ (5 P«4r3700>
— 81) 2uyr3hew
M 2 —
and the ratio between the susceptible and intermediate host is given by — > M, where

S

Bo(1 —&2)
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>O(7T
27

1
an] _<4 (rip = 2mniS = ByCy — (By — 01)M) (r2 — 2p1y12Cy + By (1 — &1)S — 0)H(Cy) (1 — Ror) B 1)2
(r1ip +H(C1)(r2 — 0) — (By + 2mor2a(C1) ) Cr — (By — 01)M + (B (1 — &1)H(Cy) — 2#1r1)§)2

then the S — C; class represents complex conjugates with positive real parts, while the M —N class shows
real or complex conjugates with negative real parts.o

6 Neimark—Sacker Bifurcation of the Dynamical Behavior with Discretization

In this section, we consider the discretization process to analyze Neimark—Sacker bifurcation. We will
modify our system in (1) in considering the discrete-time effect on the model. The discretization of system (1)
is as follows:

st =i (1) (o) - (e () - E)s() e (Eos( [

060 =i () (1w ([9) + 1 (e () -0 () - eom((1)s( )

oty = ([0)(1 - s (o) ([0 () mas(E)er([0) s o ([J)( ) o
ot = (e - mar([9) - () ([ o)

oty = 9( o) - nev( [12) ¢ o (o o)

[N
=

)l

t
The solution of system (53) for z € [0,4), — €

i [0, 1) is given by

S(1) = 8(0) + 75 77 {1SO)(0 = () = BSO)C(0) = BMO)S(0) +01M(0)S(0)}

CU(1) = C1(0) + 7 1R CHON(1 = 151 (0) + 1 (1 = 2)S(0)C1(0) = 0C1(0) + (1 = 22)M(0)5(0)}
Ca(1) = Ca(0) + 5575 {C(0)(1 = Ca(0) + 01 01Ca(0) + By SO)C 0) + B MO)S(0)}

M(1) = M(0) + 5o (MO (1 = 1 (0)) = 22M(0) = (ON (0))

N(1) = N(O) + s INO)a(1 = 1N (0) + 3 ON(0)}

If we repeat the discretization process n times, we get
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(t — b’
McE
(¢ by
1
(¢~ nh)*
1

S(n-+1) = S0n) + (S0~ S(0) — BS(C (n) — M) () + oM (n)S())

(G~ G () + (1 = e)S)C ) = O (1) + o1~ M)}
{Ca(n)(1 = 3 Ca(n)) + 6C1 (n)Ca(n) + B1&1S(n)Ci(n) + Bre2M(n)S(n)}

%{M(")rs(l ~ M () — 02 () — o (IN ()}

(t — nh)”
Tt 1 ){N( n)r4(1 — psN(n)) + of (n)N(n)}.

Cl(n—f—l) Cl( ) (

+
(t—n
+

Tla+1)

)
Cz(l’l—f—l) Cz( ) )

Mn+1)=M(n)+

N(n+1)=N(n)+

Fort € [mh,(n+1)-h) and t — (n+ 1) - h, while o — 1, we have

S(n+1) =S(n) + %{rls(”)@ — 1;8(n)) — B1S(n)Cy(n) — poM(n)S(n) 4 a1 M (n)S(n)}
Ci(n+1)=Ci(n) + F(%:l){fzcl(")(l — 1, Ci(n)) + B (1 — &1)S(n)Ci(n) — 0C1(n) + Bo(1 — e2)M(n)S(n)}
G(n+1) = Cy(n) + #jl) {Ca(n)(1 = pu3C2(n)) + OC1(n)Ca(n) 4 P1£1S(n)Ci(n) + Poe2M(n)S(n)} (55)
Mn+1) = M(n) +—"— {M(n)r (1 = M) — 6>M(n) M}

T(a+1) 3L e 2 1+ hewM (n)
N+ 1) = N + s { V(1 = ) +2 00 L,

The Jacobian matrix of (55) around the co-existing equilibrium point A is

bl 1 b12 0 b14 0

byy by by 0 0
0 0 0 bas  bys
0 0 0 bss  bss

byy=1+ F(och:- 1) (rlp - 2P«1T1S - 316 - (Bz - Ul)M)’ by = _F?;S—Zz“l)’ by = %
bﬂ:ha(sl(l—glr)g:gz(l—mw),szH%(rz—szawl(1—81)5—0) by3= %
b3 :h“ (51?2:13)282]\_4)’ 32 :h"‘ (01?(2&1%)813) by =1 —I—% (1-2p3G +0Cy), bas :%
bu=l +% <r3 ~ 2w o _%) e = TR0 1???—’:@0)1\‘4)’

bet = INCEE l)iTThewM)z, Ps =1t % <r4 ~2raps o+ %)
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We obtain the characteristic equation of the matrix such as

N 4 (=by1 — by)A+ b11by(1 —Rp) =0 (57)
and
M + (—bag — bss)\ + baabss(1 — Ryp) = 0, (58)
where (i)-(v) hold and
1+T?£;B(1—2pj3+960<1:>63021:1. (59)
To analyze the conditions for Neimark-Sacker Bifurcation, we use the following Theorem.
Theorem 6.1. [35] For a quadratic polynomial P(\) = 0 such as
N4+ b+ =0, (60)

a pair of complex conjugate roots of (1) lie on the unit circle if and only if

@ Pl)=14+4+4>0

b)P(—1)=1—-4+46,>0

(© DY =1+4>0

@Dy =1—-4,=0,

Theorem 6.2. Let 4 be the co-existing critical point of system (55) and assume that (i)~(v) hold. If

l

I — <F(a+ 1)\/(Y1P = (0 =12) = 2uora + B1)C1 + (Bi(1 = &1) = 2p11)S — (B — 0)M) (1 = Ror) + \/A_1>°‘

2(r1P - 2M1r13 - ﬁfl - (B — Gl)M) (—rz + zﬂzrza— Bi(1 — 81)S+ 9)(1 —Ro1)

1 —
where r; < M, then the S — C) class undergoes a Neimark-Sacker bifurcation. Additionally, if
M
1
0 20,13 |M 413 41 Y +2r N|+VA ’
- — 0y — -
1 + hewM Hals 3T ? (1+ hea)Z\f/[)2 4hs ?
h2 = F(O( + 1) — —
_ N _ oM )
2 =13 +2uytsM + o) + ————— | (14 — 214usN + ———— )] (1 — R
( 3 HqT3 2 (1 +hea)M)2> < 4 415 1+ heoM ( 02)
52 _ — 0)(1 + hewM )’ B
whereM<7IUL4r3 dN<(r3+r4 o2)(1 + e?) 2) for r3 < — and r4 > 0, then the M — N
2pyr3he Y+ 2raps(1 + hewM) 2py

classes shows also a dynamical behavior of Neimark—Sacker bifurcation.

Proof. Let us first consider the statements in Theorem 6.1 for Eq. (57). Thus, from (a)-(c) together with
(1) we have



CMC, 2021, vol.66, no.l1 865

2 —Rp +%(T1P+ (Bi(1 = &1) = 2mr1)S + (212 + B1)Cr — (B — 01)M — (0 —12)) (1 — Ro)
20 _
< %(HP =218 = B1Cr — (B — 01)M) (=12 4 21,12C1 — By (1 — &1)S + 9)(1 — Ro1),

which holds for
1

h< T(a+1) 2~ Rou " 61
(tip = 2118 = B1Cy — (By — 01)M) (=12 + 2p1,12C1 — (1 — €1)S + 0) (1 — Ror)

Bi(1—er)

where r; <
2p

Finally, from (d) we obtain

Rox —% (t1ip = (0 = 12) = (2ppr2 + B1)Cr + (By (1 = &1) = 2py11)S — (B, — 61)M ) (1 — Ror)
h21

+m(r1p —2u1S — B,Cr — (B, — 61)]\_4) (—rz + 2u,12Cy — By (1 — )8 + 0)(1 —Rop1) =0,

which gives
1

- (rp — (0—12) — pms + B1)Cr + (B (1 — &1) — 211)S — (By — 01)M) (1 — Roy) + VA #
h_ <F(“+l)\/ 2(r1p—2,u1r15‘—,81a—(ﬁ2—Jl)M)(—rz—l—Z,uzrza—ﬂl(l—81)3'4—0)(1—R01) (62)

where

I - —\2
Ay = (rnip— (0 —12) = 2uor2 + B)Cr + (B (1 — &1) — 2y11)S — (B, — 01)M) (1 — Ror)?
—4(rip =21, S — B1Cr — (By — 61)M) (=12 + 241,12 Cy — B (1 — £1)S + 0) (1 — Roy)Ro1 >0.
In considering both Eqgs. (61) and (62), we get

1

- F(H1)\/(r1p—<0—r2>—<2u2r2+ﬁ1>a+<ﬁ1<1—a)—zulrl)i—(ﬁz—m)m(l—RoowE g
: 2(T1P - 2,u1r1§ - ﬁla — (B — UI)M)(—rz + 2H2rza =B (1 - 81)S+ 9)(1 — Ro1)
1

2 — Ry *
- (F(OH_ 1)\/(r1p = 2118 = B1Cr — (B — 01)M) (=12 + 21602 C1 — (1 — &1)S + 0)(1 _RO')> 7

which completes the proof of the S — C class.




866 CMC, 2021, vol.66, no.l1

The characteristic equation Eq. (58) holds for Theorem 5.1./(a)—(c), if

h* 0 Y _
2—Ryp + — 2ty | M 4135 +14 — 0y — 7+2r N (1 —-R
02 F(oc—i—l)(( 1+ hewll Uy 3> 3 4 2 <( |+ hewll ) 4#5) )( 02)

h21 _ VN — 5]\_4
+ =13 —2ursM —0p ———— | | 14 — 214usN + —— = | (1 — Rpp) > 0,
T2(o+ 1) (3 BT +hea)M)2)<4 s 1+hewM>< »)

then

_ -2
g QT2 g O 63)
2uyr3hew 2uy’
_ — 1 + hewM )
Ntz o)A theoM) oo o, (64)
Y+ 2raps (1 4 hewM)
and
1/o
2—R
h<|T(e+1) - (65)

_ N _ M
—13 + 2uysM + 0y + ————— <r4—2r4uN+7> 1 — Rop»
( 4 (1+ hewM)2> SN+ T eait ) )

Finally, from (d) we get

h* 0 Y _
Rop — 2uqt3 | M + 13 +14 — 05 — ————>+72r NJ(1—-R
0 I‘(oc+l)<<1+hewM Ha 3> Preem (( 1+ hew )’ 4“5> >( )

X ) ) (66)
h** _ YN _ oM
— | - 2 M _ -2 N+——|(1=Rp)=0
+F2(<>c+1)< B St +02+(1—|—hewM)2> <r4 Tatls +1+hewM>( 2)
which holds for
1
- Y Yy VA, *
2ur3>M+r3+r4—Gz— 7+2r4u + VA
, +hewM 4 (1 + hewdl)’ :
2 = - -
N _ oM >
2| =13 +2ur3sM +0p + —————— | [ 14 — 2144sN + ——— | (1 — R
( 3 HaT3 2 (1 +hewM)2>(4 4Hs 1+ heoM ( 02)
2—R
<|T(x+1) 2 ;

- N o )
et 2 Mt or 4 —— Y (= 2nps N+ —2 V(1R
< TR ? (1+hewM)2><4 N et ) R)
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where

2
0 - Y = 2

A = <-—2ur3>M+r3—|—r4—02— —————— +24ps |N | (1 —Rpz
( 1 + hewM ! (1 —i—hea)M)2 > ( )

_ N _ oM
—4| —13 4+ 2py3M + 0 + ———— <I‘4—21‘4M N+7_> 1 — Roz)Ros.
( ! (1+ hea)M)2> N eait) )

This completes the proof.

7 Conclusion

In this paper, we classified the coronaviruses and their spread from the natural host to the human host.
We proposed a model of the novel coronavirus, which is known as COVID-19, as a system of fractional-
order differential equations. We divided the system into five sub-classes:

e the susceptible class S, the infected class Cj, that does not know they are infected since specific
symptoms did not appear,

e the infected class C; that knows they are infected because of some symptoms such as respiratory and
intestinal infections, including fever, dizziness, and cough, appeared.

o the intermediate domestic host M, that has a transmission role from the natural host to the human host
e the natural host NV, that are bats of genus Rhinolophus.

We consider the pandemic infection case; animal to human and human to human. Therefore, the first
three equations in the constructed model show human to human transmission. The spillover from the
intermediate infected class to the human host denotes a predator-prey mathematical model, and the
transmission from the natural host to intermediate host M is a host-parasite model of Holling Type I1.

In Sections 3 and 4, we analyzed the local stability of the co-existing equilibrium point by using the
Routh—Hurwitz Criteria. We proved the existence and the uniqueness of the initial value problem.

Theorem 3.1., shows that among the human hosts, those who do not know they are infected are the
control class in the spread. While between the animal hosts, the intermediate class plays a dominant role
in the spread since that class has an essential role in transmitting the virus from animal to human. The
transmission potential for both S — C; and M — N is Ry < 1 and Ry, < 1, respectively. Also, the
susceptible class and the C; class is stable based on two parameters, which is the awareness of the
symptoms and the screening rate.

In Theorem 3.2., we emphasized that C; class should be more aware of the symptoms that might
become from the susceptible class as well as from the intermediate class, than the S class to stop the
outbreak. For the susceptible class, it is more important to keep the population rate per year non-infected.
The transmission of the virus to the offspring would reach an uncontrollable phenomenon worldwide.

In Section 5, we incorporate the Allee function at time ¢. The strong Allee effect is analyzed so that the
screening for possible inflectional cases is an essential control parameter to support the Allee function in
stabilizing the effect of the spread.

In Section 6, we deduced that the system demonstrates a Neimark—Sacker bifurcation under specific
conditions.
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published article.
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