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Abstract: Due to the recent proliferation of cyber-attacks, highly robust wireless
sensor networks (WSN) become a critical issue as they survive node failures.
Scale-free WSN is essential because they endure random attacks effectively.
But they are susceptible to malicious attacks, which mainly targets particular sig-
nificant nodes. Therefore, the robustness of the network becomes important for
ensuring the network security. This paper presents a Robust Hybrid Artificial Fish
Swarm Simulated Annealing Optimization (RHAFS-SA) Algorithm. It is intro-
duced for improving the robust nature of free scale networks over malicious
attacks (MA) with no change in degree distribution. The proposed RHAFS-SA
is an enhanced version of the Improved Artificial Fish Swarm algorithm (IAFSA)
by the simulated annealing (SA) algorithm. The proposed RHAFS-SA algorithm
eliminates the IAFSA from unforeseen vibration and speeds up the convergence
rate. For experimentation, free scale networks are produced by the Barabási–
Albert (BA) model, and real-world networks are employed for testing the out-
come on both synthetic-free scale and real-world networks. The experimental
results exhibited that the RHAFS-SA model is superior to other models interms
of diverse aspects.

Keywords: Free scale networks; robustness; malicious attacks; fish swarm
algorithm

1 Introduction

Wireless Sensor Networks (WSN) has been applied for collecting data regarding the physical parameters
in diverse application areas. As a promising technology it brings about a faster development in the area of
advanced wireless telecommunication. The Internet of Things (IoT) has gained significant interest and offers
advantageous to numerous real-time applications. Sensor interfacing devices are needed to detect different
types of sensing data in the IoT environment. WSN plays a vital role in sensing the atmosphere and
collecting the data. For sensing the ecological metrics, a massive number of sensors, like a sink and
sensor nodes, have been deployed in wider regions. Such nodes tend to develop a multi-hop ad hoc
network and implement desired operations based on the essential applications [1]. WSN can be installed
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in homes, constructions, forests, hills, and so on. The sensor network topology defines the wireless
communications that take place among diverse sensors in WSN and it is based on the development of
diverse network communication protocols and routing protocols [2] that is considered to be more
significant in-network features, like network lifespan, power utilization, stability, and latency. With the
rapid growth in cyber-attacks, improvising the efficiency of WSN has become a vital task. In this model,
it mainly focuses on enhancing the robustness of the network topologies for WSN. It refers that, the main
objective is to deploy a model where the connection of massive nodes is conserved after the occurrence
of node failures which results from cyber attacks. The term target selection for attacks, which is of
2 types namely, the random and the MA. In the case of random attacks, an attacker randomly selects the
nodes from a network topology as the required targets, while MAs involve in selecting the nodes with
maximum node degrees as the targets. At this point, specific network topology and scale-free topology
has been examined for WSN.

The scale-free topology comes under the tedious network hypothesis that is comprised of extensive
domains of real-time applications, like the global transportation system [3], cooperation networks, social
networks, as well as mobile networks [4]. For complex network theory, the small-world topology and the
scale-free topology are assumed to be the 2 conventional techniques. In the case of a small-world
approach, it is further classified into two types, smaller average path length, and maximum clustering
coefficient. It applied to thedeveloping heterogeneous network topologies [5]. Unlike, the scale-free
model can be employed in designing homogeneous network topologies; thereby it is more applicable for
the WSN where the maximum number of nodes is constrained with the same communication range and
bandwidth. A node degree in a scale-free topology uses a power-law definition. It is referred that, a
greater number of nodes in a scale-free network has minimized degrees. Therefore, in case of random
attacks, lower degree nodes are often selected. But, Li et al. [6] stated that a scale-free topology could be
delicate for the MA. Therefore, improving the robustness of a scale-free topology enables the WSN to
deal with MAs which has been assumed to be a more significant research.

To produce the power-law distribution of node degrees in scale-free networks, it is projected with a
model named BA, under the application of 2 procedures to attain a scale-free topology. Initially, Growth:
new nodes consecutively combine with the network. A newly merged node links with a previous node
with a possible degree. These procedures tend to provide a maximum node connection where it receives
novel connections. Hence, it is named as the “Mathew Effect”. This criterion is effectively applied to
produce the power-law distribution of node degrees that is evident from Fornasier et al. [7]. Due to the
reduced transmission radius of WSN, every node suffers from insufficient neighboring nodes which are
unable to deploy a greater number of edge nodes. Therefore, the preferred attachment feature of the BA
approach could not be directly induced in WSN. Liu et al. [8] projected a complex network method based
on the heterogeneous networks applied in WSN. It is comprised with a small world as well as scale-free
systems. The shortest path feature in scale-free networks has developed a comparatively effective
transporation system. Zheng et al. [9] modeled 2 robust scale-free network topologies namely, the Linear
Growth Evolution Model (LGEM) and the Accelerated GEM (AGEM). These topologies mainly focus on
the absence or presence of nodes and the reformation of edges. Jian et al. [10] and Dandekar et al. [11]
projected a novel energy-aware scale-free model based on a BA scheme, termed an energy-aware BA
(EABA). Li et al. [12] applied with tunable coefficients to manage the node connection as well as the
power application of a scale-free network topology. Few developers have consumed the energy
management as well as the transmission operation that improves the data overhead at the time of
developing an approach.

In scale-free networks, a lower count of nodes is comprised of higher degrees, where the networks are
more vulnerable for MA. The whole network topology has been segmented rapidly. Hence, the major aim of
this method is to boost the robustness of scale-free networks in WSN for MAs. Additionally, edge nodes are
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capable of solving the issues involved in this model. Several models have been presented and available in the
literature. Peng et al. [13] and Xiao et al. [14] established a novel robustness feature. It is assumed with a larger
connected cluster and defined as robustness by the proportion of remaining nodes from every network node,
Herrmann et al. [15] implied with a hill-climbing framework that depends upon the robustness metric
R, which results in making network topologies that reflects a reliable onion-like architecture by swapping
the edges. But the multimodal criteria might eliminate the technique of shifting the local optimum.

Louzada et al. [16] applied a smart rewiring technique that computes the edges which have to be
compared under the application of 2-fold selections. Zhou et al. [17] developed a memetic approach that
belongs to a significant enhancing model to combine the global as well as the local searching to
increment the robust value of scale-free networks over MA with no alteration of degree distribution.
Therefore, a smart rewiring as well as a memetic technique, Mancilla et al. [18] does not assume the
constraints of the transmission radius for the network nodes which is not applicable for WSN. The
fragileness of scale-free networks with MA belongs to a heavy-tailed property that results in the loss of a
node connectivity if a node hub has failed. Hence, the main goal of this approach is to study the way of
improving the robustness of scale-free networks over MA. A solution for this issue is to include the links,
however, extra links tend to improve the costs. Hence, the network robustness has to be improved over
HDAs with no alteration of degree distribution in primary networks.

Wang et al. [19] deployed a simple rewiring approach that does not change the nodal degree, and
network robustness could be improved slightly with reduced assortativity coefficient. Schneider et al. [20]
established a novel value for robustness, that assumes the linked cluster while processing the whole
attacks, and applied this value to develop a heuristic approach to reduce the MA. Using the same value,
Buesser et al. [21] signified a SA model and Louzada et al. [22] presented a simple rewiring approach to
resolve these problems. These techniques manifest an optimized function to enhance the network
robustness against the primary networks. Therefore, these models could be incremented by applying the
probability of global searches in the optimizing task. Hence, effective models are capable to perform
global and local searches that are required for optimizing the network architecture. Evolutionary
algorithms (EAs), is a type of stochastic global optimization evolved by biological evolution and heredity
that is effectively applied in solving diverse types of complex optimization issues.

Tnag et al. [23] identified the malicious users and the unstable energy providers, the mechanism of
identification and processing (MIP) for the malicious users and unstable energy providers is proposed.
Xiong et al. [24] developed a robust dynamic network traffic partitioning scheme to defend against
malicious attacks and the experimental results indicate that our proposed scheme outperforms the
conventional ones in terms of packet distribution performance, especially the robustness against malicious
attacks. Su et al. [25] deployed a simple work that describes a novel HTTP traffic flow mining approach
to detect and categorize Android malware and unsafe ad library. In this paper, we exploit spatial and
semantic conventional features extracted from the convolutional neural networks in continuous object
tracking [26].

Kuang et al. [27] established a novel value for robustness, a novel support vector machine (SVM) model
by combining the kernel principal component analysis (KPCA) with improved chaotic particle swarm
optimization (ICPSO) is proposed to deal with intrusion detection. Lipschitz aggregation property and
copula characteristics of t-norms and implications are discussed [28]. The robustness of rule-based fuzzy
reasoning is investigated and the relationships among input perturbation, rule perturbation, and
output perturbation are presented. Yu et al. [29] modelled to address the issues encountered by zeroing
neural network (ZNN), by suggesting a new nonlinear activation function, a robust and fixed-time
zeroing neural dynamics (RaFT-ZND) model is proposed and analyzed for the time-variant nonlinear
equation (TVNE).
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To achieve robustness in the network and to improve the network security, this paper introduces a new
Robust Hybrid Artificial Fish Swarm Simulated Annealing Optimization (RHAFS-SA) Algorithm over
malicious attacks (MA) with no change in degree distribution. The proposed RHAFS-SA is an enhanced
version of the Improved Artificial Fish Swarm algorithm (IAFSA) and the SA model. The proposed
RHAFS-SA algorithm discards the IAFSA from unforeseen vibration and improves the convergence
value. For experimentation, free scale networks are produced by the BA and the real-world networks are
employed for testing the outcomes on synthetic-free scale and real-world networks. The experimental
results exhibited that the RHAFS-SA model is superior to the other models interms of diverse aspects.
The remaining sections of the paper has been organized in the following order. Section 2 introduces the
proposed RHAFS-SA algorithm and the experimental details are provided in Section 3. At last, the paper
is concluded in Section 4.

2 The Proposed RHAFS-SA Algorithm

AFSA is said to be the current heuristic searching approach that has been evolved from the food hunting
nature of fish. IAFSA is an extended version of improved exploration potential to identify the position with
maximum food concentration. But, IAFSA is not assumed to be the ideal process as it provides the outcomes
which have a minimum accuracy because of the unknown vibrations, in case of minimum visibility. Besides,
SA is named as a global optimization model based on the annealing of solids. It is capable of finding global
optimum under the application of stochastic searching methodologies. The main aim is to explore the global
optimum, but it is vulnerable due to the sensitivity of the annealing schedule as well as the perturbation
method. Therefore, SA is comprised of a better local stability and concatenated with alternate models
such as AFSA to supply optimal simulation outcomes. In this approach, it is proposed with an alternative
hybrid optimization technique that integrates the IAFSA and the SA to boost the searching efficiency and
convergence of global optimum.

2.1 Problem Formulation

A network can be expressed as a graph¼ V ; Eð Þ, where y ¼ 1; 2; . . . ; Nf g denotes the collection of N
nodes, and E ¼ feijji; j 2 y and i 6¼ jg implies the group of M links. Here, it is mainly concentrated on the
desired attacks of an undirected as well as an unweighted system with a long-tailed degree distribution, such
as the undirected and the unweighted scale-free networks. The targeted attacks are attentive as it is assumed
to be more fragile with desired damage. Therefore, scale-free networks have been identified between
significant networks in public as well as biological systems that refers to these features as more significant.

In developing the scale-free networks, the popular BA model has been employed. The BA initiates with
a minimum clique of N0 nodes. For every iteration, a novel node has been included and the M0 is added in a
link to theM0 of the previous nodes, whereM0represents a smaller value when compared with the number of
previous nodes. If a new node has been linked to the traditional node and the possibility of the existing node
selection to be proportional to a degree in which the nodes are predefined then the massive links would be
selected. It is considered that the MA is HDA, and the network nodes have been sorted in a reduced degree
order and a maximum degree node has been eliminated together with each link. Once the links have been
removed, vertices degree undergoes revaluation and sorts the list, a few locations are modified with the
attacking phase, and follows the first node until the network is isolated. Recently, the percolation theory
concentrated on the largest component if there are frequent eliminations of the highest-degree vertices of
a network, and projected a novel value, R, to measure the network robustness, that is represented by He
et al. [30,31] as,
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R ¼ 1

N

X1

q¼1=N
s qð Þ (1)

where s qð Þ signifies the fraction of nodes in a widely connected cluster once the removal of qN nodes are
completed. The normalization factor 1=N assures the robustness of the networks with a diverse size. The
measure of R comes under the range of 1=N ; 0:5½ �. In fact, the higher value of R is highly robust.
Followed by, R has been employed as an objective function, such as the FF in EA which is applied for
network optimization and it becomes more robust by resisting the MA.

2.2 Artificial Fish Swarm Algorithm (AFSA)

AFSA is a current heuristic that has been developed by searching the global optimum. It is considered to
be a randomized search as well as an optimizing model assisted by the strategies of the fish swarm. It offers
closer optimized solutions of the objective function. AFSA, the metrics of search space undergoes the
encoding as AF. An arithmetical function has been related to every AF which calculates the degree of FF
of an encoded solution. In general, inspired operators, such as prey, the swarm of iterations is to produce
a capable AF. AFSA is used to resolve the optimizing issues in signal processing, NN classification
model as well as the tedious function optimization problems. The working function of the AFSA has
outperformed with a prospective model in resolving the optimization issues. In recent times, SI and
artificial life has led to the higher interests of the researchers. Tab. 1 defines the parameters applied by the
AFSA technique. The nature of the AF has been defined as follows:

(1) Fprcy:

AFprcy is defined as a fundamental nature of food hunting. AF has to transfer to a location in water that
has maximum food concentration. It is assisted by the corresponding vision. Fig. 1 depicts the vision of AF.

It is considered that the recent position of AFi is Xi, and the visual area of AF, it selects the position
Xj Xj 2 S
� �

;AFi swims to Xj in an arbitrary direction when Yj > Yi. The AFi repeats the searching
from the visual area and selects an alternate position Xp;AFi would move to Xp in a random
direction while Yp > Yi. When AFi cannot be effectively placed for maximum food concentration
inside a visual area after try-number iterations, AFi again swims in the minimum distance in a

Table 1: Parameters definition of the AFSA algorithm

Parameters Definition

N Population size of AF (No. of variables).

Xi The recent position of AFi

Y ¼ f Xð Þ Fitness value (food concentration)

Di;j Distance among the ith and the jth AF

Visual Visual distance of the AF

S Searching visual area of AF S ¼ fXjjkXj � Xik <Visual g
D Crowd factor 0 < d < 1

nf No. of neighbours inside the visual area of AF

Try-number Number of iteration that AF attempts to implement prey behaviour

Rand ðÞ Generating arbitrary values among 0 and 1

Step The moving step length (higher swim distance of AF)
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random direction. These features are randomly enabled with AF reducing from the local optimal. These
functions are expressed as,

AFprcy Xið Þ ¼ Xi þ randðÞstep Xj � Xi

Xj � Xi

�� �� if Yj,Yi;

AFrandom�movc Xið Þ Otherwise

8<
: (2)

where AFrandom�movc Xið Þ ¼ Xi þ randðÞ step, 0 < randðÞ < 1:

It is pointed out that, the higher number of inspecting iterations by AF, the maximum data regarding the
entire condition of vision AF learns.

(2) AFswarm:

Fish often collects the process to hold a colony and eliminates the potential issues. When the current
position of AFi is Xi, and nf neighbors are present within the visual area S, Xc denotes the neighbors, if
Xc ¼

Pnf
j¼1 Xj=nf :AFi swim in the Xc direction while nf =n < d and Yc < Yi. It refers to the process of

sufficient sharing by every fish in an intermediate area. Else, AFi repeats the AFprcy behavior, that is
shown by:

AFswarm Xið Þ ¼ Xi þ randðÞstep Xc � Xi

Xc � Xik k if
nf
N

, d; if Yc .Yi

AFprcy Xið Þ Otherwise:

8<
: (3)

(3) AFfollow:

If a single fish identifies the food by using the moving process of the fish swarm, AFs have the
movement of the following fish to obtain the optimal food-concentration position. Assume that the recent
location of AFi is Xi and that it comprises of nf neighbors inside a visual region S.
Y max ¼ max ff Xj

� �
; jXj 2 Sg;AFi would swim in a random direction to X max in case of nf =n < d and

Y max > Yi. Else, AFi resumes the AFprcy behavior which is written as,

Figure 1: Vision concept of AFSA
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AFfollow ¼ Xi þ randðÞstep Xmax � Xi

kXmax � Xik if nf =N , d and Ymax .Yi

AFprcyðXiÞ Otherwise:

8<
: (4)

Generally, the behaviors of AFfollow and AFswarm would be accelerated after every iteration. The nature of
providing AF an optimal position using food concentration can be decided. AFSA is capable of producing
every selected nature of AF at the same time. It adopts a random trend of AFs, when it does not identify a
maximum food concentration location that lowers the feasibility of AFs movement of local optimums.

(4) AFlcap:

The AFSA and the AFlcap behavior is termed as the IAFSA. The leaping behavior of AF is proposed in
[31]. The preying nature, swarming and following nature are assumed to be the local behaviors. When the
optimal fitness measure has not been enhanced after maximum rounds, it manifests the AF population that
comes under the local optimum. The FF values are encoded in all the AF to make reliable and possibile
reductions in the local optimum. To improve the likelihood in searching the global optimum, the leaping
nature has been included to the AFs. The AFs’leaping behavior can be defined in the follows: When the
measures of an objective function among the iterations are similar the variations are minimal when
compared with E which is a small positive constant while the provided iterations are selected randomly
from the AFs to process the leaping behavior. b implies the parameter which simulates the AF.

if ðBESTFC mð Þ � BESTFC nð Þ;Xncxt ¼ X þ b� visual � rand (5)

It is evident that, when the best AF present in a population has been chosen to implement the leaping
behavior, immediate vibration occurs in the successive iteration task. Finally, it gradually decreases the
converging speed. For increasing the convergence speed, optimized AFs could not be selected for
implementing the leaping behavior.

Step 1: Compute Parameter Encoding

Describes the number of clusters c and the vector V ¼ v1; v2; . . . vp; . . . vc
� �

showcases the centroids
of the clusters; which is one among the AFs; vp is a centroid of the pth cluster 1 � p � cð Þ. V is named as a
vector with cñn dimensions. The final position of V is referred to as the optimal cluster centroids.

Step 2: Initialization

Load the population of AF, N , fuzziness exponent m; termination condition, the visual distance of AF,
step of AF, crowd factor d and the try-number. Compute the higher iteration K for AFSA, fix the iteration
value k ¼ 1 and initiate the AF population:

AFk ¼ Vk
1 ;V

k
2 ; . . .V

k
q ; . . .V

k
N

n o
; (6)

where Vk
q is a location of qth AF at kth iteration; 1 � q � N ;N is the population of AF:

Step 3: Global Search

(a) Based on the Vk
q , evaluate the MF matrix Uk

q ¼ ½uki;j�c�n:
Implement IAFSA with the application of Eq. (1) as an objective function.

(b) Go to Step 4 if the result meets the termination condition, else,

Improve k k :¼ k þ 1ð Þ and go back to Step 3(a).

Step 4: Local Search

(a) Identify the optimal individual AF : Vk
bcst:

(b) Determine the MF matrix Ukþ1 using F-CM.
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(c) Upgrade Vkþ1:

(d) Terminate the iteration when the result meets the termination condition, else, improve k and go back
to Step 4(b).

2.3 Simulated Annealing (SA) Algorithm

The initial SA model has been presented by Metropolis et al. It has been evolved from the annealing of
solids. Annealing is defined as the task of melting the solids to high temperatures by a lower cooling pattern

Figure 2: Flowchart of AFSA
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by reducing the environmental temperature of the ecology. Here, the temperature has to be provisioned in a
reliable state for a given time interval which is enough to attain the thermal equilibrium. For thermal
equilibrium, it is comprised of several configurations linked with the diverse energy levels. The
likelihood of a solid is to approve the modification from a recent configuration to the novel function of
variations in the energy levels between 2 states. At the initial stage, a trial configuration has been attained
by a randomly produced perturbation of a recent configuration. It has been considered that the Ec and the
Et imply the corresponding energy levels of the present trial configurations. When Ec > Et, the trial
configuration is approved to be a novel configuration. Besides, the Ec|Et, the trial configuration is named
only when the positive probability is as expressed in Eq. (7).

P ¼ exp � Et � Ecð Þ
T cur

� �
(7)

Also, it is referred to the ad Metropolis Law. From the recent temperature T cur, it has been followed
‘Markov Length’ number of times as well as minimizes the temperature based on the annealing schedule.
On the other hand, Markov Length computes the count of the trial configurations at every particular
temperature. Since the temperature T is 0, the possibility of accepting a trial configuration is 0. The
thermal equilibrium can be attained only with an enhanced energy level.

2.4 Hybrid Optimization Approach Based on IAFSA and SA

SA has been incorporated with the AF prey behavior. The AFs arbitrary selection of position inside the
visual region and moving forward towards the direction of maximum food concentration takes place.
When there is a forwarding condition that could not be satisfied once the iterations are completed, the
AFs move to a distance in a random direction. The random migration behavior enables the model to
eliminate the complexity in the local minimum. But, the AF seeks global optimum, without the
vibration. Hence, it has to be presented with a novel hybrid model that integrates the IAFSA with the
SA. The AF accepts an arbitrary position with a probability exp(-(deltaJ)/T cur), else, the AF remains
in its recent position, asAs the acceptance rule has been computed by the current temperature, in the
primary iterations. AF accepts the random position and exists from the local optimum. On the other
hand, the value of FF is enabled to become poor inside an assertive extent in the primary events. As
the temperature reduces in all iterations, the search area seeks for a neighborhood of the global
optimum, and accepting the hypothesized optimal AF minimizes the irregular vibration. Finally, the
reliability and convergence speed of a model can be enhanced.

3 Performance Validation

This section discusses the experimental analysis of the RHAFS-SA algorithm. The proposed RHAFS-
SA algorithm has been simulated using MatLab 8.1 simulation. The performance of the RHAFS-SA model
has been validated under several aspects. The parameters used for simulation is shown in Tab. 2. The
performance here is evaluated for a varying number of features at different circumstances. The results are
compared with the existing methodologies such as the EROSE and the SPRT (L&H) interms of delay,
packet delivery ratio (PDR), packet drop ratio (PDPR), residual energy, and communication overhead.

Tab. 3 and Fig. 3 show the analysis of the results of the RHAFS-SA algorithm with the existing methods
interms of delay under a varying number of nodes. The table values point out that the EROSE algorithm
possesses maximum delay over the RHAFS-SA algorithm and the SPRT (L&H) model. At the same time,
it is noted that the SPRT (L&H) model acquires slightly better performance over the EROSE algorithm
by offering lower delay. But, it does not compete with the proposed RHAFS-SA algorithm which
requires a minimum amount of delay over the earlier models on all the varying numbers of nodes.

CMC, 2021, vol.66, no.1 911



Tab. 4 and Fig. 4 portray the results of the RHAFS-SA algorithm with the existing models interms of the
PDR under a varying node count. From Fig. 4, it is exhibited that the RHAFS-SA algorithm has
demonstrated superior performance over the EROSE and the SPRT (L&H) models by attaining maximum
PDR. At the same time, it is observed that the SPRT (L&H) model has provided slightly lower
performance by achieving lower PDR over the RHAFS-SA algorithm. In the same way, the ineffective
performance of the EROSR model has been ensured from the minimal PDR under a varying node count.
The maximum value of the PDR offered by the RHAFS-SA algorithm shows its superiority over the
existing methods.

Table 2: Implementation setup

Parameter Value

Simulator MatLab 8.1

Node Count 250

Protocol Used EROSE and SPRT (L&H)

Simulation Area 1000 × 1000

Total Time 100 (secs)

Table 3: Result analysis of delay (Sec) with existing and proposed method

Number of Node EROSE SPRT (L&H) RHAFS-SA

50 10 7 6

100 14 10 8

150 17 14 12

200 23 16 13

250 25 20 17

Figure 3: Delay analysis under varying node count
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A detailed PDPR analysis is made between the RHAFS-SA algorithm and the existing methods as
shown in Fig. 5 and Tab. 5. The table values denoted that the RHAFS-SA algorithm performs well and
offers a minimum PDPR. Concurrently, it is denoted that the SPRT (L&H) model has shown slightly
lower performance over the proposed method and offered a moderate PDPR. Simultaneously, it is
demonstrated that the EROSE model has achieved a maximum PDPR indicating the ineffectiveness of
transmitting data packets successfully.

Tab. 6 and Fig. 6 investigate the residual energy analysis of the RHAFS-SA algorithm with the existing
methods under a varying number of nodes. The experimental results indicate that the EROSE model has
consumed more amount of energy over the compared methods and leads to a lower residual energy
indicating energy dissipation at a faster rate. At the same time, it is noticed that the SPRT (L&H) model
has achieved better energy efficiency over the EROSE by offering a moderate residual energy.
Furthermore, it is observed that the RHAFS-SA algorithm has resulted in maximum energy efficiency by
providing higher residual energy over the compared methods.

An extensive communication overhead analysis takes place between the RHAFS-SA algorithm and the
compared methods under a varying numbers of nodes as given in Tab. 7 and Fig. 7. The EROSE model has
acquired a maximum communication overhead indicating its ineffective performance under the all nodes
count. In line with, it is noted that the SPRT (L&H) model has burdened with a moderate amount of
communication overhead, which is lower than the EROSE, but not the proposed RHAFS-SA algorithm.

Table 4: Result analysis of packet delivery ratio (%) with existing and proposed method

Number of Node EROSE SPRT (L&H) RHAFS-SA

50 65.44 73.44 74.23

100 72.55 78.65 79.50

150 79.22 83.67 84.20

200 84.52 89.33 90.00

250 91.07 93.23 94.10

Figure 4: PDR analysis under varying node count
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At last, it is depicted that an effective performance is exhibited by the RHAFS-SA algorithm by attaining
a minimal communication overhead under all the applied scenarios. By looking into the above-mentioned
tables and figures, it is ensured that the RHAFS-SA algorithm has offered superior performance over the
existing methods interms of delay, PDR, PDPR, residual energy and communication overhead.

Figure 5: PDRP analysis of diverse models

Table 5: Result analysis of PDRP (%) with existing and proposed method

Number of Node EROSE SPRT (L&H) RHAFS-SA

50 29 22 20

100 23 17 14

150 18 11 10

200 16 09 08

250 11 06 04

Table 6: Result analysis of residual energy (Joules) with existing and proposed method

Number of Node EROSE SPRT (L&H) RHAFS-SA

50 34 42 44

100 44 56 57

150 52 65 67

200 66 74 76

250 73 82 85
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Figure 6: Residual energy analysis under a varying number of nodes

Table 7: Result analysis of communications overhead (bytes) with existing and proposed method

Number of Node EROSE SPRT (L&H) RHAFS-SA

50 12246 10348 10300

100 16571 12079 11900

150 18655 15896 15560

200 20247 16383 15980

250 22567 18458 17500

Figure 7: Communication overhead analysis

CMC, 2021, vol.66, no.1 915



4 Conclusion

This paper has presented an effective RHAFS-SA Algorithm over the MA for the free scale networks
with no change in degree distribution. The proposed RHAFS-SA is a hybridization of the IAFSA and the
SA algorithms. The presented RHAFS-SA system discards the IAFSA from the unforeseen vibration and
speeds up the convergence rate. For experimentation, free scale networks are produced by the BA model
as well as the real-time networks are employed for testing the outcome on synthetic-free scale and real-
world networks. The experimental results exhibited that, the RHAFS-SA model is superior to other
models interms of diverse aspects such as delay, PDR, PDPR, residual energy, and communication
overhead. In the future, the performance of the proposed model can be enhanced by the use of deep
learning models.
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