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Abstract: In recent years, there has been an increased interest among the research-
ers to propose new families of distributions to provide the best fit to lifetime data
with monotonic (increasing, decreasing, constant) and non-monotonic (unimodal,
modified unimodal, bathtub) hazard functions. We further carry this area of
research and propose a new family of lifetime distributions called a new logarith-
mic family via the T-X family approach. For the proposed family, explicit expres-
sions for some mathematical properties along with the estimation of parameters
through Maximum likelihood method are discussed. A sub-model, called a new
logarithmic Weibull distribution is taken up. The proposed model is very flexible
and can be used to model data with increasing, decreasing, modified unimodal or
bathtub shaped hazard rates. The maximum likelihood estimators of the model
parameters are obtained. To assess the behavior of the maximum likelihood esti-
mators, a comprehensive Monte Carlo simulation study has been carried out.
Finally, the potentiality of the new model is shown via analyzing two real data
sets taken from reliability engineering and biomedical fields. The comparison
of the proposed model is made with the other well-known competitors such as
(i) the three parameters exponentiated Weibull and Marshall–Olkin Weibull distri-
butions and (ii) a four-parameter beta Weibull distribution. The practical applica-
tions show that the proposed model performs much better than the competitive
models and can be used as a good candidate model to analyze data in engineering,
medical sciences and other related fields.

Keywords: Weibull distribution; moments; order statistic; residual life function;
maximum likelihood estimation

1 Introduction

Speaking broadly, statistical distributions are frequently used for modeling real phenomena in many
applied areas including engineering, medical sciences, actuarial, environmental studies, economics,
finance, and insurance. Among these distributions, the exponential, Rayleigh and Weibull are some of the
most useful models used quite effectively in real-life data modeling. Unfortunately, these distributions
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have a limited range of capability and thus cannot be applied in all situations to get a better description of the
phenomena under consideration. For example, the exponential model is often used for real-life data
modeling, but its hazard function is only constant. Whereas, the Rayleigh model is another promising
model, but it has an increasing hazard function only. However, the Weibull is a more flexible model
offering the features of both the exponential and Rayleigh distributions and additionally offering data
modeling with decreasing hazard function. But, the problem with the Weibull model is that it is not
capable of modeling data with non-monotonic hazard function.

To provide an adequate fit to data having non-monotonic hazard function, there is a clear need for the
generalized versions of these distributions. This fact motivated the researchers to propose new extended
distributions. This has been done either introducing the modified versions of the existing models or
introducing new families of distributions to obtain flexible model capable of modeling data with non-
monotonic hazard function.

In the recent advances in distribution theory, researchers have shown a deep interest in proposing new
methods to expand the family of lifetime distributions. This has been done through many different
approaches by introducing new generators. Some of the well-known generators include a new generalized
class of distributions [1], McDonald-G (Mc-G) family [2], beta Marshal-Olkin family of distributions [3],
Kumaraswamy Marshal-Olkin family [4], log-gamma-G family [5], Weibull-G family of distributions [6],
the exponentiated half-logistic family [7], Lomax Generator [8], A New Lifetime Exponential-X Family
[9], New Extended-F Family [10], A Flexible Reduced Logarithmic-X Family [11], a new extended-
family of distributions [12], odd generalized exponential-G family [13], Logistic-X family [14], for
further detail; see [15].

In this article, a new family of lifetime distributions called a new logarithmic (NL) family of
distributions is introduced by adopting the T-X family approach; see [16]. The new family is defined by
the following cumulative distribution function (cdf)

G x; a;b; nð Þ ¼
log ea � 1� F x; nð Þb

� �
ea � 1ð Þ

h i
a

; a; b; n > 0; x 2 R; (1)

where, F x; nð Þ is the cdf of the baseline random variable depending on the vector parameter n and a > 0,
b > 0 are the additional parameters. The proposed class of distributions can also be obtained by re-
parameterizing the complementary exponentiated Kumaraswamy-G-logarithmic class; see [17]. The
probability density function (pdf) corresponding to Eq. (1) is given by

g x; a; b; nð Þ ¼ b ea � 1ð Þf x; nð ÞF x; nð Þb�1

a ea � 1� F x; nð Þb
� �

ea � 1ð Þ
h i ; x 2 R: (2)

The survival function (sf), hazard rate function (hrf) and cumulative hazard rate function (chrf) of the NL
family are given, respectively, by

S x; a; b; nð Þ ¼
a� log ea � 1� F x; nð Þb

� �
ea � 1ð Þ

h i
a

; x 2 R;

h x; a; b; nð Þ ¼ b ea � 1ð Þf x; nð ÞF x; nð Þb�1

a� log ea � 1� F x; nð Þb
� �

ea � 1ð Þ
h ih i

ea � 1� F x; nð Þb
� �

ea � 1ð Þ
h i ; x 2 R;
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and

H x; a;b; nð Þ ¼ � log
a� log ea � 1� F x; nð Þb

� �
ea � 1ð Þ

h i
a

0
@

1
A; x 2 R:

The new pdf is most tractable when F x; nð Þ and f x; nð Þ have simple analytical expressions. Henceforth, a
random variable X with pdf given by Eq. (2) is denoted by X � NL x; a; b; nð Þ. Furthermore, for the sake of
simplicity, the dependence on the vector of the parameters is omitted and simply G xð Þ ¼ G x; a; b; nð Þ will be
used. Some key motivations for using the NL family in practice are the following:

� A very simple and convenient method of adding additional parameters to modify the existing
distributions.

� To improve the characteristics and flexibility of the existing distributions.

� To introduce the extended version of the baseline distribution having a closed form for cdf, sf as
well as hrf.

� To provide better fits than the other modified models.

The rest of this article is organized as follows: In Section 2, a special sub-model of the proposed family is
discussed. Some mathematical properties are obtained in Section 3. The maximum likelihood estimates of the
model parameters are obtained in Section 4. A Monte Carlo simulation study is conducted in Section 5.
Section 6 is devoted to analyzing two real-life applications. Finally, concluding remarks are provided
in Section 7.

2 Sub-Model Description

In this section, we define a special sub-model of the proposed family, called a new logarithmic Weibull
(NLW) distribution. Let F x; nð Þ be the cdf of the two-parameter Weibull distribution given by
Fðx; nÞ ¼ 1� e�cxh ; x � 0; c; h > 0, where n ¼ c; hð Þ. Then, the cdf of the NLW distribution has the
following expression

G x; a;b; nð Þ ¼
log ea � ea � 1ð Þ 1� 1� e�cxh

� �b
� �� �

a
; a;b; n > 0; x � 0; (3)

The pdf corresponding to Eq. (3)

g x; a; b; nð Þ ¼
cbh ea � 1ð Þxh�1e�cxh 1� e�cxh

� �b�1

a ea � ea � 1ð Þ 1� 1� e�cxh
� 	b� �h i ; x � 0; (4)

The sf and hrf of the NLW distribution are given, respectively, by

S x; a; b; nð Þ ¼ 1�
log ea � ea � 1ð Þ 1� 1� e�cxh

� �b
� �� �

a
; x � 0;

and

h x; a; b; nð Þ ¼
cbh ea � 1ð Þxh�1e�cxh 1� e�cxh

� �b�1

a� log ea � ea � 1ð Þ 1� 1� e�cxh
� 	b� �h ih i

ea � ea � 1ð Þ 1� 1� e�cxh
� 	b� �h i ; x � 0:
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For c ¼ 1 and different values of a; b and h, plots of the pdf of the NLW distribution are sketched in
Fig. 1. For the selected values of the parameters, some possible shapes for the hrf of the NLW model are
shown in Fig. 2.

3 Basic Mathematical Properties

In this section, some statistical properties of the proposed family are derived.

3.1 Quantile Function

Let X be the NL random variable with pdf given by the Eq. (2), the quantile function of X, say Q(u) is
given by

Figure 1: Different plots for the pdf of the NLW distribution

Figure 2: Different plots for the hrf of the NLW distribution
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Q uð Þ ¼ G�1 1� ea � eau

ea � 1ð Þ
� �
 �1=b

; (5)

where, u has the uniform distribution on the interval (0,1) and G−1(.) is the inverse function of G(.). From
Eq. (5), it is clear that the proposed family has a closed form solution of its quantile function which
makes it easier to generate random numbers.

3.2 Moments

Moments are very important and play an essential role in statistical analysis, especially in the applications.
It helps to capture the important features and characteristics of the distribution (e.g., central tendency,
dispersion, skewness and kurtosis). The rth moment of the NL family of distributions is given by

l=r ¼
b
a

X1
i;j¼0

�1ð Þj i
j

� �
ea � 1

ea

� �iþ1

gr;b jþ1ð Þ�1; (6)

where,

gr;b jþ1ð Þ�1 ¼
Z1

�1
xrf x; nð ÞF x; nð Þb jþ1ð Þ�1dx:

Furthermore, a general expression for moment generating function (mgf) of the NL random variable X is

Mx tð Þ ¼ b
a

X1
i;j;r¼0

�1ð Þjtr
r!

i
j

� �
ea � 1

ea

� �iþ1

gr;b jþ1ð Þ�1: (7)

3.3 Residual and Reverse Residual Life

The residual life offers wider applications in reliability theory and risk management. The residual
lifetime of X denoted by R tð Þ is derived as

R tð Þ xð Þ ¼ S xþ tð Þ
S tð Þ ;

R tð Þ xð Þ ¼
a� log ea � 1� F xþ t; nð Þb

� �
ea � 1ð Þ

h i

a� log ea � 1� F t; nð Þb
� �

ea � 1ð Þ
h i : (8)

Additionally, the reverse residual life of the NL random variable denoted by �R tð Þ is

�R tð Þ ¼ S x� tð Þ
S tð Þ ;

�R tð Þ xð Þ ¼
a� log ea � 1� F x� t; nð Þb

� �
ea � 1ð Þ

h i

a� log ea � 1� F t; nð Þb
� �

ea � 1ð Þ
h i : (9)
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3.4 Order Statistics

Order statistics are among the essential tools in inferential and non-parametric statistics. The applications
of these statistics appear in the study of reliability and life testing. Let X1;X2; � � � ;Xk be a random sample of
size k taken independently from the NL distribution with parameters a; b and n. Let X1:k ;X2:k ; � � � ;Xk:k be the
corresponding order statistics. Then, the density of Xr:k for (r = 1, 2, � � �, k) is given by

gr:k xð Þ ¼ g x; a; b; nð Þ
B r; k � r þ 1ð Þ

Xk�r

i¼0

k � r
i

� �
�1ð Þi G x; a; b; nð Þ½ �iþr�1: (10)

4 Maximum Likelihood Estimation

In this section, the estimation of the unknown parameters of the NL family via the method of maximum
likelihood is discussed. Let X1;X2; � � � ;Xk be a random sample from NL family with parameters a;b; nð Þ.
The log-likelihood function of this sample is

log L xð Þ ¼ � k log aþ k log bþ k log ea � 1ð Þ þ
Xk
i¼1

log f xi; nð Þ½ � þ b� 1ð Þ
Xk
i¼1

log F xi; nð Þ½ �

�
Xk
i¼1

log ea � 1� F xi; nð Þb
� �

ea � 1ð Þ
h i

:

(11)

Obtaining the partial derivatives of Eq. (11), one may get

@

@a
log L xð Þ ¼ � k

a
þ kea

ea � 1
�
Xk
i¼1

ea � 1� F xi; nð Þb
� �

ea

ea � 1� F xi; nð Þb
� �

ea � 1ð Þ
h i;

@

@b
log L xð Þ ¼ k

b
þ
Xk
i¼1

log F xi; nð Þ½ � �
Xk
i¼1

log F xi; nð Þf gF xi; nð Þb ea � 1ð Þ
ea � 1� F xi; nð Þb

� �
ea � 1ð Þ

;

@

@n
log L xð Þ ¼

Xk
i¼1

@f xi; nð Þ=@n
f xi; nð Þ þ b� 1ð Þ

Xk
i¼1

@F xi; nð Þ=@n
F xi; nð Þ �

Xk
i¼1

b ea � 1ð ÞF xi; nð Þb�1@F xi; nð Þ=@n
ea � 1� F xi; nð Þb

� �
ea � 1ð Þ

:

Setting
@

@a
logLðxÞ; @

@b
log LðxÞ and @

@n
log LðxÞ equal to zero and solving numerically these expressions

simultaneously, yields the maximum likelihood estimates of a; b; nð Þ:

5 Monte Carlo Simulation Study

In order to assess the performances of the maximum likelihood parameters of the proposed distribution,
a small simulation study is carried out. The process is carried out as follows: The number of Monte Carlo
replications was made 1000 times each with sample size n = 30, 50 and 100. The initial values for the
parameters are selected as given in Tabs. 1 and 2. Formulas used for calculating Bias and MSE are given

by Bias âð Þ ¼ 1

1000

X1000
i¼1

â� að Þ and MSE âð Þ ¼ 1

1000

X1000
i¼1

â� að Þ2, respectively. Step (iii) is also repeated

for the other parameters c;b; hð Þ:
The empirical results are given in Tabs. 1 and 2.
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6 Practical Applications

In this section, we provide two applications of the proposed model to the real data sets. We compare the
fits of the proposed distribution to those of the three-parameter exponentiated Weibull (EW) Marshall-Olkin
Weibull (MOW) and beta Weibull (BW) distributions. The goodness-of-fit measures such as Anderson-
Darling (AD), Cramer–von Mises (CM), Kolmogorov-Smirnov (KS) statistic and the corresponding p-
value are considered to compare the proposed method with the fitted models. In general, a model with
smaller values of these analytical measures and high p-value indicates better fit to the data. All the
required computations have been carried out in the R-language using “BFGS” algorithm.

Table 1: The parameter estimation from the NLW distribution using MLE

n Par MLE Bias MSE MLE Bias MSE

30 a 0.5149 0.0132 0.0073 0.7711 0.0213 0.0165

c 0.5269 0.0252 0.0188 0.5233 0.0234 0.0163

b 0.5151 0.0149 0.0079 0.5154 0.0152 0.0084

h 0.5331 0.0262 0.0181 0.5212 0.0231 0.0162

50 a 0.5073 0.0071 0.0042 0.7584 0.0112 0.0084

c 0.5219 0.0222 0.0109 0.5121 0.0115 0.0097

b 0.5078 0.0080 0.0052 0.5075 0.0078 0.0048

h 0.5213 0.0243 0.0106 0.5092 0.0109 0.0087

100 a 0.5021 0.0030 0.0021 0.7593 0.0097 0.0039

c 0.5128 0.0134 0.0051 0.5046 0.0050 0.0045

b 0.5021 0.0029 0.0037 0.5070 0.0071 0.0025

h 0.5187 0.0136 0.0053 0.5040 0.0097 0.0044

Table 2: The parameter estimation from the NLW distribution using MLE

n Par MLE Bias MSE MLE Bias MSE

30 a 1.5489 0.0485 0.0669 1.5589 0.0586 0.1212

c 0.5772 0.0771 0.0414 0.5129 0.0131 0.0151

b 0.5183 0.0185 0.0089 1.5083 0.0088 0.0206

h 0.5736 0.0769 0.0411 0.5120 0.0126 0.0147

50 a 1.5272 0.0273 0.0437 1.5221 0.0222 0.0615

c 0.5689 0.0690 0.0248 0.5040 0.0040 0.0087

b 0.5109 0.0106 0.0056 1.4996 0.0065 0.0109

h 0.5674 0.0675 0.0243 0.5039 0.0039 0.0081

100 a 1.5174 0.0172 0.0181 1.5166 0.0169 0.0293

c 0.5531 0.0531 0.0121 0.4932 0.0037 0.0040

b 0.5063 0.0057 0.0028 1.5021 0.0029 0.0059

h 0.5527 0.0530 0.0239 0.4924 0.0031 0.0032
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Data 1: The first data set representing the remission times (in months) of a random sample of
128 bladder cancer patients. Corresponding to data 1, the maximum likelihood estimates of the fitted
models are provided in Tab. 3. While, the goodness of fit measures is given in Tab. 4.

From the results given in Tab. 4, it is clear that the proposed model provides the best fit to the data.
Furthermore, for data 1, the estimated pdf and cdf are sketched in Fig. 3, while the Kaplan-Meier survival
and pp-plots are provided in Fig. 4. These figures show that the proposed model fit the data very closely.

Table 3: Maximum likelihood estimates of the fitted distributions using data 1

Dist. â b̂ ĥ ĉ

NLW 0.218 2.645 0.679 0.400

MOW 11.829 0.564 0.877

EW 4.332 0.541 0.720

BW 3.196 1.143 0.609 0.486

Table 4: The statistics of the fitted models using data 1

Dist. KS CM AD p-value

NLW 0.044 0.043 0.2879 0.9619

MOW 0.075 0.150 0.884 0.451

EW 0.046 0.046 0.324 0.940

BW 0.945 1.592 1.576 2.2e-16

Figure 3: Plots of the estimated pdf and cdf of the NLW distribution for data 1
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Data 2: The second data set representing the time between failures for 30 repairable items. The
maximum likelihood estimates and the considered statistics are provided in Tabs. 5 and 6, respectively.
Corresponding to data 2, the estimated pdf and cdf of the proposed model are plotted in Fig. 5, while, the
Kaplan-Meier survival and pp-plots are presented in Fig. 6. These figures show how the proposed model
fit the data closely.

Figure 4: PP and Kaplan-Meir survival plots of the NLW distribution for data 1

Table 5: The maximum likelihood estimates of the fitted distributions using data 2

Dist. â b̂ ĥ ĉ

NLW 1.680 1.364 1.470 0.375

MOW 0.336 1.807 0.200

EW 1.950 0.937 1.040

BW 1.810 0.433 1.120 1.758

Table 6: The statistical measures of the fitted models using data 2

Dist. KS CM AD p-value

NLW 0.063 0.019 0.142 0.961

MOW 0.075 0.022 0.151 0.915

EW 0.083 0.027 0.165 0.899

BW 0.633 0.955 5.367 7.063e-11
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7 Concluding Remarks

In this article, a new method is adopted to extend the existing distributions. This effort leads to a new
family of lifetime distributions, called a new logarithmic family of distributions. General expressions for
some of the mathematical properties of the new family are investigated. Maximum likelihood estimates
are also obtained. There are certain advantages of using the proposed method like its cdf has a closed
form solution and facilitating data modeling with monotonic and non-monotonic failure rates. A special
sub-model of the new family, called a new logarithmic Weibull distribution is considered and two real
applications are analyzed. In simulation study, the consistency and proficiency of the maximum
likelihood estimators of the proposed model are also illustrated. The practical applications of the
proposed model reveal better fits to real-life data than the other well-known competitors. It is hoped that
the proposed method will attract wider applications in reliability engineering and biomedical sciences.

Figure 5: Plots of the estimated pdf and cdf of the NLW distribution corresponding to data 2

Figure 6: PP and Kaplan-Meir survival plots of the NLW distribution corresponding to data 2
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