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Abstract: In this article, we construct the most powerful family of simultaneous
iterative method with global convergence behavior among all the existing meth-
ods in literature for finding all roots of non-linear equations. Convergence analy-
sis proved that the order of convergence of the family of derivative free
simultaneous iterative method is nine. Our main aim is to check out the most
regularly used simultaneous iterative methods for finding all roots of non-linear
equations by studying their dynamical planes, numerical experiments and CPU
time-methodology. Dynamical planes of iterative methods are drawn by using
MATLAB for the comparison of global convergence properties of simultaneous
iterative methods. Convergence behavior of the higher order simultaneous itera-
tive methods are also illustrated by residual graph obtained from some numerical
test examples. Numerical test examples, dynamical behavior and computational
efficiency are provided to present the performance and dominant efficiency of
the newly constructed derivative free family of simultaneous iterative method
over existing higher order simultaneous methods in literature.

Keywords: Non-linear equation; iterativemethod; simultaneousmethod; basins of
attractions; computational efficiency

1 Introduction

One of the ancient problems in mathematics is the estimations of roots of non-linear equation

f ðgÞ ¼ 0: (1)

There are number of applications of non-linear equation in science and engineering. Newton’s method is
a numerical iterative scheme which finds a single root at a time. The simultaneous iterative method (SIM)
such as, Weirstrass [1] method is used to find all the distinct roots of Eq. (1). The iterative methods for
finding single root of non-linear polynomial equation have been studied by [2–4] and many others. On
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the other hand, there are lot of numerical iterative methods devoted to approximate all roots of Eq. (1)
simultaneously (see, e.g., [1,5–8] and the references therein). The SIM are popular as compared to single
root finding methods due to their wider range of convergence, reliability and their applications for parallel
computing as well. Further details on SIM, their convergence analysis, efficiency and parallel
implementations can be seen in [9,10–13] and references cited there in. The main objective of this article
is to construct SIM which have more efficient and higher convergence order for approximating all distinct
roots of Eq. (1). For the analysis and comparison of convergence behavior of simultaneous iterative
methods, we use the techniques of dynamical plane with CAS MATLAB (R2011b).

2 Constructions of Simultaneous Method

Here, we construct a ninth order derivative free simultaneous method which is more efficient than the
similar methods existing in literature.

2.1 Construction of Simultaneous Methods for Distinct Roots

Consider eighth order derivative free Kung–Traub’s [4] family of iterative method (abbreviated as KF):

rðtÞ ¼ gðtÞ � af ðgðtÞÞ2
f ðvðtÞÞ � f ðgðtÞÞ;

uðtÞ ¼ rðtÞ � f ðrðtÞÞf ðvðtÞÞ
f ðvðtÞÞ � f ðrðtÞÞð Þ f ðgðtÞÞ � f ðrðtÞÞ

gðtÞ � rðtÞ

� �
0
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1
A;

zðtÞ ¼ uðtÞ �
f ðrðtÞÞf ðvðtÞÞ rðtÞ � gðtÞ þ f ðgðtÞÞ

f ðgðtÞÞ � f ðuðtÞÞ
gðtÞ � uðtÞ

0
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f ðrðtÞÞ � f ðuðtÞÞð Þ f ðvðtÞÞ � f ðuðtÞÞð Þ
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þ f ðrðtÞÞ
f ðrðtÞÞ � f ðuðtÞÞ

rðtÞ � uðtÞ

0
@

1
A; where vðtÞ ¼ gðtÞ þ af ðgðtÞÞ:

Using well known Weierstrass [1] method, abbreviated as (WKD), we have:

rðtÞi ¼ gðtÞi � f ðgðtÞi Þ
�
n

j6¼i
j¼1

ðgðtÞi � gðtÞj Þ
ði; j ¼ 1;…; nÞ (2)

Replacing gðtÞj by zðtÞj in Eq. (2), we get new simultaneous iterative method (abbreviated as SIM1),

rðtÞi ¼ gðtÞi � f ðgðtÞi Þ
�
n

j6¼i
j¼1

ðgðtÞi � zðtÞj Þ
ði; j ¼ 1;…; nÞ (3)
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where

zðtÞj ¼ uðtÞj �

f ðrðtÞj Þf ðvðtÞj Þ rðtÞj � gðtÞj þ
f ðgðtÞj Þ

f ðgðtÞj Þ � f ðuðtÞj Þ
gðtÞj � uðtÞj

0
BB@

1
CCA

f ðrðtÞj Þ � f ðuðtÞj Þð Þ f ðvðtÞj Þ � f ðuðtÞj Þð Þ
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1
CCCCCCCCCA

þ f ðrðtÞj Þ
f ðrðtÞj Þ � f ðuðtÞj Þ

rðtÞj � uðtÞj

0
BB@

1
CCA;

uðtÞj ¼ rðtÞj � f ðrðtÞj Þf ðvðtÞj Þ
f ðvðtÞj Þ � f ðrðtÞj Þ

� �
f ðgðtÞj Þ � f ðrðtÞj Þ

gðtÞj � rðtÞj

� �
0
BB@

1
CCA; rðtÞj ¼ gðtÞj � af ðgðtÞj Þ2

f ðvðtÞj Þ � f ðgðtÞj Þ

and vðtÞj ¼ gðtÞj þ af ðgðtÞj Þ:
Thus, we have a new derivative free family of simultaneous method Eq. (3), abbreviated as SIM1, for

approximating all the distinct roots of Eq. (1).

2.2 Convergence Analysis

Here, we discuss the convergence of iterative method SIM1:

Theorem: Let f
1
; f

2
;…; fn be n simple roots of Eq. (1). If gð0Þ1 ; gð0Þ2 ;…; gð0Þn be the sufficiently close

initial approximations to actual roots, then the order of convergence of SIM1 is nine.

Proof: Let ei ¼ gi � fi; e
0
i ¼ ri � fi; be the errors in gi and ri approximations respectively. For

simplification, we omit iteration index t. From SIM1, we have:

ri � fi ¼ gi � fi � w�ðgiÞ; where w�ðgiÞ ¼ f ðgðtÞi Þ
�
n

j6¼i
j¼1

ðgðtÞi � zðtÞj Þ
:

e0i ¼ ei � ei
w�ðgiÞ
ei

¼ eið1� SiÞ; (4)

where

Si ¼ w�ðgiÞ
ei

¼ f ðgiÞ
ei �

n

j 6¼i
j¼1

ðgi � vjÞ
¼

�
n

j¼1
ðgi � fjÞ

ei �
n

j 6¼i
j¼1

ðgi � zjÞ
¼

ðgi � fiÞ �
n

j 6¼i
j¼1

ðgi � fjÞ

ei �
n

j6¼i
j¼1

ðgi � zjÞ
¼

Yn
j 6¼i
j¼1

ðgi � fjÞ
ðgi � zjÞ (5)

Now, if fi is a simple root, then for a small enough e, gi � vj
�� �� is bounded away from zero, and so

gi � fj
gi � zj

¼ 1þ zj � fj
gi � zj

¼ 1þ Oðe8Þ; (6)

CMC, 2021, vol.66, no.1 277



where zj � fj ¼ Õ ðe8Þ, see [4]:
Yn
j 6¼i
j¼1

ðgi � fjÞ
ðgi � vjÞ ¼ ð1þ ~Oðe8ÞÞn�1 ¼ 1þ ðn� 1Þ~Oðe8Þ ¼ 1þ ~Oðe8Þ: (7)

Si � 1 ¼ ~Oðe8Þ:
Thus, Eq. (4) gives:

e
0
i ¼ ~OðeÞ9: (8)

Hence, the theorem is proved.

3 Dynamical Studies of KF, SIM1 and SPJ1

In this section, we discuss the dynamical study of KF, SIM1 and [14] method (abbreviated as SPJ1). We
have discussed the dynamical behavior of simultaneous methods to show global convergence as dynamical
planes of single root finding methods may have divergence regions which do not exist in simultaneous
methods. Let us recall some basic concepts of this study. For more details on the dynamical behavior
of the iterative methods one can consult [2] and [15]. Taking a rational map <f : C ! C, where C is a
complex plane, the orbit g0 2 C defines a set such as, orbðgÞ ¼ fg0;<f ðg0Þ;<2

f ðg0Þ;…;<m
f ðg0Þ;…g. The

convergence orbðgÞ ! g� is understood in the sense if lim
k!1

<ðgÞ ¼ g� exist. A point g0 2 C known as

attracting, if <k 0 ðgÞ�� �� < 1 . An attracting point g� 2 C defines basins of attraction <ðg�Þ as the set of
starting points whose orbit tends to g�. To generate basins of attraction, we take grid 2000� 2000 of

square ½�2:5� 2:5�2 2 C. To each root of Eq. (1), we assign a color to which the corresponding orbit of
the iterative methods starts and converges to a fixed point. Take color map as Jet. We take f ðgiÞj j < 10�5

and maximum numbers of iterations are chosen as 5 due to wider convergence region of simultaneous
methods. Dark black points are assigned, if the orbit of the iterative methods does not converge to root
after 5 iterations. We obtained basins of attractions for the following three test function
f1ðgÞ ¼ g4 þ g2 þ g� 1 and f2ðgÞ ¼ g6 þ g� 1 and f3ðgÞ ¼ sin g�1

2

� �
sin g�2

2

� �
sin g�2:5

2

� �
: The root of

f1ðgÞ are 0.2 + 1.3i, 0.2 − 1.3i, −1, 0.5, roots of f2ðgÞ are −1.1, −0.4 + 1i, −0.4 − 1i, 0.6 + 0.7i, 0.6 −
0.7i, 0.7 and root of f3ðgÞ are 1, 2, 2.5 correct up to 1-decimal place. Brightness in color in Figs. 1–9
means less number of iterations. Finally, in Fig. 10, we present Elapsed time of basins of attraction
corresponding to iterative map KF, SIM1 and SPJ1 using tic-toc command in MATLAB (R2011b).

4 Computational Aspects

Here, we discuss the computational efficiency and convergence behavior of the [14] method
(abbreviated as SPJ1) and the new method SIM1. As presented in [14], the efficiency index ð�EÞ is used
to estimate the efficiency of iterative method as:

�EðmÞ ¼ log r

G
; (9)

where G in [14], denotes the cost of computation and r, the order of convergence.

G ¼ GðmÞ ¼ wasASm þ wmMm þ wdDm: (10)
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Thus, Eq. (9) becomes:

�EðmÞ ¼ log r

wasASm þ wmMm þ wdDm
: (11)

Figure 1: Basin of attraction of iterative method SIM1 for non-linear equation f1ðgÞ ¼ g4 þ g2 þ g� 1

Figure 2: Basin of attraction of iterative method KF for non-linear equation f1ðgÞ ¼ g4 þ g2 þ g� 1
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Using Eq. (11) and data in Tab. 1, we find the percentage ratio �ðSIM1; SPJ1Þ [14] as:

�ðSIM1; SPJ1Þ ¼
�EðSIM1Þ
�EðSPJ1Þ � 1

� �
� 100 (12)

Figure 3: Basin of attraction of iterative method SPJ1 for non-linear equation f1ðgÞ ¼ g4 þ g2 þ g� 1

Figure 4: Basin of attraction of iterative method SIM1 for non-linear equation f2ðgÞ ¼ g6 þ g� 1
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�ðSPJ1; SIM1Þ ¼
�EðSPJ1Þ
�EðSIM1Þ � 1

� �
� 100 (13)

Figs. 11–12, graphically illustrates these percentage ratios. Figs. 11–12, clearly show that the newly
constructed simultaneous method SIM1 is more efficient as compared to Petkovic method (SPJ1).

Figure 5: Basin of attraction of iterative method KF for non-linear equation f2ðgÞ ¼ g6 þ g� 1

Figure 6: Basin of attraction of iterative method SPJ1 for non-linear equation f2ðgÞ ¼ g6 þ g� 1
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5 Numerical Results

Here, some numerical test examples are considered in order to show the performance of simultaneous
ninth order derivative free method SIM1. We compare our method with [14] method (SPJ1) of convergence
order ten for distinct roots. All the numerical calculations are done by using Maple 18 with 64 digits floating
point arithmetic. We take 2 ¼ 10�30 as tolerance and use as a stopping criteria.

Figure 7: Basin of attraction of iterative method SIM1 for non-linear equation
f3ðgÞ ¼ sin g�1

2

� �
sin g�2

2

� �
sin g�2:5

2

� �

Figure 8: Basin of attraction of iterative method KF for non-linear equation
f3ðgÞ ¼ sin g � 1

2

� �
sin g � 2

2

� �
sin g � 2:5

2

� �
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Figure 9: Basin of attraction of iterative method SPJ1 for non-linear equation
f3ðgÞ ¼ sin g � 1

2

� �
sin g � 2

2

� �
sin g � 2:5

2

� �

Figure 10: Elapsed time of iterative methods SIM1, KF, SPJ1 in seconds for non-linear function
f1ðgÞ; f2ðgÞ and f3ðgÞ respectively

Table 1: The number of basic arithmetic operations

Methods ASm Mm Dm

SIM1 20 m2 + O(m) 8 m2 + O(m) 2 m2 + O(m)

SPJ1 22 m2 + O(m) 18 m2 + O(m) 7 m2 + O(m)
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^ei ¼ g tþ1ð Þ
i � g tð Þ

i

			 			
2

Tests examples from [16–18] are provided in Tabs. 2–3. In all Tables, CO denotes the order of
convergence, a, parameter valued in SIM1, n; the number of iterations and CPU , execution time in
seconds. Figs. 13–16, show that residue fall of the methods SIM1 and SPJ1 for the numerical test
examples 1� 2, shows that method SIM1 is more efficient as compared to SPJ1. We observe that
numerical results of the method SIM1 are comparable with SPJ1 method on same number of iteration.

Figure 11: Computation efficiency of SIM1 w.r.t. SPJ1

Figure 12: Computation efficiency of SPJ1 w.r.t. SIM1

Table 2: Simultaneous determination of all roots f4 (η)

Method CO CPU a n ^e1
^e2

^e3
^e4

SPJ1 10 0.172 – 5 1.6e−10 3.0e−11 1.8e−12 1.5e−9

SIM1 9 0.094 −0.9212 5 5.6e−12 1.9e−11 7.4e−12 1.8e−11

SIM1 9 0.109 −0.9111 5 7.6e−12 3.4e−11 1.4e−13 1.2e−10
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Figure 13: Shows residual graph of SIM1 a ¼ �0:9212ð Þ and SPJ1 for non-linear function f4ðgÞ

Figure 14: Shows residual graph of SIM1 a ¼ �0:9111ð Þ and SPJ1 for non-linear function f4ðgÞ

Table 3: Simultaneous determination of all roots f5 (η)

Method CO CPU a n ^e1
^e2

^e3

SPJ1 10 0.125 – 4 6.3e-10 2.4e–5 3.3e-9
SIM1 9 0.078 9/101 4 2.2e-11 1.8e-5 7.2e-10
SIM1 9 0.081 -12/100 4 8.3e-11 8.7e-5 3.6e-10
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We also calculate the CPU execution time, as all the calculations are done using Maple 18 on (Processor
Intel(R) Core(TM) i3-3110m CPU@2.4 GHz with 64-bit Operating System). We observe from Tables that
CPU time of the methods SIM1 is comparable or better than method SPJ1, showing the efficiency of our
family of derivative free methods SIM1 as compared to them.

Figure 15: Shows residual graph of SIM1 a ¼ 9
101

� �
and SPJ1 for non-linear function f5ðgÞ

Figure 16: Shows residual graph of SIM1 a ¼ � 12
100

� �
and SPJ1 for non-linear function f5ðgÞ
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Algorithm for simultaneous iterative method

Step 1: Given gð0Þ1 ; gð0Þ2 ; gð0Þ3 ;…; gð0Þn for t = 0, such that

rðtÞi ¼ gðtÞi � f ðgðtÞi Þ
�
n

j6¼i
j¼1

ðgðtÞi � zðtÞj Þ
:; ði; j ¼ 1; 2;…; nÞ;

where zðtÞj ¼ uðtÞj �

f ðrðtÞj Þf ðvðtÞj Þ rðtÞj �gðtÞj þ
f ðgðtÞj Þ

f ðgðtÞj Þ � f ðuðtÞj Þ
gðtÞj � uðtÞj

0
BB@

1
CCA

f ðrðtÞj Þ � f ðuðtÞj Þð Þ f ðvðtÞj Þ � f ðuðtÞj Þð Þ

0
BBBBBBBBB@

1
CCCCCCCCCA

þ f ðrðtÞj Þ
f ðrðtÞj Þ � f ðuðtÞj Þ

rðtÞj � uðtÞj

0
BB@

1
CCA;

and uðtÞj ¼ rðtÞj � f ðrðtÞj Þf ðvðtÞj Þ

f ðvðtÞj Þ � f ðrðtÞj Þð Þ f ðgðtÞj Þ � f ðrðtÞj Þ
gðtÞj � rðtÞj

� �
0
BB@

1
CCA; rðtÞj ¼ gðtÞj � af ðgðtÞj Þ2

f ðvðtÞj Þ � f ðgðtÞj Þ; v
ðtÞ
j ¼ gðtÞj þ af ðgðtÞj Þ:

Step 2: Set g tþ1ð Þ
i ¼ rðtÞi

Step 3: For a given 2 > 0; if g tþ1ð Þ
i � g tð Þ

i

			 			
2
<2 , then stop.

Step 4: Set t ¼ t þ 1 and go to Step 1.

Example 1 [18]:

Consider

f4ðgÞ ¼ egðg�1Þðg�2Þðg�3Þ � 1 (14)

with exact roots:

f1 ¼ 0; f2 ¼ 1; f3 ¼ 2; f4 ¼ 3:

The initial estimates have been taken as:

g1
ð0Þ ¼ 0:1; g2

ð0Þ ¼ 0:8; g
ð0Þ

3 ¼ 1:8; g
ð0Þ

4 ¼ 2:9;

Example 2 [17]:

Consider

f5ðgÞ ¼ g3 þ 5g2 � 4g� 20þ cosðg3 þ 5g2 � 4g� 20Þ � 1 (15)

with exact roots are f1 ¼ �5; f2 ¼ �2; f3 ¼ 2:
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The initial estimates have been taken as:

g1
ð0Þ ¼ �5:1; g2

ð0Þ ¼ �1:8; g
ð0Þ

3 ¼ 1:9:

Example 3 [16]:

The acidity of a saturated solution of magnesium hydroxide in hydrochloric acid HCl is given by

3:64� 10�11

H3Oþ½ � ¼ H3O
þ½ � þ 3:6� 10�4 (16)

for the hydronium ion concentration H3Oþ½ �: If we set g ¼ 104 H3Oþ½ �; we obtained the following non-linear
equation

f6ðgÞ ¼ g3 þ 3:6g2 � 36:4 (17)

with exact roots are 2:4 , �3:0� 2:3i up to one decimal places. The initial estimates have been taken as:

g1
ð0Þ ¼ 2:45; g2

ð0Þ ¼ �3:0261þ 2:3834i; g
ð0Þ

3 ¼ �3:0261� 2:3834i:

Figure 17: Shows residual graph of SIM1 a ¼ � 9
11

� �
and SPJ1 for non-linear function f6ðgÞ

Table 4: Simultaneous determination of all roots f6 (η)

Method CO CPU a n ^e1
^e2

^e3

SPJ1 10 0.047 – 4 2.6e−25 480.5 480.5

SIM1 9 0.031 −0.8181 4 4.1e−25 1.3e−5 2.7e−5

SIM1 9 0.030 −0.05 4 3.1e−25 3.1e−5 4.1e−6
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6 Conclusions

We have developed here derivate free family of simultaneous methods of order nine for determining all
the roots of non-linear equations. It must be pointed out that so far there exists derivative free method of order
four only in the literature. We have made here comparison with method SPJ1 of order 10 involving
derivative. The dynamical behavior/basins of attractions of our family of simultaneous methods SIM1 is
also discussed here to show the global convergence. An example of single root finding derivative free
method of order 8 of King–Traub is discussed to show that the single root finding methods may have
divergence region. The computational efficiency of our method SIM1 is very large as compare to the
method SPJ1 as given in Tabs. 2–4, which is also obvious from Figs. 11–12. We have made the
numerical comparison with SPJ1 method. From Tabs. 2–4 and Figs. 1, 4, 7, 13–18, we observe that our
numerical results are comparable or better in term of absolute error, number of iterations and CPU time
and for log of residual graphs and lapsed time of dynamical planes.
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