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Abstract: Sweet potato is a multifunctional root crop and a source of food with
many essential nutrients and bioactive compounds. Variations in the flesh color
of the diverse sweet potato varieties are attributed to the different phytochemicals
and natural pigments they produce. Among them, carotenoids and anthocyanins
are the main pigments known for their antioxidant properties which provide a host
of health benefits, hence, regarded as a major component of the human diet. In
this review, we provide an overview of the major pigments in sweet potato with
much emphasis on their biosynthesis, functions, and regulatory control. More-
over, current findings on the molecular mechanisms underlying the biosynthesis
and accumulation of carotenoids and anthocyanins in sweet potato are discussed.
Insights into the composition, biosynthesis, and regulatory control of these major
pigments will further advance the biofortification of sweet potato and provide a
reference for breeding carotenoid- and anthocyanin-rich varieties.
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1 Introduction

Sweet potato [Ipomoea batatas (L.) Lam.] is a dicot perennial Convolvulaceae plant cultivated as an
annual crop. The main areas of production include Africa, Asia, and the Pacific with Central and South
America as its center of origin [1,2]. It is an economically important food crop ranking seventh with
regards to global production, mostly used as an energy source, animal feed, staple food, raw material for
industries, and alcohol production [3–5]. As a multifunctional food crop, its enlarged edible storage root
and leaves contain considerable amounts of essential nutrients including minerals, vitamins, carbohydrate,
and dietary fiber in addition to other extra-nutritional components such as caffeoylquinic acids,
anthocyanin, and carotenoids [6,7]. Sweet potato is genetically diverse and highly heterozygous because
of the large chromosome number, polyploidy (2n = 6x = 90), and mating systems (outcrossing and self-
incompatibility) [6,8].

The numerous sweet potato varieties are distinguished by their flesh and skin colors (white, yellow,
orange, and purple). Variations in the flesh color of the diverse sweet potato varieties are attributed to the
pigments produced and the phytochemical composition of the storage root [9,10]. For example, the
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orange- and purple-fleshed varieties of sweet potato accumulate varied compositions of carotenoid and
anthocyanin resulting in the orange and purple colors respectively. The other colors have little to no
pigments resulting in the lighter colors. The main sweet potato pigments are hence anthocyanin and
carotenoids, both known to function as antioxidants with many beneficial effects on both plants and
animals. With the orange- and purple-fleshed varieties of sweet potato being the major accumulators of
carotenoid and anthocyanin, pigment studies focus on these two types with little information available for
the other colors. The nutritional composition, cultivar adaptability, extra-nutritional constituents, and
morphological traits may also influence varietal differences [11].

Carotenoids and anthocyanin are the main natural pigments in sweet potato storage root responsible for
the orange and purple colors respectively. These pigments are known for their antioxidant activity which
scavenges free radicals and offers protection against many age-related degenerative diseases and other
chronic disorders [12–14]. For instance, the purple- and orange-fleshed sweet potato varieties are reported
to provide varied health-promoting functions which are attributed to their high anthocyanin and
carotenoids contents [15,16]. In plants, these pigments prevent photo-oxidative damage, facilitate
pollination and seed dispersal, and offer protection against various abiotic stress [17–19]. Due to the
versatile functions of carotenoids and anthocyanin in the food, cosmetic, pharmaceutical industries, and in
human health, biosynthesis, regulatory control, and accumulation have been of research focus. The
unique composition of these natural pigments and the many health benefits make it worth studying.

As reviewed in Amoanimaa-Dede et al. [20], anthocyanins are biosynthesized in the phenylpropanoid
pathway. The synthesis primarily occurs in the cytoplasm from where they are transported to the vacuole in
either of the three proposed mechanisms; glutathione S-transferase, membrane and vesicles transporters for
onward sequestration to form colored pigments in diverse plant tissues [21,22]. The MBW complex (MYB-
bHLH and WD40 protein) regulates anthocyanin biosynthesis [23]. On the other hand, carotenoids are
synthesized in the chloroplasts and chromoplasts [18] through the methylerythritol-4-phosphate (MEP)
pathway and accumulated in the plastid [24]. Several genes such as PSY, PDS, LCY-ε, CHY-β, and
LCY-β [18,25–27] regulate carotenoid biosynthesis in sweet potato whereas its accumulation is controlled
by the IbCCD1, IbCCD4, and IbOr genes. Though the molecular mechanism underlying the biosynthesis,
gene regulation, and accumulation of these pigments have been studied extensively in sweet potato, it
remains slightly implicit.

Focusing on recent researches, this review updates current knowledge on these natural pigments
emphasizing the regulatory control of genes involved in the biosynthesis and accumulation of these all-
important sweet potato pigments. This will further facilitate understanding and provide better strategies
for breeding carotenoid- and anthocyanin-rich sweet potato varieties.

2 Diversity of Sweet Potato Varieties

In addition to genetic diversity, sweet potato varieties are diversified in terms of flesh and skin colors,
size, shape, texture, and taste of the storage root [28,29]. The color, width, thickness, and shape of leaves may
also distinguish the various sweet potato varieties [30]. The inside (flesh) and skin colors are mainly white,
cream, yellow, orange, pink, red, and purple (Fig. 1) with their diversity attributed to their varying nutritional
and phytochemical components [9,10]. The levels of these components determine the flesh color and
conditions such as storage, extraction method, processing techniques, and analysis may affect their
compositions [31]. Thus, the darker the color, the higher the amount of pigment it contains. The yellow-
and cream-fleshed varieties contain phenols and β-carotenes whereas the red-fleshed has anthocyanins
that greatly influence their flesh colors but their relative quantities are incomparable to that of the orange
and purple-fleshed varieties which accumulate high levels of carotenoids and anthocyanin respectively,
influencing their antioxidant properties [16]. Hence, the orange and purple-fleshed varieties are the main
focus of this review due to the high carotenoid and anthocyanin contents. These pigments are considered
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as the main pigments in sweet potato because of their high antioxidant properties and the many beneficial
effects on human health. In summary, sweet potato is highly diversified due to its varied flesh and skin
colors attributed to the different phytochemical components.

2.1 Orange-Fleshed Sweet Potato
Orange-fleshed sweet potato is a nutrient-rich crop with appreciable amounts of carotenoids which

provides the characteristic orange color. It is a cheap source of dietary antioxidants with many
physiological functions including anti-inflammation, anti-mutagenic, anti-cancer, anti-oxidation, anti-
diabetic, and cardiovascular disease prevention properties [14,32].

Carotenoids including α- and β-carotenes have been identified in orange-fleshed sweet potato but the
amount of β-carotene is relatively higher compared to other carotenoid-rich fruits and vegetables such as
carrot, mango, and tomato [33–36]. For example, high β-carotene content of about 20–30 mg/100 g and
276.98 µg/g has been recorded in orange-fleshed sweet potato [37–39]. However, the amount of vitamin
A correlates with the color intensity of sweet potato, thus, the darker the orange color, the higher the
β-carotene content. β-carotene has potent pro-vitamin A activity which the body converts to vitamin A.
Vitamin A promotes health by boosting the immune system, improving overall skin and eye health, and
for good vision [40]. About 100–150 g of orange-fleshed sweet potato may provide the daily Vitamin A
needs of children and prevent night blindness [41]. Studies have revealed that the consumption of a
medium-size orange-fleshed sweet potato can double the required daily needs of vitamin A. The retention
capacity of about 80% β-carotene in boiled orange-fleshed sweet potato remains unmatched [42], hence
described as a “superfood” that promotes health [43,44].

As a food security crop, the orange-fleshed sweet potato could supplement as an alternative source of
staple food in areas with increasing population and nutritional deficits and for resource-poor farmers [45].
Hence, this biofortified food crop with a good supply of vitamin A can serve as a beacon of hope to
battle vitamin A deficiency in underdeveloped countries and also scuffle malnutrition in rural
communities [46]. In consequence, the orange-fleshed sweet potato has been incorporated into the
vitamin A deficiency prevention program in Africa [47] due to its cheap source of vitamin A.

2.2 Purple-Fleshed Sweet Potato
Purple-fleshed sweet potato is a nutritious crop with high levels of anthocyanin which provides its

distinctive skin and flesh colors. Anthocyanin is a natural hydro-soluble pigment that provides the purple,
red, and blue coloration of flowers, leaves, fruits, and other plant parts. The purple and red coloration of
the leaves, stem, and storage roots of sweet potato results from the accumulation of acylated anthocyanins

Figure 1: Different flesh colors of sweet potato: a. White-fleshed; b. Purple-fleshed; c. Yellow-fleshed d.
Orange-fleshed
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[48]. Peonidin and cyanidin, acylated with either hydroxybenzoic, ferulic, or caffeic acids are the main
anthocyanins among the 39 anthocyanins identified in purple-fleshed sweet potato [11,30]. In recent
years, anthocyanins from purple-fleshed sweet potato have extensively been studied due to their potential
beneficial health effects on humans. Purple-fleshed sweet potato anthocyanin has good bioactivity and
scavenges free radicals [1] contributing to its diverse biological and antioxidant activities. The
antioxidants also act as a good protective agent against inflammations, cancers, diabetes, tumors, and
hypoglycemia [49–51]. Furthermore, the anthocyanin from purple-fleshed sweet potato has high heat and
light stability owing to its acylated forms, hence used as natural food additives [52]. Purple-fleshed sweet
potato anthocyanin reduced inflammations caused by oxidative stress and decreased oxidative stressors
confirming its free radical scavenging ability, thus, the strong antioxidant ability of purple-fleshed sweet
potato [16]. The robust anti-mutagenic properties of the purple-fleshed sweet potato anthocyanin
attributed to its radical scavenging activity decreased the risk of hypertension and liver injury in rats [53].
Again, the purple-fleshed sweet potato anthocyanin was revealed to have resilient anti-microbial and anti-
inflammation properties in addition to its ability to protect against colorectal cancer, UV light, and reduce
memory loss [49]. The daily intake of 400 mg beverage prepared from purple-fleshed sweet potato
protected the liver from oxidative stresses [54]. Hence, the many physiological activities of purple-fleshed
sweet potato make it a health-promoting functional food.

3 Major Pigments in Sweet Potato

Pigments are mainly produced by plants and are responsible for the color variations observed in many
plant tissues. Natural pigments accumulate in different plant parts including flowers, fruits, leaves, and stems.
Generally, these natural pigments provide several physiological activities with many beneficial health effects
[55]. The relative quantity of pigments accumulated mainly determines the colors produced by the various
plant tissues. However, the concentration of pigments correlates directly to the color intensity [56]. The
storage root of sweet potato is the main repository organ of natural pigments that provide the different
flesh colors (white, yellow, orange, and purple) compared to other crops [57].

Carotenoids and anthocyanins are the major sweet potato pigments which provide the yellow, orange,
and purple colors. These pigments are synthesized through different metabolic pathways with different
structural and regulatory genes regulating their biosynthesis and accumulation. They also accumulate in
different sweet potato genotypes, the orange- and purple-fleshed respectively. As a result, it may be likely
to observe no form of interaction between their biosynthesis and accumulation. However, there is
evidence of transgenic sweet potato accumulating both color pigments in a single storage root. For
instance, Park et al. [58] produced a dual-pigmented transgenic sweet potato through Agrobacterium-
mediated transformation. The transgenic plants expressing the IbMYB1 gene (a key regulator of
anthocyanin biosynthesis in sweet potato), accumulated high levels of both anthocyanins and carotenoids
in a single storage root. Overexpression of the gene slightly increased most carotenoid biosynthetic genes,
such as phytoene desaturase, lycopene ε-cyclase, zeta-carotene desaturase, and lycopene β-cyclase in
transgenic plants than in control plants, suggesting that IbMYB1 expression might affect carotenoid
biosynthesis-related gene expression. The above result indicates a possible interaction in the regulation of
carotenoid and anthocyanin biosynthesis but needs to be clarified through further research.

3.1 Carotenoids
Carotenoids are lipid-soluble natural pigments responsible for the yellow, orange, and red colors of

flowers, vegetables, seeds, fruits, and roots [59]. They are synthesized only in photosynthetic organisms
including plants, some bacteria, fungi, and algae. Carotenoids are the most abundant of all plant pigments
[60]. The storage root of sweet potato has an excellent supply of carotenoids including β-cryptoxanthin,
violaxanthin, β-carotene, lycopene, and zeaxanthin [26,61] among which β-carotene is the main
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carotenoid with the highest pro-vitamin A activity both in terms of widespread distribution and
bioavailability [47,57]. Sweet potato leaves have an adequate supply of carotenoids including lutein,
neoxanthin, β-carotene, and violaxanthin [19] with the composition equivalent to other plant chloroplasts
[62]. Research evidence revealed that orange-fleshed sweet potato has high β-carotene content, thus about
80% of the carotenoids being trans-β-carotenes [63,64]. However, other studies also reported the
presence of lutein and zeaxanthin in the orange-fleshed sweet potato which provides the orange color
[65]. Inclusion of orange-fleshed sweet potato in the diet provides dietary pro-vitamin A due to the high
β-carotene content [19], hence used as a model crop for many small-scale research to increase vitamin A
status [45,66]. The carotenoids identified in orange-fleshed sweet potato with their concentrations
reported by different authors have been presented in Tab. 1.

Table 1: Carotenoids in orange-fleshed sweet potato reported by different authors

Carotenoids Quantity (μg/g) Reference

Total carotene 61.77 (db) [34]

Carotenes α-carotene 13.11 (db) [34]

1–15 (fw) [67]

β-carotene 48.66 (db) [34]

44.9–226 (fw) [16]

34.6–83.3 (db) [68]

0.96–13.6 (fw) [42]

20–364 (db) [37]

132–194 (fw) [69]

6.2–231 (fw) [70]

67–131 (fw) [67]

85.36–177.16 (fw) [71]

67.33–315.71 (db) [37]

Xanthophylls β-cryptoxanthin 21.2 (db) [36]

0.66–2.0 (fw) [72]

Lutein 120–148 (fw) [73]

1–4 (db) [65]

0.2–5.48 (fw) [72]

Zeaxanthin 242–2,055 (fw) [73]

1–2 (db) [65]

15–155 (fw) [42]

41.7–251 (db) [33]

19.31–61.94 (fw) [74]

570 (db) [36]

5.5–72.4 (fw) [75]

Violanxanthin 0.9–6.8 (fw) [72]
*fw: fresh weight *db: dry weight
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3.1.1 Composition of Carotenoids
Carotenoids are the most prevalent class of isoprenoid pigments synthesized by plants, algae, bacteria,

and fungi that undergo photosynthesis [76,77]. Carotenoids are synthesized from C40 isoprenoids which
consist of 3 to 15 conjugated double bonds of polyene chains. At the molecule center of these
compounds are eight inverted isoprenoid units. All carotenoids are byproducts of lycopene (C40H56)
undergoing series of reactions including cyclization, methyl migration, hydrogenation, double-bond
migration, oxygen insertion, dehydrogenation, chain shortening, and/or chain elongation [55,78].
Chemically, carotenoids are classified into two classes; xanthophylls and carotenes based on their
functional groups. Carotenes are hydrocarbons made up of carbon and hydrogen (examples are β-carotene
and lycopene) and oxycarotenoids (xanthophylls) originally known as phylloxanthins consist of carbon,
hydrogen, and oxygen (example: lutein and zeaxanthin) [79]. Carotenoids may also be characterized as
primary and secondary carotenoids. Primary carotenoids are needed by plants for photosynthesis e.g.,
α-carotene, β-carotene, and neoxanthin whereas secondary carotenoids are confined in flowers and fruits
e.g., zeaxanthin, β-cryptoxanthin, antheraxanthin, and violaxanthin [55]. The over 700 carotenoids
identified and characterized in nature are synthesized by almost 20 biosynthetic enzymes out of which
only fifty (50) carotenoids have pro-vitamin A activity [55,80]. Research evidence suggests that the
β-branch carotenoids including, β-carotene, violaxanthin, zeaxanthin, and β-cryptoxanthin are the
mainstream carotenoids in sweet potato [18]. Fig. 2 shows the structures of the carotenoids identified in
orange-fleshed sweet potato.

Figure 2: Structures of common carotenoids in orange-fleshed sweet potato
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3.1.2 Functions of Carotenoids
Carotenoids are naturally occurring pigments prevalent in plants with their accumulation in flowers,

fruits, and other plant parts, giving those parts the yellow, orange, and red colors [59]. Carotenoids are
mostly found in the chloroplast and chromoplast with several functions in both plants and animals. In
plants, these molecules serve as accessory pigments for harvesting light in photosynthetic reaction sites
and inhibit photo-oxidative damage to cells and tissues. Mostly, they combine with chlorophyll to absorb
blue-green wavelengths, thereby protecting cells from superfluous light, increase tolerance to herbicide
and salt stress and also safeguard photosynthetic apparatus from photo-oxidative damage [18].

Generally, exposure to stress leads to the production of free radicals by reactive oxygen species (ROS)
causing oxidative damage which is mostly inhibited by antioxidants [81,82]. Carotenoids exhibit antioxidant
properties that inhibit the harmful effects of various environmental stresses such as high temperature, resilient
light, ultra-violet radiation, and drought in plants [83,84]. This ability was reported in genes that code for
carotenoid. For instance, IbPSY1, a carotenoid gene was reported to be crucial in plants’ resistance to abiotic
stress in vivo. In some plant species (daffodil, maize, potato), the upregulation of the PSY gene was reported
to highly increase carotenoid levels [11], this then explains the ability of the IbPSY1 gene to increase tolerance
to environmental stress including drought, salinity, and high/low temperature which may negatively affect
growth and yield of sweet potato. Another gene observed to improve sweet potato resistance to environmental
stress is IbOr, a gene involved in carotenoid accumulation, and its overexpression improves resistance to heat
stress and oxidative damage [19,85]. These genes can therefore be beneficial for engineering plants with
improved tolerance to abiotic stress and can be proposed to be essential in the defense response mechanism of
plants to abiotic stresses. Similarly, the upregulation of the IbOr gene in transgenic potato and alfalfa
increased tolerance to certain abiotic stress such as salinity, drought and heat stress [86,87].

The brightly colored parts of plants resulting from carotenoid accumulation, aids in pollination and seed
dispersal by attracting pollinators and other agents of dispersal [19]. Similar antioxidant properties of
carotenoids exhibited in plants have also been observed in animals that feed on plants with carotenoids.
Carotenoids have positive impacts on human health as they are sources of dietary antioxidants which
reduces the risk of many age-related illnesses including macular degeneration, cancer, and cardiovascular
diseases [2,18]. Recently, orange-fleshed sweet potato has been on the research spotlight due to the high
carotenoid content particularly β-carotene.

Orange-fleshed sweet potato is considered among the main sources of vitamin A to animals and humans
that cannot synthesize vitamin A but can only obtain them through their diet [88,89]. Owing to that, several
studies recommend the daily intake of orange-fleshed sweet potato which helps increase the levels of vitamin
A and improve general well-being [90,91]. For instance, the daily intake of orange-fleshed sweet potato
significantly elevated the vitamin A status of men, women, and children in some developing nations
including Bangladeshi, Kenya, and Mozambique respectively [45,66,90]. Orange-fleshed sweet potato has
also been revealed to be used to prevent blindness and maternal mortality resulting from vitamin A
deficiency in most developing countries [92]. This then explains the incorporation of sweet potato as an
excellent food source to fight vitamin A deficiency especially in underdeveloped countries, hence, its
integration in the vitamin A deficiency prevention program [93].

Carotenoids are also used as additives to improve pigmentation and to prevent UV radiation damage. In
ornamental fishes, dietary astaxanthin, a carotenoid is used on commercial bases as a natural colorant [94] and
also used to improve the pigmentation of egg yolks [95]. Humans have also benefited from the photo-protective
properties of carotenoids through their inclusion in cosmetic products to impede damages from UV radiation.

3.1.3 Carotenoid Biosynthetic Pathway
The pathway for carotenoid biosynthesis together with its metabolic enzymes in higher-order plants is

well elucidated using standard biochemical analyses such as specific inhibitors, mutant characterization, and
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labeled precursors [92]. Though the biosynthesis of carotenoids differs from one species to the other, all
photosynthetic florae and algae share a common metabolic pathway. Carotenoids are synthesized in the
chloroplasts and chromoplasts [18] through the methylerythritol-4-phosphate (MEP) pathway (Fig. 3) and
are metabolized and accumulated in the plastid [24]. Isopentenyl diphosphate (IPP) and dimethylallyl
diphosphate (DMAPP) are catalyzed by geranylgeranyl pyrophosphate synthase (GGPS) to produce two
geranylgeranyl diphosphate (GGPP) molecules. Phytoene synthase (PSY) catalyzes the condensation of the
two GGPP molecules to produce phytoene, the first C40 carotenoid in the pathway. Phytoene consists of
three conjugated double bonds and its chemical diversification causes variations in carotenoids [96].
Subsequently, the addition of conjugated bonds by ζ-carotene desaturase (ZDS) and phytoene desaturase
(PDS) yields lycopene from phytoene. Here a two-branched pathway is produced: the α-branch pathway
which converts α-carotene to lutein and the β-branch pathway where β-carotene is converted to neoxanthin
[97,98]. Further modifications of the α- and β-carotene by hydroxylation, ketolation, epoxidation,
glycosylation, and oxygen cleavage reactions provide a range of structural features [99]. However, the
merging of the polar groups (epoxy, keto, and hydroxyl) may biologically alter the functions of carotenoids
[100]. CHY-ε (α-carotene ε-ling hydroxylase) catalyzes the production of lutein in the α-branch pathway
whereas CHY-β (β-hydroxylase) catalyzes the hydroxylation of β-carotene to produce zeaxanthin in the β-
branch pathway. Zeaxanthin epoxidase (ZEP) further converts zeaxanthin to violaxanthin. Neoxanthin
synthase (NXS) acts on the violaxanthin so formed and converts it to neoxanthin [101].

Figure 3: Carotenoid biosynthetic pathway and regulatory enzymes in plants. Adapted from Kim et al.
[105]. Names of the regulatory enzyme are abbreviated as follows; MEP: methylerythritol 4-phosphate;
LCY-ε: lycopene ε-cyclase; DMAPP: dimethylallyl pyrophosphate; ZISO: 15-cis-ζ-carotene isomerase;
GGPP: geranylgeranyl diphosphate; IPP: isopentenyl pyrophosphate; PSY: phytoene synthase; GGPS:
geranylgeranyl diphosphate synthase; PDS: phytoene desaturase; IPI: isopentenyl pyrophosphate
isomerase; ZDS: ζ-carotene desaturase; VDE: violaxanthin de-epoxidase; CrtISO: carotenoid (pro-
lycopene) isomerase; CHY-ε: carotenoid ε-hydroxylase; LCY-β: lycopene β-cyclase; CHY-β: carotenoid
β-hydroxylase; ZEP: zeaxanthin epoxidase; NXS: neoxanthin synthase
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GGPP is an essential metabolic intermediary and a precursor of tocopherols, diterpenoids, chlorophylls,
gibberellins, and carotenoids [102]. The IbGGPS gene recently cloned from sweet potato storage root and
transformed in Arabidopsis increased tolerance to osmotic stress and the total carotenoid content in
IbGGPS overexpressing Arabidopsis [27]. In IbGGPS-overexpressing plants, α-carotene and lutein
(α-branch carotenoids) were upregulated, while levels of zeaxanthin and β-cryptoxanthin (β-branch
carotenoids) were significantly reduced. Therefore, the upregulation of IbGGPS in sweet potato may
perhaps improve the quantity of α-branch carotenoids.

The lycopene cyclase genes, LCY-β, and LCY-ε are involved in the biosynthesis of the branch
components of carotenoids in diverse plant species. Regulating the expression levels of these genes
(LCY-ε and LCY-β) may affect the relative activity and production of cyclic carotenoid genes associated
with lutein synthesis in some plants including rice, Arabidopsis, and tomato [103,104]. Both genes are
interrelated in producing α and β branch carotenoids in that, the overexpression of one can suppress the
other. LCY-β is reported as a vital enzyme associated with the synthesis of both α- and β-branch
carotenoids, like α-carotene and β-carotene.

According to Haskell et al. [26], the LCY-β gene functions to increase carotenoid content, oxidative
ability, and resistance to abiotic stress in sweet potato. It also increases the production of β-branch
carotenoids including zeaxanthin, β-carotene, violaxanthin, and β-cryptoxanthin. In sweet potato, the
downregulation of IbLCY-ε in non-embryogenic calli of light orange-fleshed sweet potato cv. Yulmi
increased the content of β-branch carotenoids resulting in an orange coloration of the ensuing
transgenic calli [25].

Other research has also reported that silencing IbLCY-ε or IbCHY-β during carotenoid metabolic
engineering can result in increased β-carotene and total carotenoid content in sweet potato. According to
Kim et al. [18], the suppression of IbCHY-β in the catalytic hydroxylation of β-carotene to yield
β-cryptoxanthin which is further converted to zeaxanthin in sweet potato increased the β-carotene and the
overall total carotenoids content. Based on these results, it can be established that CHY-β and LCY-β are
the primary regulatory enzymes involved in carotenoid biosynthesis in sweet potato making β-carotene
the main cellular carotenoid in sweet potato. Though the pathway for carotenoid biosynthesis is well
elucidated in all higher plants, it is slightly implicit in sweet potato. Therefore, the pathway for the
biosynthetic of carotenoids needs to be further characterized in sweet potato.

3.1.4 Gene Regulation of Carotenoid Biosynthesis
A key determining factor of carotenoid content is the regulation of essential biosynthetic genes [106].

Regulation of these genes and the allelic variation of genes in the biosynthetic pathway may influence the
different accumulation levels of carotenoids [107,108]. Fluctuations in the levels of these genes have
been associated with the development of some crops with increased carotenoid content. Most of the genes
have been reported to be involved in the regulation of the three key processes (biosynthesis,
degeneration, and storage) in carotenoid accumulation at different stages of plant growth [109]. Genes
coding for practically all enzymes involved in the biosynthesis of carotenoids have been isolated from
bacteria, fungi, and plants (Fig. 3) [92]. Carotenoid biosynthetic genes in sweet potato including PSY,
GGPS, CrtISO, PDS, LCY-ε, ZDS, ZEP, CHY-β, and LCY-β have been cloned and characterized [18,25–27].

Research evidence on the specific gene that regulates the accumulation of carotenoids in plants is
limited. However, the Or (orange) gene is a gene of interest and has been researched in several plant
species including sorghum, cauliflower, melon, alfalfa, potato, Arabidopsis, and sweet potato. Orange
denotes an extraordinary group of regulatory genes that facilitate the accumulation of carotenoids which
are highly conserved in diverse species and exhibit functions like preserving homeostasis of carotenoids,
maintaining photosynthesis, and regulating carotenoid biosynthesis [110,111].
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The overexpression of the Or gene increased carotenoid accumulation in plants including Brassica
oleracea var. botrytis [112], Cucumis melo [113], Solanum tuberosum and Arabidopsis thaliana [114]. In
sweet potato, the Orange gene (IbOr) originally cloned from the sweet potato cv. Sinhwangmi (orange-
fleshed) based on the BoOr sequence, induced the accumulation of carotenoids in various tissues (leaves,
stem, and storage root) [25]. However, the gene expression levels vary in different parts of the various
sweet potato varieties. It is highly expressed in the storage root of the orange-fleshed varieties whilst in
other colored varieties (white, orange, and purple), its expression is highly observed in the leaves [110].
The IbOr functions to aid the buildup of carotenoids and regulate carotenoid homeostasis in sweet potato.
For instance, the overexpression of IbOr increased the carotenoid content in transgenic sweet potato,
alfalfa, and potato plants compared to non-transgenic plants [77,86,89]. According to Park et al. [77],
IbOr-Ins successfully altered a purple-fleshed sweet potato to yield carotenoids and anthocyanin in a
single tuber. IbOr transformed plants had superior carotenoid content compared to non-transformed
plants. However, the levels of carotenoid accumulation correlate with the transcription levels of IbOr.

The orange gene has also been reported to interact with PSY and carotenoid cleavage dioxygenases
(CCDs). In sweet potato, IbOr interrelates with IbPSY to enable higher stability of IbPSY through the
holdase chaperone activity of IbOr [85] which offers a substitute and complement strategy for increased
carotenoid levels, chromoplast differentiation and PSY stabilization [115]. Apparently, carotenoid
catabolism negatively regulates accumulation. In potato, the accumulation of carotenoid was controlled
negatively by CCD1 and CCD4 [116]. However, the purple-fleshed sweet potato expressing higher levels
of IbOr also contained increased levels of CCD1, CCD4, and NCED transcripts [77] which proposes the
ability of carotenoid catabolism genes (IbCCD1 and/or IbCCD4) to increase carotenoid accumulation in
sweet potato. This is however inconclusive and exposes us to the complex mechanism involved in
carotenoid accumulation, regulated by the molecular function of the IbOr gene. The interrelation between
carotenoid accumulation and catabolism needs to be further elucidated.

3.2 Anthocyanins
Anthocyanins are a subclass of flavonoid compounds and an essential water-soluble natural pigment in

vascular plants, responsible for the wide-ranging colors in several plant species [117]. They are existent in
diverse plant tissues including flowers, fruits, and storage organs like the root and stem. Anthocyanins occur
naturally as glycosides of anthocyanidins attached to different sugar moieties [118] and are highly
appreciated for their anti-oxidant activities which provide several health benefits such as anti-cancer, anti-
inflammatory, anti-diabetic, anti-mutagenic, and cardiovascular diseases prevention properties [119,120].

Purple-fleshed sweet potato mounts up high levels of anthocyanins in their storage roots, with
anthocyanin 3-O-sophoroside and its derivatives as the major compounds [121]. Anthocyanins from
purple-fleshed sweet potato are non-toxic, resource-rich, and unscented bioactive compounds with stable
physicochemical properties compared to anthocyanins from other plant sources including cherry,
strawberry, and grapes [122]. Because these anthocyanins are acylated, they have high stability against
heat and UV radiations, hence used as natural food additives [52]. The various anthocyanins identified by
different authors in purple-fleshed sweet potato are summarized in Tab. 2.

3.2.1 Composition of Anthocyanin
Anthocyanin, a major plant secondary metabolite is a subclass of flavonoid compounds made of mono-

or di-glycosylated aglycones of anthocyanidins attached to a sugar moiety [123]. The molecular structure of
anthocyanin mainly exists as glycosides of poly-hydroxyl or poly-methoxyl derivative of the flavylium
(2-phenylbenzopyrylium) cation which consist of a double aromatic ring [A and B], divided by a
heterocyclic ring [C] (Fig. 4) [124]. The presence of a positive charge on the C-ring distinguishes
anthocyanins from other flavonoids. Anthocyanins are natural plant pigments with varied and complex
structures. The structural variation of the various anthocyanins is attributed to the number of the sugar
moiety, type of functional group, and the natural acyl group present [49].
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Table 2: Structural identification of anthocyanins in purple-fleshed sweet potato by different authors

Anthocyanidin Structure of anthocyanin Method of
identification

Reference

Cyanidin Cyanidin 3-caffeoyl-p-
hydroxybenzoyl sophoroside-5-
glucoside

HPLC-DAD/ESI-MS2

HPLC-DAD/ESI-MS/
MS and LC-MS

[118,119,124,125,127,128]

Cyanidin 3-caffeoyl sophoroside-5-
glucoside

HPLC-DAD/ESI-MS/
MS

[119]

Cyanidin 3-(6′′,6′′′-dicaffeoyl
sophoroside)-5-glucoside

HPLC-MS/MS and
HPLC-DAD/ESI-MS/
MS

[119,124,128]

Cyanidin 3-(6′′-caffeoyl-6′′′-feruloyl
sophoroside)-5-glucoside

ODS-HPLC and
HPLC-ESI-/MS–MS

[119,123]

Cyanidin 3-O-(6-O-(E)-caffeoyl-(2-
O-(6-O-(E)-feruloyl)-β-D-
glucopyranosyl)-β-D-
glucopyranoside)

MS and NMR [121]

Cyanidin 3-p-hydroxybenzoyl
sophoroside-5-glucoside

HPLC-ESI-/MS–MS,
HPLC-DAD and
HPLC-ESI-QTOF-
MS/MS

[124,129]

Cyanidin 3-(6,6′-caffeoyl-p-
hydroxybenzoyl sophoroside)-5-
glucoside

HPLC-MS/MS,
HPLC-DAD and
HPLC-ESI-QTOF-
MS/MS

[124,128,129]

Cyanidin 3-sophoroside-5-
glucoside

ODS-HPLC and
HPLC-MS/MS

[123,127]

Cyanidin 3-caffeoyl-feruloyl
sophoroside-5-glucoside

HPLC-DAD and LC-
MS

[124,125]

Cyanidin 3-caffeoyl-vanilloyl
sophoroside-5-glucoside

UPLC-PDA and
UPLC-QTOF-MS/
MS

[112]

Cyanidin 3-feruloyl sophoroside-5-
glucoside

HPLC-MS/MS [127]

Cyanidin 3-(6′′′-caffeoyl
sophoroside)-5-glucoside

HPLC-MS/MS and
HPLC-DAD and ESI-
MSn

[127,128]

Peonidin Peonidin 3-caffeoyl sophoroside-5-
glucoside

HPLC-PDA-ESI-
MSn, HPLC-DAD/
ESI-MS/MS

[117,119,122]

(Continued)
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Table 2 (continued).

Anthocyanidin Structure of anthocyanin Method of
identification

Reference

Peonidin 3-caffeoyl-p-
hydroxybenzoyl sophoroside-5-
glucoside

HPLC-DAD/ESI-
MS2, LC-MS and
HPLC-MS/MS

[118,119,122,125,126,127]

Peonidin 3-(6′′-caffeoyl-6′′′feruloyl
sophoroside)-5-glucoside

ODS-HPLC and
HPLC-DAD/ESI-
MS2

[118,123]

Peonidin 3-caffeoyl-feruloyl
sophoroside-5-glucoside

HPLC-DAD/ESI-MS/
MS, LC-MS and
HPLC-MS/MS

[119,125,126,127]

Peonidin 3-caffeoyl-vanilloyl
sophoroside-5-glucoside

UPLC-PDA and
UPLC-QTOF-MS/
MS

[112]

Peonidin 3-dicaffeoyl sophoroside-
5-glucoside

HPLC-DAD and
HPLC-MS/MS

[126]

Peonidin 3-O-(6-O-(E)-caffeoyl-(2-
O-(6-O-p-hydroxybenzoyl)-β-D-
glucopyranosyl)-β-D-
glucopyranoside)-5-O-(β-D-
glucopyranoside)
Peonidin 3-O-(6-O-(E)- caffeoyl-(2-
O-(6-O-(E)- feruloyl)-β-D-
glucopyranosyl)-β-D-
glucopyranoside)-5-O-(β-D-
glucopyranoside)

UPLC-QTOF-MS/
MS and 1H and 13C-
NMR

[126]

Peonidin 3-caffeoyl-p-coumaryl
sophoroside-5-glucoside

HPLC-MS/MS [124]

Peonidin 3-O-(6-O-(E)-caffeoyl-(2-
O-(6-O-acyl)-D-glucopyranosyl)-β-
D glucopyranosides)
Peonidin 3-O-(6-O-p-
hydroxybenzoyl-(2-O-(6-O-acyl)-
D-glucopyranosyl-β-D
glucopyranosides)
Peonidin 3-O-(6-O-(E)-feruloyl-(2-
O-(6-O-acyl)-D-glucopyranosyl-β-
D glucopyranosides)

MS and NMR [121]

Peonidin 3-sophoroside-5-
glucoside

ODS-HPLC and
HPLC-MS/MS

[123,127]

Delphinidin Delphinidin 3, 5-diglucoside HPLC-PDA-ESI-MSn [117]
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The basic anthocyanin structure consists of aglycone base (anthocyanidin), two (2) or three (3) chemical
units, sugars, and organic acids as in acylated anthocyanins [125]. Among the over twenty-six (26)
anthocyanidins discovered in nature, only six (6) main types; petunidin, cyanidin, malvidin, pelargonidin,
delphinidin, and peonidin are found in plants [126,127]. The six (6) main types are mostly responsible for
the diverse color variations in plants (Tab. 3). These anthocyanidins usually work together with genes and
enzymes to regulate the various colors of anthocyanins. According to Tanaka and Brugliera [128], the
enzymes F3′H and F3′5′H which determines the hydroxylation pattern of the B-ring by different
substitution patterns at R1, R2, and R3, influences the diversity and color variations of anthocyanins
(Fig. 4; Tab. 3). At present, there are over 600 kinds of anthocyanins identified in plants [127].

Sweet potato cell lines, storage root, and leaves have adequate supply of anthocyanin which provides the
characteristic purple color. These anthocyanins are seen as mono-, di-, and non-acylated forms with peonidin,
cyanidin, or pelargonidin aglycones [129]. Previous research has identified several anthocyanins in purple-
fleshed sweet potato as peonidin and cyanidin-based anthocyanins acylated with hydroxybenzoic, ferulic, or
caffeic acids [49]. However, some studies identified peonidin 3-caffeoyl-feruloyl sophoroside-5-glucoside
and peonidin 3-caffeoyl-p-hydroxybenzoyl sophoroside-5-glucoside as the major anthocyanins [130,131].
These anthocyanins are acylated and this influences their high stability and physiological activities [132].
However, cyanidin-based anthocyanins have strong anti-oxidant activity compared to peonidin-based
anthocyanins mainly due to its additional hydroxyl group [133].

Table 2 (continued).

Anthocyanidin Structure of anthocyanin Method of
identification

Reference

Pelargonidin Pelargonidin 3-caffeoyl-feruloyl
sophoroside-5-glucoside

HPLC-MS/MS,
HPLC-DAD and
HPLC-ESI-QTOF-
MS/MS

[127,129]

Pelargonidin 3-sophoroside-5-
glucoside

HPLC-MS/MS [127]

Pelargonidin 3-caffeoyl-p-coumaryl
sophoroside-5-glucoside

HPLC-DAD and
HPLC-ESI-QTOF-
MS/MS

[129]

Figure 4: General structure of anthocyanin
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3.2.2 Functions of Anthocyanins
Anthocyanins are among the major secondary metabolites, responsible for distinctive colors in plants

[134,135]. As a water-soluble natural pigment, anthocyanin plays a significant role in both plants and
animals, especially in human health. In plants, anthocyanins aid reproduction by alluring insect
pollinators. The brightly colored parts of plants resulting from the accumulation of anthocyanin attract
insect pollinators which aid in pollination and seed dispersal [17,136]. Although some of these insects are
essential in influencing the reproductive ability of the plant, others act as pathogens that infest plants with
diseases. Anthocyanins are effective in reducing the infestations from these pathogenic insects. For
example, tomato fruits enriched in anthocyanin exhibited tolerance to gray mold [137]. Also, large
numbers of African bollworm died and pupation delayed in tropical armyworm when fed with
anthocyanin-rich leaves relative to those fed with green leaves [138].

Anthocyanins also safeguard plants against some biotic and abiotic stress which may offer them
better adaptation to climatic changes [139]. Although much has been reported on anthocyanin-related
stress response in diverse plant species, little information is available in sweet potato.
Dihydroflavonol-4-reductase (DFR), a gene involved in the biosynthesis of several flavonoids
including anthocyanins was reported to influence sweet potato tolerance to cold stress [140] with the
increase attributed to the enhanced antioxidant ability. Research has reported that the enhanced
antioxidant activity of purple-fleshed sweet potato was due to its resilient ability to scavenge free
radicals [141]. These findings then propose the role of anthocyanins in the maintenance of ROS
homeostasis as the sweet potato grows and develops.

As photo-protective agents, anthocyanins protect the photosynthetic tissues by absorbing excess visible
ultraviolet radiation and also act as scavengers of free radicals [142]. Furthermore, anthocyanins accumulate
in immature non-reproductive tissues and light-exposed parts of fruits to offer protection against photo-
inhibition and photo-bleaching under light stress without considerably affecting the process of
photosynthesis [143,144].

Despite its countless roles in plants, anthocyanins have beneficial health effects on mammals owing to their
antioxidant properties. Purple-fleshed sweet potato has high anthocyanin content and subsequently high
antioxidant properties which influences its health-promoting functions [49]. These antioxidant properties
enable the scavenging of free radicals associated with aging and degenerative diseases [145]. Typically,
anthocyanins are administered to animals through their diets with dietary anthocyanins offering protection
against cardiovascular diseases, cancer, and other chronic disorders [146]. Some studies have attributed the
shielding effects of dietary anthocyanins to their antioxidative and anticancer properties [147,148]. In an
experiment on rats, it was observed that feeding rats with purple-fleshed sweet potato anthocyanin reduced

Table 3: Substitution pattern of the common anthocyanins in plants

Aglycones Substitution pattern Visible color

R1 R2 R3

Cyanidin OH OH H Orange-red

Delphinidin OH OH OH Purple

Malvidin OCH3 OH OCH3 Blue-red

Pelargonidin H OH H Orange

Peonidin OCH3 OH H Orange-red

Petunidin OCH3 OH OH Purple
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hepatoxin-induced liver injury [53]. This was reported to be due to the enhanced expression of some antioxidant
enzymes like glutathione peroxidase (GPX), superoxide dismutase (SOD), catalase (CAT) in the liver.

Also, the anti-aging and anti-oxidative properties of anthocyanins make it safe for the manufacturing of
natural skin-care products in the cosmetic industry [135]. This inhibits the impact of UV radiation on the skin,
hence, reducing inflammations and diseases. Furthermore, anthocyanins from purple-fleshed sweet potato are
used as a replacement for some synthetic pigments in cosmetic products like shampoos, rouge, creams, and
lipsticks among others. In the pharmaceutical industry, purple-fleshed sweet potato anthocyanins are used as
potential components for the production of pharmaceuticals such as anti-neoplastic and anti-inflammatory
agents due to their antioxidant properties [57]. As a non-toxic natural pigment, purple-fleshed sweet
potato anthocyanin can be used to substitute synthetic pigments in the production of colored medicines as
the long-term effect of these synthetic pigments could be detrimental to the human body [149].

Purple-fleshed sweet potato anthocyanin is used as a functional ingredient in food processing industries
as preservatives and sources of natural colorants with excellent color potency [150,151]. Purple-fleshed
sweet potato anthocyanin exhibited high stability when added to beverages and prolonged the shelf life
than pigments from grapes and blackberries [152]. Anthocyanins from purple-fleshed sweet potato can
proliferate the growth of helpful bacteria especially those utilized in probiotics and as well inhibit the
growth of harmful ones. According to Sun et al. [153], peonidin-based anthocyanins proliferate the
Bifidobacterium spp. (bifidum, adolescentis, infantis) and Lactobacillus acidophilus whiles inhibiting the
growth of Salmonella typhimurium and Staphylococcus aureus. Similarly, crude anthocyanin derived
from purple-fleshed sweet potato inhibits the growth of Bacteroides, Prevotella, and Clostridium
histolyticum [154] proposing the ability of anthocyanins to be involved in prebiotic-like activity by
modulating intestinal microbiota. In effect, purple-fleshed sweet potato anthocyanins are essential due to
their diversified functions.

3.2.3 Anthocyanin Biosynthetic Pathway
Anthocyanins are synthesized in the cytosolic side of the endoplasmic reticulum through the

phenylpropanoid pathway (Fig. 5). Phenylalanine ammonia lyase (PAL) deaminates phenylalanine to
produce trans-cinnamic acid [58]. Cinnamate 4-hydroxylase converts trans-cinnamic acid to p-coumaric
acid, however, tyrosine ammonia lyase (TAL) catalyzes the production of p-coumaric acid from tyrosine
in some plants [155,156]. Co-enzyme A combined with p-coumaric acid is catalyzed by 4-coumarate-
CoA ligase (4CL) to yield p-coumaroyl-CoA [157]. Chalcone synthase (CHS) converts the condensed
p-coumaroyl-CoA alongside three molecules of malonyl-CoA to yield chalcone [158] which is further
converted by chalcone isomerase (CHI) to flavanone naringenin. Flavanone 3-hydroxylase (F3H)
catalyzes the synthesis of flavonol dihydrokaempferol (DHK or aromadendrin) from flavanone
naringenin. Dihydroquercetin (taxifolin) and dihydromyricetin (ampelopsin), the two dihydroflavonols are
synthesized from DHK by flavonoid 3′-hydroxylase (F3′H) and flavonoid 3′5′-hydroxylase (F3′5′H)
respectively. The three dihydroflavonols are converted by dihydroflavonol 4-reductase (DFR) to colorless
leucoanthocyanidins and subsequently to colored anthocyanidins (delphinidin, cyanidin, and pelargonidin)
by anthocyanidin synthase (ANS)/leucoanthocyanidin dioxygenase (LDOX). Finally, methyltransferases
(OMT) and acetylates cling unto anthocyanidins which are further converted to anthocyanin 3-O-
glucoside (a chemically constant hydro-soluble pigment) by 3-O-glycosyl transferases (3GT) [159].

Anthocyanins after their synthesis are transported from the cytosol to the vacuole for storage. Vacuolar
sequestration is crucial to prevent anthocyanins from being oxidized [160] and to perform its function as
bioactive pigments. Though anthocyanin biosynthesis and regulatory genes are well characterized, the
mechanism involved in its translocation from the cytosol to the vacuole in plants is still debatable
[161,162]. The Multidrug toxic compound extrusion (MATE) protein and ATP-binding cassette (ABC)
transporters confined in the tonoplast help link anthocyanins to glutathione S-transferase (GSTF) for
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effective segregation into the vacuole and may also cling unto anthocyanoplasts, a pre-vacuolar segment
proceeding to the vacuole [163,164]. Acylated anthocyanins accumulate at high levels inside the vacuole
to form AVI (anthocyanic vacuolar inclusions) in some species [165].

DFR is an essential structural gene and its substrate specificity regulates the structure and color of
anthocyanins. Characterization of IbDFR revealed its expression to be also associated with both
biosynthesis and accumulation. According to Wang et al. [140], expression levels of IbDFR in the leaves,
stem, and root correlated with anthocyanin accumulation in these plant parts. In purple-fleshed sweet
potato, a decrease in the expression of IbDFR also impacted the flux dissemination of flavonoids like
proanthocyanidins and flavonols. In Arabidopsis, the transparent testa (tt) loci encode several flavonoid
(anthocyanin) biosynthetic enzymes such as CHI, DFR, and CHS at the tt5, tt3 and tt4 loci respectively.
However, mutations in genes encoding these anthocyanin biosynthetic enzymes eliminate anthocyanin
synthesis [166,167]. For example, Dong et al. [168] observed no pigment accumulation (anthocyanin and
brown tannins in the hypocotyl and seed coat respectively) in Arabidopsis tt mutants compared to the
seeds of the wild-type, suggesting the absence of biosynthetic enzyme (CHS, CHI, and DFR) activity.
Introduction of IbDFR into the hypocotyls, cotyledons, and seed coat of Arabidopsis tt3 mutants gave the
hypocotyls and cotyledons a purple color and restored the pigments in the seed coat, proposing the
biosynthetic function of the IbDFR gene.

Figure 5: Anthocyanin biosynthetic pathway and regulatory enzymes in plants. Adapted from Amoanimaa-
Dede et al. [20]. Names of the regulatory enzyme are abbreviated as follows; PAL: Phenylalanine Ammonia
Lyase; CHI: Chalcone Isomerase; F3′5′H: Flavonoid 3′5′-Hydroxylase; C4H: Cinnamate 4-Hydroxylase;
DFR: Dihydroflavonol 4-Reductase; 4CL: 4-Coumarate-CoA Ligase; F3′H: Flavonoid 3′-Hydroxylase;
CHS: Chalcone Synthase; ANS: Anthocyanidin Synthase; F3H: Flavanone 3-Hydroxylase; UFGT: UDP-
glucose Flavonoid 3-O-glucosyl Transferase
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Glutathione S-transferases (GSTs) function to detoxify xenobiotics (heterocyclic compounds) by
connecting glutathione to a substrate to form a glutathione S-conjugate. According to Marrs et al. [169],
these enzymes catalyze the conjugation of glutathione (GSH) to anthocyanins to form anthocyanin-GSH
conjugates for onward sequestration into vacuoles by the glutathione pump, proposing that anthocyanin
may be an endogenous substrate for the glutathione pump. GST plays an integral role in the intracellular
transport of anthocyanin by coupling its synthesis and accumulation in the vacuole. GSTs also function as
carrier proteins by physically binding to anthocyanins to facilitate the vacuolar sequestration of anthocyanin
from the cytoplasm, though their functions remain indistinct [170]. For instance, Kitamura et al. [171] and
Sun et al. [172] observed the localization of GSTs from other plants and Arabidopsis tt19 that accrue high
proanthocyanidins than anthocyanins in the cytoplasm of undeveloped seed coats. Recently, Marrs et al.
[160] and Alfenito et al. [173] reported the inability of Petunia hybrida (petunia) and Zea mays (maize)
mutants to accumulate anthocyanins in their vacuoles due to the lack of GST. This suggests the function of
GST as flavonoid binding protein, hence, confirming its involvement in anthocyanin accumulation. Again,
GSTs are allied to high-anthocyanin producing membranes in the plant cell, possibly the vacuole and
endoplasmic reticulum [172]. These results confirm the function of GSTs as carrier proteins and thus, the
glutathionylation of flavonoids might not be catalyzed by GSTs due to their inability to conjugate GSH to
anthocyanins [161] which therefore contrast with the report by Marrs et al. [169]. It is therefore noteworthy
that, there is no evidence of anthocyanin-GSH conjugates in plants [170].

GST genes involved in anthocyanin accumulation have been identified in several plant species including
strawberry, cyclamen, litchi, and grapevine [174–177]. For example, Hu et al. [175] reported the involvement
of LcGST4 in the accumulation of anthocyanin in the fruit Litchi chinensis (litchi) and its overexpression in
pigmented tissues. The results revealed that the expression of LcGST4 was regulated by the LcMYB1 gene.
MYB gene family is a part of a larger family of transcriptional factors that regulate anthocyanin biosynthesis
and accumulation in plants. For instance, the IbMYB1 gene regulates anthocyanin biosynthesis in sweet potato
[58] whereas, in Arabidopsis, IbMYB1a increased anthocyanin accumulation in transgenic plants [178].

In sweet potato, a GST encoding gene, IbGSTF4 is reported to be involved in the accumulation of
anthocyanin. For instance, the IbGSTF4 gene after characterization was found to be highly expressed in
pigmented stems, leaves, and storage root with its expression correlating with the accumulation of
anthocyanin. In the same study, the varied expression profiles of IbGSTF4 in the Arabidopsis tt19
(a knockout mutant of anthocyanin-related GST) gave the cotyledon and hypocotyl a purple color,
suggesting IbGSTF4 participation in anthocyanin accumulation in sweet potato [22]. However, a dual
luciferase assay pointed out that the IbMYB1 gene could not directly regulate the expression of IbGSTF4
which conflicts with the report by Hu et al. [175]. This then suggests that the regulation of anthocyanin
biosynthesis and sequestration may involve other MYB regulatory factors [22], thus, proposing a
complex regulatory mechanism of anthocyanin vacuolar sequestration and accumulation in sweet potato
which needs to be elucidated through further research.

3.2.4 Gene Regulation of Anthocyanin Biosynthesis
The primary regulatory genes involved in anthocyanin biosynthesis have been studied extensively and

sequestered in many plant species [124]. The transcriptional factors regulating the biosynthesis of
anthocyanins are WD40-type co-regulators (WD40), R2R3-MYB protein, and a basic helix-loop-helix
(bHLH, MYC) protein [179].

Structural and regulatory genes are the two main types of biosynthetic genes. The structural genes
encode the enzymes which catalyze every reaction step while the regulatory genes encode transcriptional
components that regulate structural gene expression [180,181]. Structural genes involved in anthocyanin
biosynthesis are homogeneously expressed and their expression levels are dependent on the concentration
[182]. There are two divisions of structural genes in dicot plants i.e., early (CHI, CHS, FLS, F3′H, and
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F3H,) and late (UFGT, ANS/LDOX, and DFR) biosynthetic genes [181]. These genes operate under the
MYB-bHLH-WD40 (MBW) regulatory network made up of the MYB, basic helix-loop-helix (bHLH)
and WD40 replicate families. For instance, the MYB domain C1 protein which regulates anthocyanin
biosynthesis in maize requires a bHLH partner to activate the flavonoid structural genes and the
dihydroflavonol reductase (DFR) promoter, although the MYB domain P protein which controls
phlobaphene to stimulate the promoter lacks a bHLH partner [183]. These MYB proteins have a central
responsibility of regulating the biosynthesis of secondary metabolites, signal transduction, resistance to
diseases as well as growth and developmental fluctuations [181]. As reviewed in Amoanimaa-Dede et al.
[20], the structurally conserved MYB genes comprise 100–160 bp DNA-binding regions with one or
more replications. The R2R3 MYB genes with two repeats are the predominant group of MYB genes
involved in the flavonoid pathway in plants. Therefore, the intensity of anthocyanin synthesis solely
depends on the expression of structural genes that are related to a specific species [184].

In sweet potato, some structural and transcription factor genes have been characterized, with most of the
genes functioning in both anthocyanin biosynthesis and accumulation. The IbMADS10 is a vital regulatory
gene involved in anthocyanin biosynthesis of sweet potato [185]. Two MYB genes (IbMYB1 and IbMYB2)
isolated from the storage root of purple-fleshed sweet potato cv. Ayamurasaki regulates anthocyanin
biosynthesis in sweet potato [186]. According to Mano et al. [186], the IbMYB1 transcription factor from
the MYB-family facilitates the accumulation of anthocyanins in sweet potato storage roots. Park et al.
[58] reported that the overexpression of the IbMYB1 gene effectively caused the accumulation of
anthocyanin in the storage root of an orange-fleshed sweet potato with high carotenoid content thereby
increasing the radical scavenging activity.

Current research has identified some post-transcriptional modulators mostly miRNA including ib-
miR164c, ib-miR160e-5p, ib-miR172e-3p, and ib-miR166m [187] to be involved in anthocyanin
biosynthesis. These miRNA target genes are involved in auxin signaling. Auxin can inhibit the
expression of the MBW complex which intends to regulate anthocyanin biosynthesis [36]. The ib-
miR159, ib-miR319, ib-miR858, and ib-miR156 also regulated the MYB genes whereas the SPL gene
was targeted by ib-miR156 and its upregulation reduced the expression of ibSPL in purple-fleshed sweet
potato. The ib-miR156a-5p was also reported to cling unto ibSPL genes proposing that ib-miR156 may
increase the biosynthesis of anthocyanin via structural gene regulation in the phenylpropanoid pathway.

Though there is post-transcriptional modulation of anthocyanin biosynthesis, the primary level at which
anthocyanin biosynthesis is inducted or shut down in plants is controlled by the expression of biosynthetic
genes [188]. From the above results, it can be deduced that the molecular regulation of anthocyanin
biosynthesis and accumulation is complex both at the transcriptional and post-transcriptional levels. One
keen observation made was that most molecular results were more tailored to individual research
(transcriptome sequencing). This is due to the lack of a reference genome (the only one sequenced
“Taizhong 6” is incomplete and inaccurate hence not representative of hexaploid sweet potato). The
ability to sequence the reference genome will go a long way to improve molecular research in sweet potato.

4 Concluding Remarks and Perspectives

Sweet potato is a multifunctional food crop with rich nutritional composition and bioactive compounds.
Several cultivated sweet potato varieties differ with flesh and skin colors (white, yellow, orange, red, and
purple) of the storage root. Variations in phytochemicals and nutritional compositions, the pigments
produced and the morphological traits may also distinguish the various sweet potato varieties. Carotenoid
and anthocyanin are the major natural pigments in sweet potato known for their antioxidative properties
which scavenge free radicals and protect both plants and animals from oxidative damage. The IbGGPS,
IbLCY-ε, and IbCHY-β genes regulate carotenoid biosynthesis while IbCCD1, IbCCD4, and IbOr control
its accumulation. Anthocyanin biosynthesis and accumulation are both regulated by the IbMYB, IbDFR,
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and IbGSTF3 genes. Besides, some post-transcriptional modulators basically miRNAs were revealed to be
involved in anthocyanin biosynthesis. Further characterization of the biosynthesis and regulatory mechanism
of carotenoids and anthocyanins will be beneficial to unravel the complex mechanism of carotenoid
accumulation regulated by the molecular function of the IbOr gene. This will help elucidate the
interrelation between carotenoid accumulation and catabolism. Although the molecular mechanism
underlying the biosynthesis and regulatory control of carotenoids and anthocyanin is extensively studied
in sweet potato, a lot is still unknown. Furthermore, the limited report on the role of anthocyanin in sweet
potato stress response mechanism calls for further research.

Many innovative biotechniques such as CRISPR/Cas9 through synthetic transcription factor detection
and gene activation, could modify the expression of targeted genes [189]. Although this technology has
been used extensively for crop improvement, little is known about its application in sweet potato. For
sweet potato pigmentation, transgenic technologies (genetic modification and metabolic engineering) have
been used to further increase carotenoid and anthocyanin content by modifying the expression of single
genes through Agrobacterium-mediated transformation. Also, the identification and development of
synthetic transcription factors in sweet potato might increase the accumulation of carotenoids and
anthocyanins. Therefore, CRISPR-Cas9-mediated genome editing technique may be significantly useful
for the biofortification of sweet potato. The lack of a reference genome makes genetic and molecular
studies very challenging, hence, whole-genome sequencing is suggested to improve molecular research in
sweet potato. Overall, the complex molecular regulation of anthocyanin biosynthesis and accumulation
both at the transcriptional and post-transcriptional levels due to the inconsistencies in previous reports
should be addressed through further research. Understanding the biosynthesis and gene regulation of
these major sweet potato pigments may provide appropriate resources and better schemes for breeding
sweet potato varieties with high anthocyanin and carotenoid contents.
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