

Phyton-International Journal of Experimental Botany DOI:10.32604/phyton.2020.010952 Article

DNA-Barcoding of Some Medicinal Plant Species in Saudi Arabia Using *rbcL* and *matK* Genes

Abdulrahman Alasmari*

Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia *Corresponding Author: Abdulrahman Alasmari. Email: ab.alasmari@ut.edu.sa Received: 09 April 2020; Accepted: 22 June 2020

Abstract: In the Kingdom of Saudi Arabia (KSA), thousands of plants are considered to have therapeutic value. The ambiguous use of identification mainly morphological characteristics of many plants has resulted in the adulteration and displacement of plant products which undermine their therapeutic value and weak documentation of plant resources. The aims of this study were therefore to evaluate genetic variability and explore the phylogeographic architecture for Saudi medicinal plant samples using *rbcL* and *matK* genes as barcodes for genomic identification. The *matK* and *rbcL* sequences collected for these samples were used as key markers for examining the relationship between Saudi medicinal plant species based on genetic diversity. During our study we were successful in identifying and documenting 4 different species (Foeniculum vulgare, Nitraria retusa, Dodonaea viscosa, and Rumex nervosus) located in Saudi Arabia using DNA barcoding technique. A total number of 8 sequences were obtained with a total sequence length of 6176 bp, where it ranged from 617 bp to 878 bp with an average length of 772 bp. The total number of *rbcL* sequences length is 2801 bp, where it ranges from 617 bp to 807 bp with an average length of 700.2 bp. Out of the 4 plant samples used, only three samples were identified correctly on the species level with an identity percentage higher than 95% using *rbcL* gene. Additionally, 4 *matK* sequences have been retrieved belong to 4 species. The total number of matK sequences length is 3375 bp, where it ranges from 819 bp to 878 bp with an average length of 843.8 bp. Out of the 4 plant samples used, only two samples were identified correctly on the species level with an identity percentage higher than 98% using matK gene. Both rbcL and matK have been able to identify most of our collected plant samples by genus, and some by species. Using only one DNA-barcoding technique was not reliable for plant identification, where *matK* and *rbcL* must be used as a dual DNA-barcoding procedure.

Keywords: Phylogeographic architecture; genomic identification; DNA barcoding

1 Introduction

Ethnic knowledge of ancient and yet still usable conventional Saudi medicine among locals and medical healers. In the Kingdom of Saudi Arabia (KSA), higher than 1200 (more than 50%) of the total plants (2250)

This work is licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

are considered to be of therapeutic value [1]. Additionally, this indigenous knowledge and cultural experiences were passed orally without recording and the traditional healers die without passing on their information [2]. Additionally, today medicinal plants are promoted as herbal medicines or natural health products. They are often considered as safe but adulterated, falsified and low-quality products pose serious security threats to consumers and the current markets [3]. Inaccurate identification use predominantly morphological characteristics of many plants has resulting in adulteration and displacement of plant products which undermine their therapeutic value [4].

Morphological characterization continues to be the foundation of plant taxonomic diagnosis. Unfortunately there are some substantial drawbacks to relying solely on morphology. This has raised a need for more advanced and sufficient molecular tools could be used recursively to identify medical plant taxonomic profiles with lower margin of error. The evolution of molecular genetics has resulted in a new approach based on the diversity of nucleotide sequences across species called "DNA barcoding" [5,6]. Morphology-based identification of medicinal plants is a classic approach, and molecular techniques based on DNA have progressively been used for taxonomic identification. Short uniform segment of the genome that serves as a "barcode" pattern has been suggested as a technology which provides accurate identification of species [7]. The plant committee Barcode of Life (CBOL) consortium has proposed *matK* and *rbcL* as the main plant barcode regions [8]. Barcoding is helpful in identifying the origin species of medicines and has also been used to identify contamination of foreign material in natural medicines, particularly those in small pieces or forms of powder [9]. Development within DNA-barcoding systematic has led to different approaches in herbal phylogenetic being introduced and the use of recently developed molecular markers expanded.

The plastid genome is uniparently acquired, non-re-combined and a structurally stable genome which is the most motivating rival genes for plant DNA barcoding [10]. The RuBisCO large subunit (*rbcL*) plastid marker was commonly used to study unknown taxonomic position of species to elucidate taxonomic connections between different species [11]. It was supported by the stable exon structure of the *rbcL* gene and high amino acid sequence similarity as a reliable marker for these research fields [12]. Maturase K is a chloroplast-encoding gene nested in the large single copy region of the chloroplast genome [13]. The *matK* gene is regarded to evolve quickly, as the gene seems to have a high degree of mutation rate and its sequence is much more varied than most other genes [14,15]. For a reliable plant DNA barcode including *rbcL* and *matK*, not fewer than two genes are essential. *rbcL* can be recognized by genus and family level whereas *matK* is the variable part of the code for species confirmation [16]. Moreover, bioinformatics analysis techniques have provided more insight on genetic diversity of species populations and offer more comprehensive about genetic sequence analysis [17].

The integration of such technology into the identification and phylogenetic analysis of Saudi medicinal plants could therefore be key to the conservation of natural resources. The aim of this study was therefore to evaluate genetic variability and explore the phylogeographic architecture for Saudi medicinal plant samples using *rbcL* and *matK* genes as barcodes for genomic identification. The *matK* and *rbcL* sequences collected for these samples were used as key markers for examining the relationship between Saudi medicinal plant species based on genetic diversity. Additionally, after aligning new sequences against GenBank databases, the efficacy of *rbcL/matK* based DNA barcoding was assessed for species identification and differentiation.

2 Materials and Methods

2.1 Plant Material

Four medicinal plant samples were obtained from different geographical locations in KSA. These samples belong to four different medicinal plant species (*Dodonaea viscosa, Foeniculum vulgare, Nitraria retusa*, and *Rumex nervosus*).

2.2 DNA Barcode Analysis

2.2.1 Extraction and Purification of DNA

Four different medicinal plant leaf specimens were collected and ground to a fine powder in liquid nitrogen using a sterile mortar and pestle. For DNA extraction and purification reported by Alshehri et al. [18]. The concentration and quality of extracted DNA was estimated by running on 1% agarose gel electrophoresis, using a DNA size marker (100 bp DNA Ladder from New England Bio-labs).

2.2.2 PCR Amplification

For *rbcL* and *matK* PCR primers the reverse and forward primers were, respectively, *rbcL*-F (5'-ATGTCACCACAAACAGAGACTAAAGC-3') and rbcL-R (5'-TCGCATGTACCTGCAGTAGC-3'), matK-F (5'-ATCCATCTGGAAATCTTAGTTC-3') and matK-R (5'-CTTCCTCTGTAAAGAATTC-3'). For rbcL and matK genes the PCR the reaction mixture consisted of 15 mM MgCl₂, 1× buffer (Promega), 0.2 mM dNTPs, 1 µ of Taq DNA polymerase (GoTaq, Promega), 20 pcoml of each primers, 40 ng DNA and distiled deionized water to a volume of 25 µL. PCR amplification was performed in 40 cycles (94°C for 30 s, 50°C for 30 s and 72°C for 30 s). Electrophoresis of the amplification of PCR products was screened in an agarose gel (1.5%) containing ethidium bromide (0.5 µg/ml). PCR products have been viewed and photoed using a Gel Documentation System (BIO-RAD 2000) on UV light. The PCR was carried out with a Perkin-Elmer/GeneAmp[®] PCR System 9700 (PE Applied Biosystems, USA) programmed to fulfill 40 cycles after an initial denaturation cycle for 5 min at 94°C. Each cycle consisted of a denaturation step at 94°C for 30 s, an annealing step at 50°C for 30 s and an elongation step at 72°C for 30 s. The primer extension segment was extended to 7 min at 72°C in the final cycle. The amplification products were determined by electrophoresis in a 1.5% agarose gel using ethidium bromide (0.5 µg/ml) in 1X Tris borate Edita (TBE) buffer at 95 volts. For PCR product sizes determination, a marker 100 bp DNA ladder (Promega, USA), was used as a molecular size standard. Gel images were visualized using UV transilluminator and photographed using a Gel Documentation System (BIO-RAD 2000, USA).

2.2.3 PCR Purification and Sequencing

GeneJET PCR Purification Kit (Catalog number: K0701) was used for the purification of amplified PCR products using manufacturer's manual. The extracted PCR products have been incubated for 2 min at ambient temperature, or at -20° C when stored. Macrogen Inc., Korea used Sanger DNA sequencing tech to perform the *rbcL* and *matK* PCR products DNA sequencing.

2.2.4 Computational Analysis

The product sequences *rbcL* and *matK* PCR were used to identify species utilizing NCBI-BLAST to search GenBank databases [4]. Species identifications were adopted if they gave more than 98% similarity to the database comparison sequences. NCBI-Blast disclosed the most similar 50 *rbcL* and *matK* sequences to be used for more phylogenetic analysis. Sequence Alignments were conducted using CLUSTALW [19]. The phylogenetic analysis was performed using iTOL [3]. Multivariate phylogenetic visualizing and clustering of data of similarity was shown using ClustVis web tool [20]. Extra sequences of medicinal plants obtained from GenBank have been used in the geographical distribution screening shown using the "rworldmap" package through R [21].

3 Result and Discussion

3.1 Species Identification

A total number of 8 sequences were obtained with a total sequence length of 6176 bp, where it ranged from 617 bp to 878 bp with an average length of 772 bp (Supplementary 1). Among these sequences, 4 *rbcL* sequences have been retrieved belong to 4 different plant species. The total number of *rbcL* sequences length

is 2801 bp, where it ranges from 617 bp to 807 bp with an average length of 700.2 bp. The NCBI-BLAST system successfully identified 4 *rbcL* sample sequences by genus. Out of the 4 plant samples used, only three samples were identified correctly on the species level with an identity percentage higher than 95% (Tab. 1). Although *rbcL* was successful to identify sample 4 genus, it did not identify the correct species of the sample belong to *Rumex nervosus* (Tab. 1). Through further investigation it has been concluded that, there is only one DNA-barcoding sequence related to this species in NCBI database until now (3/3/2020), which belongs to *ITS2* gene. This could confirm the lack of information in the NCBI database regarding this plant, and could shine a light for further studies. The sequence coverage for most sequenced *rbcL* genes was 100%, which

S. No.	SS	gene	TS	QC	EV	SI	Accession
1	Foeniculum vulgare	matK	Foeniculum vulgare	97.00%	0	99.65%	YP_009235860.1
		matK	Foeniculum vulgare	96.00%	0	100.00%	AWM67414.1
		matK	Foeniculum vulgare	96.00%	0	100.00%	AFC82721.1
2	Nitraria retusa	matK	Nitraria roborowskii	99.00%	6E-177	95.96%	QHE65566.1
		matK	Nitraria roborowskii	88.00%	1E-169	95.85%	AEQ47266.1
		matK	Nitraria roborowskii	87.00%	7E-169	95.83%	AEQ47267.1
3	Dodonaea viscose	matK	Dodonaea viscosa	91.00%	1E-170	97.60%	AKJ76991.1
		matK	Dodonaea viscosa	92.00%	3E-169	96.85%	YP_009437361.1
		matK	Dodonaea viscosa	88.00%	9E-168	98.36%	QAV55715.1
4	Rumex nervosus	matK	Commicarpus plumbagineus	91.00%	1E-174	99.62%	ATD50701.1
		matK	Commicarpus scandens	91.00%	1E-174	99.62%	ATD50705.1
		matK	Commicarpus boissieri	91.00%	2E-174	99.62%	ATD50686.1
		matK	Commicarpus coctoris	91.00%	2E-174	99.62%	ATD50689.1
5	Foeniculum vulgare	rbcL	Rhodiola bupleuroides	91.00%	9E-133	95.42%	AII70523.1
		rbcL	Primula japonica	98.00%	6E-132	94.77%	AAM50479.1
		rbcL	Rhodiola himalensis	91.00%	1E-131	95.42%	AII70548.1
		rbcL	Fenerivia emarginata	91.00%	1E-131	94.12%	AER51997.1
6	Nitraria retusa	rbcL	Lysimachia christinae	97.00%	2E-147	96.89%	AFD30872.2
		rbcL	Rosaceae sp.	97.00%	2E-147	97.33%	QAT81573.1
		rbcL	Crypteronia paniculata	97.00%	3E-147	97.33%	AOO78041.1
7	Dodonaea viscose	rbcL	Acer negundo	97.00%	6E-113	89.05%	CBK52928.1
		rbcL	Euodia fraxinifolia	97.00%	7E-113	89.05%	AHI17504.1
		rbcL	Carapa procera	97.00%	1E-112	89.05%	ACN42354.1
8	Rumex nervosus	rbcL	Rumex nepalensis	99.00%	2E-148	96.92%	AEM05112.1
		rbcL	Rumex nepalensis	99.00%	2E-148	96.92%	AEM05113.1
		rbcL	Rumex acetosa	99.00%	8E-148	96.46%	ANW81115.1

Table 1: The NCBI blast results for retrieved *matK* and *rbcL* sequences. The scoring results of sequences alignment, where sample species (SS), sequence coverage (QC), *E*-value (EV), sequences identity score (SI) reveals genes with high similarity to our retrieved sequences

indicate high PCR amplification performance. Our findings are not at variance with previous results recorded *rbcL* is the most successful sequence quality and recovered loci [22]. The identification power of *rbcL on*

rbcL is the most successful sequence quality and recovered loci [22]. The identification power of *rbcL on* species level was lower than expected, which could indicate small difference between inter-species and intra-species variation was observed. This *rbcL* gene limitation has also been reported in similar species of Ardisia, Sweretia chirayita and Mentha [23].

Additionally, 4 *matK* sequences have been retrieved belong to 4 species (*Foeniculum vulgare, Nitraria retusa, Dodonaea viscosa*, and *Rumex nervosus*). The total number of *matK* sequences length is 3375 bp, where it ranges from 819 bp to 878 bp with an average length of 843.8 bp. The NCBI-BLAST system successfully identified 3 *matK* sample sequences by genus. Out of the 4 plant samples used, only two samples were identified correctly on the species level (*Foeniculum vulgare*, and *Dodonaea viscosa*) with an identity percentage higher than 98% (Tab. 1). Although *matK* was successful to identify sample 3 genus, it did not identify the correct species of the samples of *Nitraria retusa*, and *Rumex nervosus* (Tab. 1). The sequence coverage for most sequenced *matK* genes was 98%, which indicate high PCR amplification performance (Tab. 1). The ability of *matK* to differentiate between species is not always reliable, *matK* has been reported to have significant variation and can be used in the nutmeg family News master for DNA barcode [24], while it cannot be used to distinguish Myristica species. Therefore, it was suggested that minimum requirement for species differentiation through *matK* gene sequencing is 99.64% similarity (Figs. 1 and 2) [23,25,26].

3.2 Sequence Alignment and Phylogenetic Analysis

The sequence alignment of *rbcL* sequences revealed mutation rate of sequence structure, where sequence mutation in middle sequence is quite high (Fig. 3). The heatmap of sequence similarities revealed high abundance of sequences similarity in inter-species and high evolution rate within intraspecies sequences (Fig. 4). Where the Foeniculum genus revealed high sequence differentiation compared to other studied species (Fig. 4). Additionally, both Figs. 3 and 4 indicate high genetic variability of sample 3 (*Dodonaea viscosa*) compared to other studied species. The phylogenetic tree built using *rbcL* sequences was grouped into 3 different groups, each group containing one genus (Fig. 5). Except for the *rbcL* of *Dodonaea viscosa* all *rbcL* was able to differentiate between all species, where *Foeniculum vulgare* sequences were clustered at 0.01 of sequence difference, *Rumex nervosus* at 0.18, and *Nitraria retusa* at 0.24.

The sequence alignment of *matK* sequences revealed high conservation of sequence structure among same genus and high mutation rate between different genus, where sequence mutation is not restricted to sequence area (Fig. 6). The heatmap of sequence similarities revealed low ability of *matK* gene sequences to differentiate between some genus (Fig. 7). The phylogenetic tree built using *matK* sequences was grouped into 3 different groups, only two groups contain one genus (*Nitraria retusa*, and *Foeniculum vulgare*) (Fig. 8). Except for *Dodonaea viscosa* and *Rumex nervosus* the *matK* was able to differentiate between species depending on phylogentic analysis, however *Foeniculum vulgare* sequences were clustered at 0.75 of sequence difference, and *Nitraria retusa* at 0.018.

(A) Foeniculum vulgare

	Description	Max Score	Total Score	Query Cover	E value	Per, Ident	Accession
✓	Foeniculum vulgare ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit gene, partial cds; chloroplast	1465	1465	99%	0.0	98.62%	MG946837.1
	Foeniculum vulgare chloroplast rbcL gene for Rubisco large subunit	1465	1465	99%	0.0	98.62%	LT576823.1
≤	Foeniculum vulgare chloroplast, complete genome	1465	1465	99%	0.0	98.62%	KR011054.1
	Foeniculum vulgare voucher MoSEL-278 ribulose-1.5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene, partial cds: chloroplast	1465	1465	99%	0.0	98.62%	KP974256.1
≤	Foeniculum vulgare voucher MoSEL-268 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene, partial cds; chloroplast	1465	1465	99%	0.0	98.62%	KP974255.1
✓	Foeniculum vulgare ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene, partial cds; plastid	1465	1465	99%	0.0	98.62%	KM360787.1
	Foeniculum sp. AP-2010 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit gene, partial cds; chloroplast	1465	1465	99%	0.0	98.62%	GQ162782.1
2	Foeniculum vulgare voucher OTA061332 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcl) gene, partial cds; chloroplast	1465	1465	99%	0.0	98.62%	GQ120445.1
	Foeniculum vulgare chloroplast gene for Ribulosebiphosphate Carboxylase large subunit, partial cds	1465	1465	99%	0.0	98.62%	D44567.1
≤	Anethum graveolens ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit gene, partial cds; chloroplast	1460	1460	99%	0.0	98.50%	MG946945.1

Foeniculum vulgare ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit gene, partial cds; chloroplast Sequence ID: <u>MG946537,1</u> Length: 1407 Number of Matches: 1

tange 1: 149	to 948 Genbank Graphics	V Next Match	A Previous Malch			-		
Score 1465 bits(76)	Expect Identities Gaps 2) 0.0 789/800(99%) 1/800(0%)	Strand Plus/Plus	Alignm	ent Scores	< 40	40 - 50	50 - 80 🔲 80 - 200	= 200
wery 1 bjct 149	CGGTAGCTGCCGAAACAACAACTGGTACATGGACCACTGTGTGGA CGGTAGCTGCCGAATCTTCTACTGGTACATGGACCACTGTGTGGA	CCGATGGACTTACCA 60 CCGATGGACTTACCA 20	0 08					
Juery 61 ibjct 209 Juery 121 ibjct 269 Juery 181 ibjct 329 Juery 241 ibjct 329	GTCTTGATCGTTACAAAGGGCGCTGCTACGGAATCGAGCCCGTTG GTCTTGATCGTTACAAAGGGCGCTGCTACGGAATCGAGCCCGTTG AATATATCGCTTATGTAGCTTACCCATAGACCTTTTTGAAGAGG AATATATCGCTTATGTAGCTTACCCATAGACCTTTTTGAAGAGG TGTTTACTTCCATTGTAGGTAATGTATTTGGGTTCAAAGCCCTGC TGTTTACTTCCATTGTAGGTAATGTATTTGGGTTCAAAGCCCTGC TGTTTACTTCCATTGTAGGTAATGTATTTGGGTCAAAGCCCTGC TGTTTACTTCCATTGTAGGTAATGTATTTGGGTCAAAGCCCTGC TGTTTACTTCCATTGTAGGTAGTATGTATTTGGGTCAAAGCCCTGC TGTTTACTTCCATGTGGTGGTTAGTTATGTATGTATCGGTCAAAGCCCTGC TGTTTACTTCCATGTGGGTGGTTGATGTGTTTGGGTCAAAGCCCTGC	CTGGAGAAGAAAATC 12 CTGGAGAAGAAAATC 26 GTTCTGTTACTAACA 18 GTTCTGTTACTAACA 32 SCGCTCTACGTCTGG 24 SCGCTCTACGTCTGG 38 SCGCTCTACGTCTGG 38 SCGCTCTACGCTCC 36 SCGCTCTACGGCATCC 36	20 Distribution of 68 1 150 150 228 150 40 88 90 49	f the top 10	Query 1 45	10 10 su	bject sequences	
uery 301 bjct 449	ANGATCAGGAGAGAGAGATAAATTGAACAAGTATGGTCGTCCTCTT-G AAGTTGAGAGAGAGATAAATTGAACAAGTATGGTCGTCCCCTGTT-G AAGTTGAGAGAGAAAAAATGAGAGAGAGGTGGTCCCCCTGTTGG CTAAATTGGGGTTATCCGCTAGAAACTACGGTGGAGGGGTTTATG	GATGTACTATTAAAC 35 GATGTACTATTAAAC 50 AATGTCTCCGCGGGTG 41	159 08 Organism	Blast Name	Score	Number of Hits	Description	
bjct 509 uery 420 bjct 569	СТАМАТТІ GGGGTTATCCGCTAMAACTACGGTAGAGCGGTTATG GACTTGATTTTACCAMAGACGATGAGAATGTGAACTCCCAACCAT GACTTGATTTACCAMAGACGATGAGAATGTGAACTCCCAACCAT	AATGTCTCCGCGGTG 56 TTATGCGTTGGAGAG 47 TTATGCGTTGGAGAG 62	episac Eceniculum · Eceniculum · Eceniculum · Eceniculum · Eceniculum · Eceniculum · Anethum graveolens	eudicots eudicots eudicots eudicots	1465 1465 1460	9 8 1	Eceniculum vulgare t Foeniculum sanguine Anethum graveolens	um hits hits
bjct 629 bjct 540 bjct 689	AICGITICITAITTIGISECGAGCAITTAINAGACACAGCIG AICGITICITAITTIGISECGAGCAAITTAINAGCACAGUCIG AAGGGCATTACTTGATGCTACTGCGGGTACATGTGANGAAATGA AAGGGCATTACTTGATGCTACTGCGGGTACATGTGAAGAAATGA	AAACTGGTGAAATCA 53 AAACTGGTGAAATCA 68 TGAAAAGGGGCTATAT 59 TGAAAAGGGGCTATAT 74	339					
bjct 749 uery 660 bjct 809	ТТОССАВАВАНТ ГООЧАЯТССТАТССТАЯТССАТВАТТАСТТАЯ ТТОССАВАВАНТ ГООЧАЯТССТАТССТАЯТССАТВАТТАСТТАЯ САМАТАСТАВСТТАЯСССАТТАТТОССОВАВАТВАТВОССТАСТТС САМАТАСТАВСТТАЯСССАТТАТТОССОВАВАТВАТВОССТАСТТС САМАТАСТАВСТТАЯСССАТТАТТОССОВАВАТВАТВОССТАСТТС	CAGGGGGATTCACTG 65 CAGGGGGATTCACTG 88 FTCACATCCACCGTG 71 TTCACATCCACCGTG 86	59 88 19 68					
uery 720 bjct 869 uery 780 bjct 929	CAATGCATGCAGTTATTGATACACAGTGGAACACTGGAATACACA CAATGCATGCAGTTATTGATAGACAGGAGAATCATGGTATACACT AAGCGTTACGTATGTCTGGT 799 AAGCGTTACGTATGTCTGGT 948	ACCGTGTACTAGCTA 77 TCCGTGTACTAGCTA 92	79 28					

Figure 1: (continued)

(B) Nitraria retusa

	Description	Max Score	Total Score	Query Cover	E value	Per. Ident	Accession
≤	Nitraria retusa ribulose 1.5-bisphosphate carboxylase (rbcL) gene, partial cds; chloroplast gene for chloroplast product	1286	1286	99%	0.0	99.27%	U39278.2
≤	Nitraria tangutorum chioroplast, complete genome	1275	1275	99%	0.0	98.98%	MK347423.1
≤	Nitraria sibirica chloroplast, complete genome	1275	1275	99%	0.0	98.98%	MK347422.1
≤	Nitraria roborowskii chioroplast, complete genome	1275	1275	99%	0.0	96.98%	MK347421.1
≤	Nitraria praevisa ribulose-1.5-bisphosphate carboxylase/oxygenase large subunit-like (rbcL) gene, partial sequence: chloroplast	1275	1275	99%	0.0	98.98%	DQ267162.1
 ✓ 	Nitraria tangutorum ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit-like (rbcL) gene, partial sequence; chloroplast	1275	1275	99%	0.0	98.98%	DQ267158.1
≤	Nitraria billardierei voucher N1 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene, partial cds; chioroplast	1273	1273	98%	0.0	98.98%	KT377258.1
≤	Nitraria roborowskii ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit-like (rbci.) gene, partial sequence; chloroplast	1273	1273	96%	0.0	98.98%	DQ267161.1
≤	Tetraena mongolica ribulose-1.5-bisphosphate carboxylase/oxygenase large subunit-like (rbcL) gene, partial sequence; chloroplast	1273	1273	98%	0.0	98.98%	DQ267163.1
≤	Nitraria sibirica ribulose-1,5-bisphosphate carboxylaso/oxygenase large subunit-like (rbcl.) gene, partial sequence, chioroplast	1258	1258	97%	0.0	98.82%	DQ267160.1

2 Nitraria tangutorum hits

2 Nitraria roborowskii hits

1 Nitraria billardierei hits

1 Tetraena mongolica hits

st product

nge 1: 16 to	704 GenBank Grag	phics		▼ <u>Next Match</u>	A Previous M	atch				
ore 286 bits(669	Expect) 0.0	Identities 684/689(99%)	Gaps 1/689(0%)	Strand Plus/Plus		Alignment Scores	< 40 40	-50	50 - 80 🔳 8	0-200
ery 6 jct 16 ery 65 jct 76 ery 125 jct 136 ery 185 jct 196	AGCCGGTGTT-AAGA AGCCGGTGTTAAAGA TGATATCTTGGCAGC GGCTGCGGTAGCTGC GGCTGCGGTAGCTGC GGCTGCGGTAGCTGC TACCAGCCTTGATCG TACCAGCCTTGATCG	ТТАТАЛАТТБАСТТАТТ/ НТАТАЛАТТБАСТТАТТ/ АТТССБАБТААСТССТС/ АТТССБАБТААСТССТС/ GGAATCTTCTACTGGTAC GGAATCTTCTACTGGTAC TTACAAAGGACGATGCT/ TTACAAAGGACGATGCT/	TACTCCTGAATATG/ HACTCCTGAATATG/ HACCCGGAGTTCCACC CATGGACAACGGTATC ATGGACAACGGTATC ATGGACAACGGTATC ATGGACAACGGTATC AAACATCGAGCCTGT	MACCAAAGATAC CGAAGAAGAAGAAGA CGAAGAAGCAGG GGACCGATGGGCT GGACCGATGGGCT TTGCTGGAGAAGA HGCTGGAGAAGA	64 75 124 135 184 195 244 255	Distribution of	the top 10 Bl	ast Hits	on 10 sub	ject sequence
jct 256 ery 305 jct 316 ery 365 jct 376 ery 425 jct 436 ery 485 jct 496 ery 545	АМАТСКАЛАЛАЛАЛАЛ ДААТСТАЛАЛАЛАЛАЛАЛ ТААСАТGTTTACTTC ТСТАБАGGATCTACCC ТСТАБАGGATCTACCC ТСТАБАGGATCTACCC ТАТССАБGTTGAGAC ТАТССАБGTTGAGAC ТАЛСССАБGTTGAGAC ТАЛСССТАЛАТТGGC ТАЛАССТАЛАТТGGC ТАЛАССТАЛАТТGGC ТАЛАССТАЛАТТGGC ТАЛАССТАЛАТТGGC ТАЛАССТАЛАТТGGC ТАЛАССТАЛАТТGGC ТАЛАССТАЛАТТGGC ТАЛАССТАЛАТТGGC ТАЛАССТАЛАТТGGC ТАЛАССТАЛАТТGGC ТАЛАССТАЛАТТGGC	НАТОГЛАФСТ ГАСССТ НТАТСТАВСТТАТССТ САТТОТОБОТААТОТАТ САТТОТОБОТААТОТАТ ААТСССТССТОСОСТАТАТ ААТСССТССТОСОСТАТАТ ААТСССТССТОСОСТАТА ААТСССТССТОСОСТАТА СПТАТССОСТААСААСТ/ СПТАТССОСТААСААСТ/ СПТАТССОСТААСААСТ/ ТАССАААСАТСААСААСА/ ТАССАААСАТСААСААСА/	AGALCETTE TORAGO AGALCETTE TORAGO TGGGTT CAAAGCCCT TAAAACTTTC CAAGC TAAAACTTTC CAAGC TAAAACTTTC CAAGC TGGCC GTC CCCTAT TGGCC GTC CCC TAT CGGC TAGGC GTC TTT CGGC TAGGC GTC TTT CGGC TAGGC CGT TTT CGGC TAGGC CGT TTT CGGC TAGGC CGC TTT CGGC TGGAACTC GC CAACC CGT GAACTC GC CAACC	Auguste Lottake recentered r	304 315 364 375 424 435 544 555 604 615	Organism rosids • Nitraria • Nitraria rotusa • Nitraria stangutorum • Nitraria starica • Nitraria starica • Nitraria billardiero] • Nitraria billardiero] • Nitraria billardiero]	Blast Name sudicots sudicots sudicots sudicots sudicots sudicots sudicots sudicots sudicots	Score 1286 1275 1275 1275 1275 1275 1273 1273	Number of F	lits Descript Nitraria retusa hit Nitraria tangutoru Nitraria sibirica hi Nitraria roborows Nitraria praevisa. Nitraria billardiere Tetraena mongol
ry 605 ct 616 ry 665 ct 676	GAGAGACCGTTTCTT GAGAGACCGTTTCTT AATCAAAAGTCATTA AATCAAAAGGTCATTA	ATTTTGCGCGGAAGCTAT ATTTTGCGCGGAAGCTAT CTTAAATGCTACTG 69 CTTAAATGCTACTG 76	TTATAAAGTGCAGGC TTATAAAAGCGCAGGC 13 14	tgaaacaagtga tgaaacaggtga Figure 1	654 675	tinued)				

(C) Rumex nervosus

Seq	uences producing significant alignments Download $^{\vee}$	Mana	ge Col	umns	~ s	how	10 🗸 😧
•	select all 10 sequences selected	GenB	ank	Graphi	cs D	istance t	ree of results
	Description	Max Score	Total Score	Query Cover	E value	Per. Ident	Accession
~	Rumex acetosa chioroplast, complete genome	1256	1256	100%	0.0	98.54%	NC_042390.1
	Rumex acetosa chioroplast, complete genome	1256	1256	100%	0.0	98.54%	MH359405.1
~	Rumex acetosella ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcl.) gene, partial cds; chloroplast	1256	1256	100%	0.0	98.54%	HM850316.1
~	Rumex acetosa ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene, partial cds; chloroplast	1256	1256	100%	0.0	98.54%	AY395559.1
	Rumex induratus ributose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene, partial cds, chloroplast	1244	1244	100%	0.0	98.24%	HM850321.1
~	Rumax induratus ribulose-1.5-bisphosphate carboxylase (rbcL) gene, partial cds: chloroplast gene for chloroplast product	1244	1244	100%	0.0	98.24%	AF297122.1
~	Rumex acetosa isolate SM05 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (tocl.) gene, partial cds: plastid	1242	1242	99%	0.0	98.38%	KY378051.1
~	Rumex acetosa isolate SM04 ribulose-1,5 bisphosphate carboxytase/oxygenase large subunit (rbcL) gene, partial cds; plastid	1242	1242	99%	0.0	98.38%	KY378050.1
~	Rumex acetosa isolate SM10 ribulose-1.5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene, partial cds; plastid	1242	1242	99%	0.0	98.38%	KY378049.1
≤	Rumex acetosa isolate SM12 ribulose-1.5-bisphosphate carboxylase/oxygenase large subunit (rbcl.) gene, partial cds: plastid	1242	1242	99%	0.0	98.38%	KY378048.1

Rumex acetosa chloroplast, complete genome

Sequence ID: NC 042390.1 Length: 160269 Number of Matches: 1

Range	1: 56587	to 57269 GenBa	nk Graphics			Vext Match	Previous Mat	Alignment Scores	< 40	40
Score 1256 b	oits(653)	Expect 0.0	Identities 673/683(999	6)	Gaps 0/683(0%)	Strand Plus/Plus				
Query Sbjct	1 56587	GTTAGAGAATAC	аааттбасттат АААНбасттат	ТАТАСТССТ ТАТАСТССТ	GACTATGAACO	CCATGACCATGATATC	60 56646	Distribution o	f the top 10	Bl
Query Sbjct	61 56647		CGAGTAACTCCT	CAACCTGGA	GTTCCACCAG/	MGAAGCAGGGGCCGCG MGAAGCAGGGGGCCGCG	120 56706	1 100	200 3	00
Query Sbjct	121 56707	GTAGCTGCCGAA GTAGCTGCCGAA	TCTTCTACTGGT	ACATGGACA ACATGGACA	ACTGTGTGGAG	CGATGGGCTTACCAGC	180 56766			
Query Sbjct	181 56767		AAAGGACGATGC	ТАССАСАТС ТАССАСАТС	GAGCCTGTTCC	TGGAGAAGAAAGTCAG TGGAGAAGAAAGTCAG	240 56826	Organism	Blast Name	
Query Sbjct	241 56827	TTTATTGCTTAT +++a++gc++a+	GTAGCTTACCCA GTAGCTTACCCA	TTAGACCTT HAGACCTT	TTTGAAGAAGO	аттетаттастаасата Пететастаасата	300 56886	Rumex . Rumex acetosa	eudicots eudicots	
Query Sbjct	301 56887	тттасттссатт ННАСНССАН	GTGGGTAATGTA		AAAGCCCTGCC	TGCTCTACGTTTGGAG	360 56946	Rumex acetosella Rumex induratus	eudicots eudicots	_
Query Sbjct	361 56947	GATTTGCGAATC	CCTCCTGCTTAT	ACGAAAACT ACGAAAACT		GCCTCATGGTATCCAA	420 57006			
Query Sbjct	421 57007	GTTGAGAGAGAGA GTTGAGAGAGAGA	аааттбаасааа АААНбААсААА	TATGGACGT	CCCCTATTGGC	атотастаттааассо атотастаттааассо	480 57066			
Query Sbjct	481 57067	AAATTGGGGTTG	TCCGCTAAGAAC	TACGGCCGA	GCAGTTTATGA GCAGTTTATGA	ATGTCTTCGTGGCGGA	540 57126			
Query Sbjct	541 57127	CTTGATTTTACC	AAAGATGATGAA	AACGTGAAC		TATGCGTTGGAGAGAGAC	600 57186			
Query Sbjct	601 57187		TGTGGGGAAGCT	ATTTTAAA AHHHAAA	TCACAGTCTG/	WACACGTGATTTTAAA WACAGGTGAAATTAAA	660 57246			
Query Sbjct	661 57247	TGACATTACTTO GGACATTACTTO	AATGCTACTGC	683 57269						

- 50 50 - 80 80 - 200 >= 200 ast Hits on 10 subject sequences 400 500 600 Score Number of Hits Description 11 1256 8 Rumex acetosa hits Rumex acetosella hits 1256 1 1244 2 Rumex induratus hits

Figure 1: (continued)

(D) Dodonaea viscosa

	Description	Max Score	Total Score	Query Cover	E value	Per. Ident	Accession
2	Dodoraea viscosa chloroplast, complete genome	1006	1006	100%	0.0	95,15%	MF155892.1
	Harpullia cupanioides isolate J095 ribulose-1,5 bisphosphate carboxylase/oxygenase large subunit (rbcL) gene, partial cds; chloroplast	1005	1006	100%	0.0	95.15%	KR529414.1
2	Dodonaea viscosa ribulose-1.5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene, partial ods; chioropiast	1006	1006	100%	0.0	95.15%	GU935451.1
2	Dodonasa viscosa chloroplast partial rbcl. gone for ribulose bisophosphale carboxylase large subunit, specimen voucher TFRI-YU004	1006	1006	100%	0.0	95.15%	EN599447.1
2	Dodonaca viscosa ribulose-1,5-bisphosphate carboxytase/oxygenase large subunit (rbct.) gene, partial cds; chloroplast	1006	1006	100%	0.0	95.15%	DQ978445.1
2	Dodonaea viscosa subsp. angustifolia chloroplast partial rbcL gene for ribulose bisphosphate carboxylase large subunit, specimen voucher Forest (1005	1006	100%	0.0	95.15%	AM235129.1
	Harpulla cupanioldes Isolate G001 ribulose-1,5-bisphosphate carboxylasefoxygenase large subunit (rbcL) gene, partial cds; chloroplast	1000	1000	100%	0.0	94.98%	KR529412.1
2	Conchopefalum brachysepalum ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcl.) gene, partial cds; chloroplast	1000	1000	100%	0.0	94.98%	DQ978442.1
~	Sinoradlkofera minor voucher CPG20218 ribulose-1,5-bisphosphale carboxytase/oxygenase large subunit (rbcL) gene, partial cds; chloroplast	996	996	98%	0.0	95.21%	KX527258.1
≤	Dodonaea triqueira ribulose 1,5-bisphosphate carboxylase (rbcL) gene, partial cds; chloroplast gene for chloroplast product	992	992	100%	0.0	94.66%	U38922.2

Dodonaea viscosa chloroplast, complete genome

Sequence ID: MF155892.1 Length: 159375 Number of Matches: 1

Figure 1: The NCBI blast results for retrieved *rbcL* sequences

(A) Foeniculum vulgare

	Description	Max Score	Total Score	Query Cover	E value	Per. Ident	Accession
2	Eceniculum vulgare maturase K (matK) gene, partial cds. chloroplast	1634	1634	96%	0.0	100.00%	MG946964.1
	Foeniculum vulgare chloroplast, complete genome	1634	1634	96%	0.0	100.00%	KR011054.1
2	Foeniculum vulgare isolate NMW4090 maturase K (matK) gene, partial cds; chloroptast	1621	1621	96%	0.0	100.00%	JN894477.1
	Anethum graveolens chloroplast, complete genome	1617	1617	96%	0.0	99.65%	KR011055.1
	Foeniculum vulgare voucher MoSEL-288 maturase K (matK) gene, partial cds; chloroplast	1617	1617	95%	0.0	100.00%	KP900773.1
	Anethum graveolens malurase K (matK) gene, partial ods; chloroplast	1617	1617	96%	0.0	99.65%	EU016725.1
	Cuminum cyminum maturase K (matK) gene, partial cds: chloropiast	1608	1608	96%	0.0	99.41%	MG946962.1
2	Foeniculum vulgare voucher A3 maturase K (matK) gene, partial cds; chloroplast	1606	1606	95%	0.0	100.00%	KU499692.1
~	Anethum graveolens maturase K. (matK) gene, partial cds; chloroplast	1602	1602	96%	0.0	99.18%	MG947047.1
~	Anethum graveolens voucher A10 maturase K (matK) gene, partial cds; chloroplast	1592	1592	95%	0.0	99.64%	KU499698.1

Foeniculum vulgare maturase K (matK) gene, partial cds; chloroplast Sequence ID: MG946964.1 Length: 885 Number of Matches: 1

Range	1: 36 t	o 885 G	enBenk G	caphics		 NextAtakti 	A Play
Score 1634 b	its(85	0)	Expect 0.0	Identities 850/850(100%)	Gaps 0/850(0%)	Strand Plus/Plus	
Query	13	GTGTTA	GAGATAC	TAATACCCTACCCAGCCC	ATCTGGAAATATTGGTTC	AAACTCTTCGC	72
Sbjct	36	GTGTTA	GAGATAC	TAATACCCTACCCAGCCC	ATCTGGAAATATTGGTTC	AAACTCTTCGC	95
Query	73	TATTO	GTAAAAG	ACGCTTCTTCTTTACATT	TATTAAGATTCTTTCTCC	ACGAGTATCGT	132
Sbjct	96	tAtt Go	GTAMAG	ACGCTTCTTCTTTACATT	TATTAAGATTCTTCCC	ACGAGTATCGT	155
Query	133	AGTTGO	AATACTO	CAAATAAAGCCAGTTCTT	GTTTTTCAAAAAGAAATC	AAAGGTTTTTC	192
Sbjct	156	AGTTGG	AATACTC	CAAATAAAGCCAGTTCTT	GTTTTCAAAAAGAAATC	AAAGGTTTTC	215
Query	193	TTCGTC	CTATATA	ATTCTCATCTATGTGAAT	ACGAATCCATCTTCGTCT	TTTTTCGTAAC	252
Sbjct	216	ttcstd	ATATATS:	ATTCTCATCTATGTGAAT	ACGAATCCATCTTCGTC	HHHCGTAAC	275
Query	253	CAATCI	TCTCATT	TATGCTCAACGTCTTCTG	GAACCCTTCTTGAACGAA	TETTTTTTTTT	312
Sbjct	276	CAATC	tetert	tatgeteaaegtettetg	GAACCCTTCTTGAACGAA	tettttttt	335
Query	313	GGAAAA	ATAGAAC	ATCTTGGACTTGTAGAAG	CTTTTGATAAGGCCTTTC	AGGACAATCTA	372
Sbjct	336	GGAAAA	ATAGAAC	ATCTTGGACTTGTAGAAG	cttttgataaggeettte	AGGACAATCTA	395
Query	373	TGGTTG	TTTAAGG	ACCCTTTCATGCATTATA	TTAGGTATCAAGGAAAAT	CAATTCTCGCT	432
Sbjct	396	tootto	HAAGG	ACCCTTTCATGCATTATA	TTAGGTATCAAGGAAAA	chitteteet	455
Query	433	TCAAAA	GGGACGC	CCCTTTTGATGAAAAAAT	GGACATAtttttttGTCA	ATTTATGGAAA	492
Sbjct	456	t čásás	AGGGACGC	CCC++++GA+GAAAAAA	GGACATATITITIGTCA	Atttatggaaa	515
Query	493	TGTCAT	TTTTACC	TATGGTCTCAGCCGGGAC	GGATCTGTATAAACCAAT	TATATAATAAT	552
Sbjct	516	TGTCAT	HHACC	TATGGTCTCAGCCGGGAC	GGATCTGTATAAACCAAT	TATATAATAAT	575
Query	553	TCCCTA	GCTCTTC	TGGGCTATCTATCAAGTG	CGCGACTAAATCCTTCAA	TGGTACGCAGT	612
Sbjct	576	tecett	setette	togoctatctatcaagto	CGCGACTAAATCCTTCAA	TGGTACGCAGT	635
Query	613	CAAATO	CTAGAAA	ATGCATTTATAATTGATA	ΑΤΟΟΤΑΤΤΑΑΤΑΑGTTCO	ATACTCTTGTT	672
Sbjct	636	CAAAto	SCTAGAAA	ATGCATTTATAATTGATA	ATCCTATTAATAAGTTCG	Atactettigtt	695
Query	673	CCAATT	GTTCCTC	TGATTGGATCATTGGCTA	AGGCGAGATTTTGTAACO	TATTGGGGCAC	732
Sbjct	696	CCAAH	idtteete	töattögatcattögcta	AGGCGAGATTTGTAACC	TATTGGGGGCAC	755
Query	733	CCTATI	AGTAAGG	CGGTTTGGACTGATTTAT	CAGATTCTGATATTGTTG	TCCGATTTAGG	792
Sbjct	756	CCTATI	AGTAAGG	ĊĠĠŦŦŦĠĠĂĊŦĠĂŦŦŦĂŦ	cagatteteatattette	tccgatttagg	815
Query	793	AGTATO	TGCAGAA	ATCTTTCTCATTATTATA	GTGGATCCTCACaaaaaa	aGAGTTTGTAT	852
Sbjct	816	AGTATO	TGCAGAA	ATCHTCTCATTATTATA	GTGGATCCTCACAAAAA	AGAGTTTGTAT	875
Query	853	CGAATA	AAGT 8	62			
Sbict	876	CGAATA	MAGT 8	85			

150	и 300	Query 	600	750	_
					F.

Organism	Blast Name	Score	Number of Hits	Description
Apioldeae	eudicota		10	
- Apleac	eudicots		2	
Foeniculum vulgare	eudicota	1634	2	Foeniculum vulgare hits
- Anethum graveolens	eudicots	1617	4	Anethum graveolens hits
- Cuminum cyminum	eudicots	1608	1	Cuminum cyminum hits

Figure 2: (continued)

(B)	Nitra	ria	ret	usa
(0)		,,,,,,		454

-	select on inverticities selected	UCIDO	no n	n aprilia	N MI	stance u	ee or results
	Description	Max Score	Total Score	Quary Cover	E value	Per. Ident	Accession
~	Nitraria tangutorum chiotoplast, complete ganome	1488	1488	100%	0.0	98.17%	MK347423.1
~	Nitraria sibirica chiereplast, complete genome	1488	1488	100%	0.0	98.17%	MK347422.1
2	Nitraria roborowskii chioropiast, complete genome	1488	1488	100%	0.0	98.17%	MK347421.1
~	Peganam hamata chloroptast, complete genome	1373	1373	100%	0.0	95.73%	MK347420.1
~	Peganum hamala tmK gene, Intron; and maturase imatKi gene, complete cds: chloroplast genes for chloroplast products	1350	1350	100%	0.0	95.24%	AY177667.1
~	Nitraria roborowskii voucher D453 maturase K (metK) gene, partial oda; chloroplast	1344	1344	89%	0.0	98.37%	JF954729.1
	Nitraria sibirica voucher D1164 maturase K. (matK) gene, partial ods: chloroplast	1333	1333	89%	0.0	98.22%	JF954733.1
2	Nitraria spherocarpa voucher D449 maturase K (matK) gene, partial ods; chioroplast	1325	1325	89%	0.0	98.08%	JF954736.1
~	Nitraria roborowskii voucher D15/5 maturase K (matK) gene, partial cds; chioroplast	1317	1317	88%	0.0	98.34%	JE954730.1
	Spondias Juberosa chioropiasi, complete genome	1173	1173	99%	0.0	91.65%	KU756562.1

Nitraria tangutorum chloroplast, complete genome Sequence ID: <u>MK347423.1</u> Length: 159383 Number of Matches: 1

Range 1: 2485	to 3303 GenBank	Graphica		V Next Match	Previous	Alignment Scores	< 40	40 - 50	50-	80 80 - 200	= 200
Score 1488 bits(774) Dipect	Identities 804/819(98%)	Gaps 0/819(0%)	Strand Plus/Plus							
Query 1 Sbjct 2485		GATACAAACTCttttt	tttGAGGATCCACTGTG	ATAATGAGAAAGA	60 2544	Distribution	of the to	op 10 Blas	t Hits o	n 10 subject se	quences
Query 61 Sbjct 2545	TTTCTGCATATAT	IGCACAAATCGATCGATA	ATATGAGAATCGGAGGA ATATGAGATTCGGAGGA	ATCGGCCCAGGTC	120 2604	1 150	3	00	450	600 7	50
Query 121 Sbjct 2605	GGTTTACTAATGO	GATGACCTAATGTGTTA	CAAAACCCCGCCTTAGT	CAATGATCCAATC	180 2664						
Query 181 Sbjct 2665	AGAGGAATAATGO	GAATGTTTGTATCGAAC	TTCCTCATGGCATTATC	TATTAGAAATGAA TATTAGAAATGAA	240 2724						
Query 241 Sbjct 2725	тттсталсатт	IGAGTCCGTACCACCAAA	GGATTTACTCCCACATT	AGAAAGATAGCCT	300 2784	Organism		Blast Name	Score	Number of Hits	Description
Query 301 Sbjct 2785	AGAAAGTTGATAG	AATGTTTGAATAGGTGG	TTTATATGGACCCTTCC	TGGTTGAGACCAC	360 2844	Espindales		eudicolta eudicolta		14 13	
Query 361 Sbict 2845	ACATGAAAATGCC	ATTGCCATAAATTGACA	AAGTAATATTTCCATTT	ATTCATCAGAAGA	420 2904	Nitraria Nitraria tangut	enum 9	eudicets	1488	1	Nitraria tangutorum hits
Query 421	GGCGTATCTTTC	AAGCGAGAATAGATTTT		ATGCAGGAAAGGA	480	Nitraria soboro Nitraria soboro Nitraria sobaer	wskil s	audicola	1488	3	Nitraria roborowskii hits Nitraria sobaerocama hits
Ouery 481		ATAAGATGTCCTGAAAA			540	Peganum harmal Spondias luberosa	la i	eudicots eudicots	1373 1173	2	Peganum harmala hits Spondias tuberosa hits
Juery 541			AAGACTCCAGAAGATGT	TGATCGTAAATGA	600						
Juery 601	GACGATTGGTTAC	AGATAAAAAAGAAGAAGATA	GATTCATATTCACATAA		660 3144						
Juery 661	AGGAAGAAGAATA		GAAAAAATCGAAATCGA	TTTCTTTGGAGTA	720						
Query 721			AGAAAGAACCGTAATAA	ATGTAAAGAAGAG	780						
Query 781 Shict 3265	GCGTCTTTTACCO	AGTAGCGAAGGGTTTGA	ACCAAGATT 819	and a produced dec	2604						

Figure 2: (continued)

(C) Dodonaea viscosa

	Description	Max Score	Total Score	Query Cover	E value	Per. Ident	Accession
~	Dodonaea viscosa chloroplast, complete genome	1506	1506	98%	0.0	98.89%	MF155892.1
~	Dodonaea viscosa subsp. angustifolia maturase K (matK) gene, partial cds; chloroplast	1496	1496	96%	0.0	99.12%	KP110036.1
~	Dodonaea viscosa voucher Dod71 maturase K (matK) gene, partial cds; chloroplast	1471	1471	94%	0.0	99.36%	MK125127.1
~	Trochocarpa sp. A CPL-2012 maturase K (matK) gene, partial cds; chloroplast	1444	1444	93%	0.0	99.22%	JQ667215.1
~	Dodonaea viscosa subsp. angustifolia voucher OM2918 maturase K (matK) gene, partial ods; chioroplast	1442	1442	92%	0.0	99.35%	JQ024958.1
~	Dodonaea viscosa voucher Abbott9229 maturase K (matK) gene, partial ods; chloroplast	1436	1436	92%	0.0	99.22%	JX517889.1
2	Majidea fosteri maturase K (matK) gene, partial cds; chioroplast	1435	1435	96%	0.0	97.98%	JN191124.1
~	Harpullia ramiflora chloroplast maturaise K-like gene, complete sequence	1435	1435	98%	0.0	97.78%	AF314805.1
~	Dodonaea viscosa voucher Hosam00025 maturase K (matK) gene, partial cds; chloroplast	1429	1429	91%	0.0	99.47%	JX495703.1
~	Harpullia longipetala voucher WP2B0487 maturase K (malk) gene, partial cds; chloroplast	1410	1410	93%	0.0	98.31%	<u>GQ248131.1</u>

Dodonaea viscosa chloroplast, complete genome Sequence ID: <u>MF155892.1</u> Length: **159375** Number of Matches: **1**

Range 1:	2344	to 3153 GenBank	Graphics		Vext Match	Previou	Alignme	nt Scores	< 40 40	- 50	50 - 80	80 - 200 = 200
Score 1506 bit	s(783)	Expect 0.0	Identities 801/810(99%)	Gaps 0/810(0%)	Strand Plus/Plus	_	_					
Duery Sbjct Duery Sbjct Duery Sbjct	15 2344 75 2464 135 2464 195 2524	TCGATACAAACTO TCGATACAAACTO ACGCGCAAACCGO GGGATGCCCTAAT GGGATGCCCTAAT AGGAATGGTTGTC	TETETTE GAGGATC THE GAGGATC TCGATAATATGAGAAT TCGATAATATGAGAAT TGGGTTACAAAAACGCG TGGGTTACAAAAACGCG TGGGTTACAAAAACGCG TGGATCTCTTCATAG	CACTGTGATAATGAGAAA CACTGTGATAATGAGAAA CTGAGGAATCGGCCCCAAG CTGAGGAATCGGCCCCAAG CCTTAGTCAATGATCCAA CCTTAGTCAATGATCCAA CCTTACTCATTAGGAATG LATTATCTATTAGGAAAG	AGATTTCTGCATAT GATTTCTGCATAT TCGGCTTACTAAT TCGGCTTACTAAT TCAGAGGAATAAT TCAGAGGAATAAT TCAGAGGAATAAT	74 2403 134 2463 194 2523 254 2583	Distril	L I 150	ne top 10 B	last H	lits on 10 su	750
Query Sbjct Query Sbjct Query Sbjct Query Sbjct Query Sbjct	255 2584 315 2644 375 2704 435 2764 495 2824 555	TTGACTCCGTACC TTGACTCCGTACC AGAATCTTTGTAT AGAATCTTTGTAT CCATTGCCATAGA CCATTGCCATAGA CCATGCCAGAAT GCAGACCAGAAT GCAGACCAGAAT GCATAGAGATCGC GCATAGAGTCGCG	ассаладттттадтт дасаладтттататдал адстадттататдал инсегадарттататдал итеасаладтататт ситеасаладтататт итеасаладтатататт ситеасаладатата сталалатсаттадала салалатсатада	GCCCACTGGAAAAA TAGG UCCCACTGGAAAAA TAGG TCCTTCCGAGTTGAGACC TCCTTCCGAGTTGAGACC TCCTTTCCTACAGAA TCCATTTATTCATCAGAA TCCATTTATTCATCAGAA TAGGATGTGAGAGAGTGT AGGATCTCGACAAGAGTGT AGGATCTCGACAAGAGTGT	CCAGAAAGTGGAT CCAGAAAGTTGAT ACACGTGAAAAT ACACGTGAAAAT ACACGTGAAAAT GGGGTGTCCTTGAACAA GGGTCCTTGAACAA LGATCCTTGAACAA TCTACTTTCCATA CCACTTTCCATA CCACTTTCCATA	314 2643 374 2703 434 2763 494 2823 554 2883 614	C Pantagatalae Doctoneconio - Doctoneco - Doctoneco - Doctoneco - Doctoneco - Doctoneco - Master totto - Harpulla tot - Harpulla tot - Tochocerpa so	nganiam neccas neccas solve: aregulated D Sola gentale A CPL-2012	Biast Name outcom sustant eutom sustant sustant sustant sustant sustant sustant	5com 1506 1496 1435 1435 1410 1444	Number of Hits 11 10 2 4 2 1 1 1 1 1 1	Description Codonaea viscosa hills Codonaea viscosa sulso, anoustif Mardea tosten hils Hisroaliis romflora hills Hisroaliis romflora hills Trochocarpa sp. A CPL 2012 hills
ibjct Juery ibjct Juery ibjct Juery Sbjct	2884 615 2944 675 3064 735 3064 795	AAAATGGATTCOC ACGGAGAAAAAAA ACGGAGAAAAAAA AAATCTTGGATTA AAATCTTGGATTA AAATCTTGGATTA CCAATTATAATAT CCAATTATAATAT	TCAAGAAGGATTCATATT TCAAGAAGGATTCATATT JAGATGGATTCATATT ACTTGTT0000000TAG UCTGTT0000000TAG UCTGTT0000000TAG ITCGTAAGAAGAAGAATC TTCGTAAGAAGAAGAATC	аналан цэртгээлжээл алаг араг араг араг араг араг араг ара	IGAGAAGATIGGT IGAGAAGATIGGT IATAGGAAAAAGAA STAATAAGACAATT ITAATAAGACAATT ITAATAAGACTATT GAGGCATCTTTTAC	2943 674 3003 734 3063 794 3123						

Query 795 TCAGTAGCGAAAGGTGTGAGCCACGATTC 824 Sbjct 3124 CCAGTAGCGAAAGGTTGAACCAAGATTC 3153

Figure 2: (continued)

(D) Rumex nervosus

	Description	Max Score	Total Score	Query Cover	E value	Per. Ident	Accession
~	Commicarpus scandens chioroplast partial tmK gene Intron and matK gene for maturase K	1558	1558	98%	0.0	99.28%	FN868306.1
~	Commicarpus sinuatus voucher Richard W. Spellenberg 7144 (NMC) maturase K (matK) gene, partial ods; chloroplast	1513	1513	94%	0.0	99.51%	KY952393.1
~	Commicarpus pedunculosus voucher Mats Thulin 1301 (UPS) maturase K (matK) gene, partial cds; chicroplast	1513	1513	94%	0.0	99.51%	KY952383.1
2	Commicarpus reniformis voucher Mats Thulin 4200 (UPS) maturase K (matK) gene, partial cds; chloroplast	1511	1511	94%	0.0	99.50%	KY952388.1
~	Commicarpus greenwayi voucher Mats Thulin 606 (UPS) maturase K (matK) gene, partial cds; chloroplast	1511	1511	94%	0.0	99.50%	KY952377.1
~	Commicarpus decipiens voucher Erin Tripp et al. 4127 (NMC) maturase K (malK) gene, partial cds; chloroplast	1511	1511	94%	0.0	99.50%	KY952375.1
2	Commicarpus arabicus voucher Richard W. Spellenberg 7217 (NMC) maturase K (matK) gene, partial cds: chloroplast	1511	1511	94%	0.0	99.50%	KY952368.1
~	Commicarpus ambiguus voucher Mats Thulin 11015 (UPS) maturase K (matK) gene, partial cds; chioroplast	1511	1511	94%	0.0	99.50%	KY952366.1
~	Commicarpus squarrosus var. squarrosus voucher Erin Tripp et al. 4049 (NMC) maturase K (malK) gene, partial cds; chloroplast	1509	1509	94%	0.0	99.50%	KY952395.1
~	Commicarpus reniformis voucher Mats Thulin et al. 8337 (UPS) maturase K (matK) gene, partial cds; chloroplast	1506	1506	94%	0.0	99.38%	KY952389.1

Commicarpus scandens chloroplast partial trnK gene intron and matK gene for maturase K Sequence ID: <u>FN868306.1</u> Length: 2300 Number of Matches: 1

tange 1: 106	5 to 1900 GenBank	Graphics		Vext Match	Previous	Matcl :	Distrib	ution of t	hetor	10 Blast H	its on 10 sub	iect sequence
Score 1558 bits(810	Expect 0) 0.0	Identities 832/838(99%)	Gaps 2/838(0%)	Strand Plus/Minus			Distrib		ne top	Query	10 501 10 501	Ject sequence
uery 17 bjct 1900	AGTCGATGTATAT	ACTITATTCGATACAAA	ACTCTTTTTTCGTGAA	GATGCCACTAGTAAT GA-GCCACTA-TAAT	76 1843		` <u> </u>	150	300	450	600	750
uery 77 bjct 1842	AATGAGAAAGAT	TCTGCGTATACGCCCAA TCTGCGTATACGCCCAA		CGGAATCTGATAAAT CGGAATCTGATAAAT	136 1783							
uery 137 bjct 1782	CGGTCCAAACTGA	CTTACTAATGGGATGCC	стаатасаттасааа	ATTTCGCTTTAGCCA	196 1723		N2					
uery 197	ACGATCCAACCAG	AGGAATAATTGGAACT/	TGGTATCGAACTTTT	TAATGGTATTTTCTA	256	Organi	sm	Blast Name	Score	Number of Hits	Description	
jct 1722	ACGATCCAACCAG	AGGAATAATTGGAACT/	TAGTATCGAACTTT	tAATGGTATTTCTA	1663	Commicanous Commicanous scandar		euticote	1558	10	Commicarpus scar	dens hits
Jery 257	TTAGAAATGGATT	TTCTAACATTTGACTCC	GCACCACTGAAGAAT	GAGTCGCACACTTG	316	- Commicarpus sinustan		euticoto	1513	1	Commicarpus sinu	atus hits
ojct 1662	TAGAAATGGAT	HCTAACATTGACTCO	GCACCACTGAAGAAT	GAGTCGCACACTTG	1603	Commicanous peduno	100010 10	exclusion	1513	1	Commicarpus pede	inculosus hits
ery 317	AAAGAAAACCCAG	AAAGTCGAGGGAATGCT	TTGATAATCGATTGA	TATATATTTTTTTTTT	376	- Commicarpus greenw	ed.	euticols	1511	1	Commicarpus gree	rwavi hita
ict 1682	AAAGAAAAACCCAG	AAAGTCGAGGGAATGC			1543	. Commicarpus decipier	23	euticoto	1511	1	Commicarpus deci	siens hits
277	ATTGAGACCACAC	ATAAAAATAAGATTGC	AAAAATTGATAAGGT	ATATTICCATTTAT	426	Commission a ambieu		exticati	1511	1	Commit arpus arat	icus hits
ojct 1542	ATTGAGACCACAC	ATAAAAATAAGATTGCC	AAAAATTGATAAGGT	U+A+++CCA+++A+	1483	Commisarous squarro	aus vor seusmosas	sufects	1509	i	Commicarpus squi	rrosus var. squarrosu
iery 437	GCATCAGAAAAGA	TGTACCTTTTGAAGAAA	GAATTGATTTCCTT	SATATCGAATATAAT	496							
ojct 1482	GCATCAGAAAAGA	TGTACCTTTTGAAGAAA	GAATTGATTTCCTT	GATATCGAATATAAT	1423							
uery 497	GCGTAAATGGATC	TTTGAAAAGCCATAAGA	TAATCCGACAATTTT	TAGTTAAAACTTTGA	556							
bjct 1422	GCGTAAATGGATC	TTGAAAAGCCATAAGA	TAATCCGACAATTT	AGTTAAAACTTTGA	1363							
uery 557	CTAGATATTCTAT	CTTTCCGCGGAAATAAA	TTCGTTCAAGAAGGG	CTTCAAAAGATGTTG	616							
ojct 1362	CTAGATATTCTAT	CTTTCCGCGGAAATAAA	++CG++CAAGAAGGG	CHICAAAAGATGHIG	1303							
uery 617	ATCGTAAATAAGA	GGATCGGTTGCGGAGA	AAACAAAAATGGATTI	GTATTCATATACAT	676							
bjct 1302	ATCGTAAATAAGA	GGATCGGTTGCGGAGA	AAACAAAAATGGATTI	CGTATTCATATACAT	1243							
erv 677	AGAAATTATATAA	GAACAAGAATAATCTTT	GAGTCCTTTTTGCAA	MATCGAAATGGAAT	736							
jct 1242	AGAAATTATATA	балсалбалталтст	GAGTCCTTTGCAA	AATCGAAATGGAAT	1183							
uery 737	TTTTTGAAGTAAT	AAGACTATTCCGATTAC	GATTACGATACTCAT	AAGAAAAAATCGTA	796							
ojct 1182	+++++GAAGTAAT	AAGACTATTCCGATTAC	GATTACGATACTCAT	AAGAAAAAATCGTA	1123							
ery 797	ATAAATGCGAAGA	AGAGGCATCTTTCACCO	AGTAGCGAAGAGTTT	GAACCAAGATTTC	354							
jct 1122	ATAAATGCAAAGA	AGAGGCATCTTTCACCO	AGTAGCGAAGAGTTT	GAACCAAGATTTC :	1065							

Figure 2: The NCBI blast results for retrieved *matK* sequences

Alignment Scores <a><40 40 - 50 50 - 80 80 - 200

Figure 3: The sequence alignment of retrieved *rbcL* sequences in addition to similar plant sequences retrieved from NCBI

Figure 4: The heatmap analysis of *rbcL* sequences depending on sequence similarities, where red color indicates high sequence difference and blue color indicates high sequence similarities

Figure 5: The phylogenetic tree of retrieved *rbcL* sequences (yellow colored) in addition to similar plant sequences retrieved from NCBI

Figure 6: The sequence alignment of retrieved *matK* sequences in addition to similar plant sequences retrieved from NCBI

Figure 7: The heatmap analysis of *matK* sequences depending on sequence similarities, where red color indicates high sequence difference and blue color indicates high sequence similarities

Figure 8: The heatmap analysis of *matK* sequences depending on sequence similarities, where red color indicates high sequence difference and blue color indicates high sequence similarities

4 Conclusion

It is very important for KSA researcher to preserve our medicinal plant resources using modern and effective techniques. These techniques would provide more comprehensive way for plant documentation and recognition. During our study we were successful in identifying and documenting 4 different species located in Saudi Arabia using DNA barcoding technique. Both *rbcL* and *matK* have been able to identify most of our collected plant samples by genus, and some by species. Using only one DNA-barcoding

technique was not reliable for plant identification, where *matK* and *rbcL* must be used in dual DNA-barcoding procedures.

Acknowledgement: The author is thankful to University of Tabuk, Tabuk, Kingdom of Saudi Arabia for supporting my research.

Funding Statement: The author(s) received no specific funding for this study.

Conflicts of Interest: The authors declare no conflicts of interest.

References

- 1. Abdel-Sattar, E., Abou-Hussein, D., Petereit, F. (2015). Chemical constituents from the leaves of Euphorbia ammak growing in Saudi Arabia. *Pharmacognosy Research*, 7(1), 14–17. DOI 10.4103/0974-8490.147136.
- 2. Alsamman, A. M. (2019). The art of bioinformatics learning in our Arabic world. Highlights in BioScience, 2, 1-10.
- 3. Alshehri, M. A., Aziz, A. T., Alzahrani, O., Alasmari, A., Ibrahim, S. et al. (2019). DNA-barcoding and species identification for some saudi arabia seaweeds using rbcL gene. *Journal of Pure and Applied Microbiology*, *13(4)*, 2035–2044. DOI 10.22207/JPAM.13.4.15.
- Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z. et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Research*, 25(17), 3389–3402. DOI 10.1093/nar/ 25.17.3389.
- Awadh Ali, N. A., Al Sokari, S. S., Gushash, A., Anwar, S., Al-Karani, K. et al. (2017). Ethnopharmacological survey of medicinal plants in Albaha region, Saudi Arabia. *Pharmacognosy Research*, 9(4), 401–407. DOI 10.4103/pr.pr_11_17.
- 6. Barthet, M. (2006). *Expression and function of the Chloroplast-Encoded Gene Matk, United States.* The faculty of the Virginia Polytechnic Institute and State. Virginia Polytechnic Institute and State University.
- Chester, K., Zahiruddin, S., Ahmad, A., Khan, W., Paliwal, S. et al. (2017). Bioautography-based identification of antioxidant metabolites of *Solanum nigrum* L. and exploration its hepatoprotective potential against Dgalactosamine-induced hepatic fibrosis in rats. *Pharmacognosy Magazine*, 13(50), 179–188. DOI 10.4103/pm. pm_432_16.
- 8. Cutarelli, G. G., Capuano, F. C. F. (2018). Species identification by means of mitochondrial cytochrome b DNA sequencing in processed anchovy, sardine and tuna products. *Food and Nutrition Sciences*, *9(4)*, 369–375. DOI 10.4236/fns.2018.94029.
- CBOL Plant Working Group, Hollingsworth, P. M., Forrest, L. L., Spouge, J. L., Hajibabaei, M., Ratnasingham, S. et al. (2009). A DNA barcode for land plants. *Proceedings of the National Academy of Sciences of the United States of America*, 106(31), 12794–12797. DOI 10.1073/pnas.0905845106.
- Hebert, P. D. N., Cywinska, A., Ball, S. L., DeWaard, J. R. (2003). Biological identifications through DNA barcodes. *Proceedings of the Royal Society of London. Series B: Biological Sciences*, 270(1512), 313–321. DOI 10.1098/rspb.2002.2218.
- 11. Hollingsworth, P. M., Graham, S. W., Little, D. P. (2011). Choosing and using a plant DNA barcode. *PLoS One, 6(5),* e19254. DOI 10.1371/journal.pone.0019254.
- 12. Kazi, M. A., Reddy, C. R. K., Jha, B. (2013). Molecular phylogeny and barcoding of caulerpa (bryopsidales) based on the tufA, rbcL, 18S rDNA and ITS rDNA genes. *PLoS One*, *8*(12), e82438. DOI 10.1371/journal.pone.0082438.
- Liu, Y., Wang, K., Liu, Z., Luo, K., Chen, S. et al. (2013). Identification of medical plants of 24 ardisia species from China using the matK genetic marker. *Pharmacognosy Magazine*, 9(36), 331–337. DOI 10.4103/0973-1296.117829.
- 14. Lucas, C., Thangaradjou, T., Papenbrock, J. (2012). Development of a DNA barcoding system for seagrasses: successful but not simple. *PLoS One*, 7(1), e29987. DOI 10.1371/journal.pone.0029987.
- 15. Metsalu, T., Vilo, J. (2015). ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. *Nucleic Acids Research*, 43(W1), W566–W570. DOI 10.1093/nar/gkv468.

- 16. Parson, W., Pegoraro, K., Niederstätter, H., Föger, M., Steinlechner, M. (2000). Species identification by means of the cytochrome b gene. *International Journal of Legal Medicine*, *114(1–2)*, 23–28. DOI 10.1007/s004140000134.
- 17. Roy, S., Tyagi, A., Shukla, V., Kumar, A., Singh, U. M. et al. (2010). Universal plant DNA barcode loci may not work in complex groups: a case study with Indian berberis species. *PLoS One*, *5(10)*, e13674. DOI 10.1371/ journal.pone.0013674.
- 18. Shafik, D. I., Alsamman, M. A. (2019). A rapid method for DNA extraction of cotton mature fiber suitable for PCR fingerprinting. *Cold Spring Harbor Laboratory*, *1*, 22–57.
- 19. South, A. (2011). rworldmap : a new R package for mapping global data. *R Journal, 3(1),* 35–43. DOI 10.32614/ RJ-2011-006.
- 20. Steven, G. N., Subramanyam, R. (2009). Testing plant barcoding in a sister species complex of pantropical Acacia (Mimosoideae, Fabaceae). *Molecular Ecology Resources*, *9*(7), 172–180. DOI 10.1111/j.1755-0998.2009.02642.x.
- 21. Sugita, M., Shinozaki, K., Sugiura, M. (1985). Tobacco chloroplast tRNALys (UUU) gene contains a 2.5-kilobasepair intron: an open reading frame and a conserved boundary sequence in the intron. *Proceedings of the National Academy of Sciences of the United States of America*, 82(11), 3557–3561. DOI 10.1073/pnas.82.11.3557.
- 22. Tallei, T. E., Kolondam, B. J. (2015). DNA barcoding of sangihe nutmeg (myristica fragrans) using matK gene. *HAYATI Journal of Biosciences*, 22(1), 41–47. DOI 10.4308/hjb.22.1.41.
- Tan, P., Lim, P., Lin, S., Phang, S., Draisma, S. A. et al. (2015). Foliose Halymenia species (Halymeniaceae, Rhodophyta) from Southeast Asia, including a new species. *Halymenia Malaysiana Sp. Nov., Botanica Marina*, 58(3), 203–217.
- 24. Tanaka, S., Ito, M. (2020). DNA barcoding for identification of agarwood source species using TrnL-TrnF and matK DNA sequences. *Journal of Natural Medicines*, 74(1), 42–50. DOI 10.1007/s11418-019-01338-z.
- 25. Thakur, V. V., Tiwari, S., Tripathi, N., Sapre, S. (2016). DNA barcoding and phylogenetic analyses of mentha species using. *Annals of Phytomedicine*, *5*(*1*), 59–62.
- 26. Thompson, J. D., Higgins, D. G., Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. *Nucleic Acids Research*, 22(22), 4673–4680. DOI 10.1093/nar/22.22.4673.

Supplementry

Sample_1_matK-1_Foeniculum_vulgare

Sample_2_matK-2_Nitraria_retusa

ATATATTTTATTCGATACAAACTCTTTTTTTTGAGGATCCACTGTGATAATGAGAAAGATTT CTGCATATATGCACAAATCGATCGATCGATAATATGAGAATCGGAGGAATCGGCCCAGGTCGGTTTAC TAATGGGATGACCTAATGTGTTACAAAACCCCGCCTTAGTCAATGATCCAATCAGAGGAATAAT

Sample_3_matK-1_Dodonaea_viscose

Sample_4_matK-5_Rumex_nervosus

Sample_1_rbcL-1_Foeniculum_vulgare

 ACTACGGTAGAGCGGTTTATGAATGTCTCCGCGGTGGACTTGATTTTACCAAAGACGATGAGAA TGTGAACTCCCAACCATTTATGCGTTGGAGAGAGCGTTCTTATTTTGTGCCGAAGCAATTTATA AAGCACAGGCTGAAACTGGTGAAATCAAAGGGCATTACTTGAATGCTACTGCGGGTACATGTG AAGAAATGATGAAAAGGGCTATATTTGCCAGAGAATTGGGAGTTCCTATCGTAATGCATGATTAC TTAACAGGGGGATTCACTGCAAATACTAGCTTAGCCCATTATTGCCGAGATAATGGCCTACTTCT TCACATCCACCGTGCAATGCATGCAGTTATTGATAGACAGTTGAAACATGGAATACACAACCGT GTACTAGCTAAAGCGTTACGTATGTCTGGTCCACAACT

Sample_2_rbcL-2_Nitraria_retusa

Sample_3_rbcL-4_Dodonaea_viscose

Sample_4_rbcL-5_Rumex_nervosus