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Abstract: With the rapid development of information technology, the speed and
efficiency of image retrieval are increasingly required in many fields, and a
compelling image retrieval method is critical for the development of information.
Feature extraction based on deep learning has become dominant in image retrieval
due to their discrimination more complete, information more complementary and
higher precision. However, the high-dimension deep features extracted by CNNs
(convolutional neural networks) limits the retrieval efficiency and makes it difficult
to satisfy the requirements of existing image retrieval. To solving this problem, the
high-dimension feature reduction technology is proposed with improved CNN and
PCA quadratic dimensionality reduction. Firstly, in the last layer of the classical
networks, this study makes a well-designed DR-Module (dimensionality reduction
module) to compress the number of channels of the feature map as much as
possible, and ensures the amount of information. Secondly, the deep features are
compressed again with PCA (Principal Components Analysis), and the
compression ratios of the two dimensionality reductions are reduced, respectively.
Therefore, the retrieval efficiency is dramatically improved. Finally, it is proved on
the Cifar100 and Caltech101 datasets that the novel method not only improves the
retrieval accuracy but also enhances the retrieval efficiency. Experimental results
strongly demonstrate that the proposed method performs well in small and
medium-sized datasets.
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1 Introduction

With the improvement of living quality and the arrival of the era of big data, the human demand for
image retrieval and computer performance are increasingly high. To pursue better retrieval performance,
the research on image retrieval has shifted from Text-based Image Retrieval to CBIR (Content-based
Image Retrieval). The original CBIR tends to extract SIFT (Scale-invariant feature transform), HSV (Hue,
Saturation, Value), YCbCr (Color Space), and other local features [1-3]. Juan et al. [4] compared the
features of SIFT, PCA-SIFT (Principal Components Analysis-Scale-invariant feature transform), and
SURF (Speeded Up Robust Features), which laid the foundation for subsequent studies. The rapid
development of deep learning makes features extracted no longer limited to the shallow features, and
CNN are also widely used to obtain global features of images.

Krizhevsky et al. [5] designed AlexNet which won the Champion in the ImageNet data contest with an
error rate of 15.4%, and the error rate was well below the second (26.2%). The success of AlexNet shows that
the way of computer automatic learning mode features and features learning into the establishment of the
model can reduce the imperfection caused by artificial design features, and the globality of the extracted
features can better reflect the correlation between pictures. Radenovic¢ et al. [6] used fine-tuning CNN in a
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fully automated manner, employed state-of-the-art retrieval and SfM (Structure-from-Motion) methods to
obtain 3D models. 3D models are used to guide the selection of the training data for CNN fine-tuning and
conduct the training of the fine-tuning of the VGG of the classical convolutional neural network. The features
extracted by the fine-tuning VGG were used for image retrieval. Although this method can inherit the
globality of VGG network features, its high dimensional features will consume a large amount of computing,
storage resources, and search time for image retrieval.

With the coming of big data era, the higher dimensional deep features for classification task cannot
satisfy image retrieval research, while image retrieval is facing the entire image databases, not just the test
sets. It is essential to calculate the similarity distance between test sets and whole image databases. If too
many features represent each image, the storage time and retrieval time will be significantly increased.
Recently, with the development of CNN architecture, models have emerged which can extract low
dimensional features for classification tasks. However, the use of 1024 d feature expression in each image
will still generate a lot of consumption and reduce the retrieval efficiency for large-scale image retrieval.
Therefore, this paper firstly designs a DR-Module in classic networks, which fully plays the performance
of the network to learn the compression features autonomously, retains high correlation features in the
process of autonomous learning. Secondly, PCA is used to dimensionality reduction of extracted features
and represented by binary codes to realize the most effective expression force with the least data. Finally,
the features after DR-Module was calculated by Hamming distance. The first top_k images were taken
(the average accuracy of the first top_k images) was calculated.

2 Related Work
This section will focus on deep learning and image retrieval.

2.1 Deep Learning

Deep learning is a technology to realize machine learning, which is derived from the research of
artificial neural networks. Its purpose is to build a neural network that can simulate the human brain to
analyze and understand data. Currently, the performance of existing algorithms has been surpassed in
recognition or classification in deep learning application scenarios that meet specific conditions. CNN is
also applied in various fields of life, such as food ingredients [7-8], image recognition, target detection,
and image retrieval.

The rise of VGG laid a foundation for the development of classic CNNs in 2014. The large
convolution kernel of VGG is replaced by the small convolution kernel. Its multi-layer nonlinear layer
ensures the learning of more complex patterns by increasing the deep of the network at a low cost, but its
high dimensional features can not conducive to image retrieval. ResNet, a residual network proposed by
[9], not only solved the vanishing gradient problem of the network but also reduced features to half of the
VGG features, reducing storage consumption. The DenseNet network proposed by [10] could reduce the
amount of computation per layer and enhance the utilization of features. The extracted feature dimension
was one half of ResNet, achieving high classification accuracy with low dimensional features. The latest
MobileNet proposed by [11] used the lightweight network to make a flat error rate, which solved the high
training time and became a new standard design of the network in contemporary.

CNN automatically learns the features (color, brightness, edge, texture, etc.) of images at all levels
through convolution and pooling operation, which consistent with the common sense of human
understanding of images. At this stage, CNN for the classification training model has been widely used in
the domain of image retrieval.

2.2 Image Retrieval

The study of image retrieval methods began with text-based image retrieval in the 1970s. With the
advent of the age of big data, text-based image retrieval methods can no longer meet the requirements of
the times, research has shifted from text-based to content-based on image retrieval.
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The core of CBIR lies in features extraction. Color, shape, texture [12], and structure are usually
transformed into a single feature to describe image content in early CBIR algorithms and systems. The
manual feature descriptors of CBIR, such as Gabor filter, SIFT, HOG (Histogram of Oriented Gridients)
[13] have been deeply studied in Search Engine, Medicine, E-commerce, and other fields.

To obtain the implicit relationship of a large amount of image data, generate more distinguishing and
representative features, some researches begin to focus on the close connection between deep learning
and retrieval tasks, such as trademark image retrieval [14] and medical image retrieval [15]. For the
phenomenon that the features extracted by classic CNN may not achieve the best effect, Zhou et al. [16]
effectively encoded the complementary clues of SIFT features and CNN features into the matching kernel
by integrating the matching functions of SIFT and CNN features. Li et al. [17-18] integrated features
extracted from different networks through the fusion network, which improved the classification accuracy.
Although it improves the ability of image recognition, its high dimensional features will consume more
memory. As people pursuit of the efficiency of retrieval, the Hash Code and PCA method are widely used in
image retrieval. Zhang et al. [19] proposed a weighted cross-entropy loss and loss to the minimum mean
square error structure loss function method, which can realize feature learning and Hash code
simultaneously. Hervé et al. [20] improved the PCA dimensionality reduction method and reduced the
dimensionality through the co-occurrence and relevance of visual words, so that its low-dimensional
features could be applied to large-scale image retrieval. Although Zhang and Herve embody the high
efficiency of image retrieval, it does not have the self-learning image performance based on CNN. Guo et al.
[21] proposed a CNN based hash method, which binarized the activation of the fully connected layer with a
threshold of 0 and outputted the binary results as hash codes. Then Gao et al. [22] proposed a quantitative
analysis method based on the Infomax principle in neural network for the optimization of sum pooling,
which matched well with the principal feature vector of PCA with remarkable effect. It is proved that the
improved network matching modified PCA algorithm is feasible in the field of image retrieval.

The image information expressed by the deep features obtained by the classification task is too
redundant for image retrieval and will consume a lot of resources. Therefore, it is not advisable to directly
conduct image retrieval with the deep features extracted by the existing CNN. Based on the retrieval
accuracy and retrieval efficiency, this paper proposes to use DRNet (dimensionality reduction CNN)
+PCA to obtain compression features containing more abundant image information for image retrieval, so
as to achieve higher average accuracy and retrieval efficiency.

3 The Framework of Deep Feature Secondary Dimensionality Reduction

Since 2012, CNNs have achieved remarkable results in the field of image classification through
constant enhancement in depth and structure. Based on classic CNN (ResNet50, DenseNetl21,
MobileNetV2), a new network DRNet is constructed by adding DR-Module, and the features extracted
are reduced by PCA again in this study.
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Figure 1: with the framework of secondary dimension reduction

The architecture is shown in Fig. 1. DR-Module adopts channel shuffle, group convolution, mean-
pooling long-jump connection, and other operations to express the information of the image through the
fusion and compression of deep features. Exceedingly reducing the feature dimension in CNN is not only
bad for network training, but also can reduce the retrieval accuracy. Therefore, DRNet reduces the feature
to 1/2 of the original through DR-Module, which not only reduces the feature dimension but also
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improves the retrieval accuracy after the dimension is reduced in this paper. Although the image feature is
reduced to 1/2 of the original value in the network, the storage memory and retrieval time of the 1024 d
feature are too high for image retrieval. Therefore, in this paper, the features extracted by DRNet are
dimensionalized again by PCA, and the effective information expression of a picture features as low as
128 d. In this paper, DRNet and PCA are used together for two dimensionality reduction to achieve
higher retrieval accuracy, lower memory consumption, and faster image retrieval efficiency.

3.1 DR-Module (Dimensionality Reduction Module)

The development of classic CNN is not only to improve the retrieval accuracy by deepening the
network length and widening the network width, but also to take into account the computation amount of
CNN in the convolution process and the memory of extracting features. A large number of parameters
will generate a huge amount of computation, and high-dimensional features will consume a huge amount
of resources.
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Figure 2: DR-Module design

Assuming the size of the input feature map is 7 x 7 x N, the DR-Module combines with the
advantages of classic CNNs is shown in Fig. 2, which is aiming to achieve higher retrieval accuracy and
retrieval efficiency with fewer layers and parameters. The DR- Module focuses on the benefits of channel
shuffle, group convolution, mean-pooling long-jump connection, and other operations.

In this paper, the DR-Module of CNN adopts the branching mode. The trunk uses channel shuffle to
divide the input features into four groups, where the four groups of features are compressed to be 1/4 of
the original input features. Another branch firstly mean-pooling is carried out to deep feature with
convolution kernel of 3 step size of 2, and then compress the number of channels to 1/4 of the original
number with a convolution kernel of 1 x 1; Finally, the feature map generated by splicing the trunk and
branch is 4 x 4 x (N/2).

There are several reasons for the DR-Module structure:

(1) The first advantage of grouping convolution is obtaining compression features by effective
training. Group convolution divides the datasets into several batches and then trains each batch separately
in DRNet, which is crucial for training speed when training DRNet. The second advantage is that the
model is more efficient for the reduction of parameters, and the amount of computation between features
and features is decreased.

(2) Channel shuffle strengthens the connection between features and features, enriches the
information of each channel, and makes up for the information loss caused by grouping convolution. For
example: for N d features, {1,2,3,4,5,6,7, ... N}. Since 1, 2, 3 and 4 belong to adjacent features, the
information contained in them may be the same, if convolution is carried out directly, only the adjacent
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features are compressed, and the connection between features is not enhanced. If it is divided into four
groups and channel shuffle, the features are {1,5,...2,6,...3,7,...4,8, ... N}, the features are not the adjacent
feature when convolution is done, which strengthens the relationship between features and features.

(3) The branch reduces the deep feature dimension with the mean-pool long- jump connection and 1 x 1
convolution kernel, maximum inherits deep features for the classification task and solves the Vanishing
Gradient problem of the network. Fourthly, the ReLU activation function is used to find the optimal loss
function by adding nonlinear factors, which improves the expression ability of the model.

In summary, the DR-Module enables networks to learn how to compress features with the minimum
amount of computation, obtain highly relevant features, adequately express image information with low
dimensional features, and improve retrieval efficiency and accuracy.

3.2 PCA-01

Principal Components Analysis, also known as karhunen-loeve Transform, is a technique used to
explore high dimensional data structures. PCA is used for exploration and visualization of high
dimensional datasets commonly. It can also be used for data compression, data preprocessing, and so on.
Although the dimension of decreased after PCA, it takes up eight bytes, which is too much storage
memory for the massive features extracted from numerous pictures. The features of PCA will be
standardized after dimensionality reduction, and the average value is 0. For this phenomenon, each
feature of the image is represented by either a 0 or a 1 after PCA, each feature occupies only one byte.
With the DR-Module proposed in this paper, not only can the storage space be saved, but also the
retrieval efficiency can be improved. In this paper, the features of CNNs in 1024 d will be reduced to
512,256,128,64,32,16 to find the best performance of retrieval results.
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x={x,,x,,...,x, } represents the features of the datasets, n represents n features of each image.

Firstly, calculate the mean of the features of the datasets, as shown in Formula (1); Secondly, the
covariance is calculated, such as Formula (2). The eigenvalue and eigenvectors of the covariance matrix
are calculated based on the covariance and sorted in order from large to small; Thirdly, Calculate the
value of, such as Formula (3); Finally, as is normalized, its mean value is 0, according to which can be
calculated, as shown in Formula (4). In general, if the first d' components are retained, a reconstruction
threshold t should be set so that the selection can be established as the minimum d' value, as shown in
Formula (5). In this paper, d” = 1024,512,256,128,64,32,16.

3.3 Image Retrieval Algorithm with Quadratic Dimension Reduction

The image retrieval algorithms generally include extracting image features, reducing PCA
dimensionality, calculating similarity distance, and outputting image retrieval results. Based on the
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quadratic dimensionality reduction method in this paper, the algorithm flow of image retrieval is shown in
algorithm 1, including the precision calculation method.

Algorithm 1: Image retrieval algorithm

Inputs: datasets
Outputs: Acc.
: Carry out datasets
: FM= model(datasets)
: Fpca = PCA (Fm)
Fpca_ 01 = Frea (0, 1)
d = Hamming Distances (Fpca o1)
For K=0:k
rank list2 = argsort (d)
Class_R =class_data(rank_list)
End For
10: Result = where (Class_i == Class_R, 1, 0)
11: Acc. =TT,
12: Return Acc.

A A A o e

In Algorithm 1, input datasets (image 1, image 2, image 3 and so on), call the trained model of
DRNet to extract the image features for Fym. Then, obtain the features as Fpca by Formula (3), and the Fpca
is represented by 0 or 1 based on the average value 0 get Fpca 01 which is used to image retrieve, such as
Formula (4). The Hamming distance (d) is calculated according to xor for features (Fpca 01), and Line 7 to
Line 10 show that the image sequence number(rank list2) and image category (Class R) of the first k
closest images are returned. Finally, the retrieval accuracy (Acc) is calculated according to the number of
similar images in the recovered images, Tr is denoted as No.k of relevant images, Tt is denoted as a total
No. of images.

4 Experimental Analysis

In the experiment, firstly, classic CNNs (MobileNetV2, ResNet50, and DenseNet121) were fine-
tuned to obtain the best model (mini_batch was set to 16 during the training, 30 rounds of training in
total); then the best model of classical CNNs and DRNet were combined with PCA for image retrieval;
finally, and retrieval time and retrieval accuracy were compared. This paper bases on two datasets of
Cifar100 and Caltech101, which highlights that the proposed DR-Module and PCA achieve higher
retrieval precision and retrieval efficiency.

All the networks are implemented in Keras, a popular deep learning framework, and trained/tested
on a GPU server with 16G server memory, NVIDIA GeForce RTX 2060 graphics card, 6G video memory,
240 Tensor cores, and 1920 CUDA cores.

4.1 Cifar100 Dataset

Cifar100 dataset [23] contains a total of 60,000 images in 100 categories, including seals, whales,
roses, sunflowers, bottles, bowls, camels, cattle, etc. Sixty images were randomly selected for each
category, 50 for training and 10 for testing. The average accuracy of the top10 was calculated.

This dataset bases on classic networks (ResNet50, DenseNet121, and MobileNetV2). In this study,
four extraction feature methods are classic CNN fine-tuning optimal model extraction feature (Ori),
proposed DRNet optimal model extraction feature (DR), classical CNN+PCA extraction feature (Ori-
PCA), DRNet+PCA extraction feature (DR-PCA).
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Table 1: The accuracy of Cifar100

Ori DR Ori-PCA  DR-PCA
ResNet50 0.6356  0.6290 0.6344 0.6748
DenseNet121 0.6407  0.6554 0.5469 0.6594
MobileNetV2 0.5792  0.5930 0.5454 0.6013

In the Cifar100 dataset, our experiment confirmed that the deep features extracted by classical
CNN+PCA do not improve the retrieval accuracy. On the contrary, the DRNet+PCA method proposed in
this paper has enhanced the accuracy of each network. As shown in Tab. 1, the DRNet+PCA has the best
effect in ResNet50, 4% higher than the classic CNN, and 5% higher than the classic CNN+PCA. In terms
of MobileNetV2, the DRNet accuracy increases by 1.4% compared with the typical CNN, and it also
increases by 1% when combined with PCA. The DenseNet121 DRNet+PCA retrieval accuracy is not
significantly improved compared with the DRNet and the classic CNN, but it is 11% higher than the
classic CNN+PCA, which fully demonstrates the superior effect of the combination of the two. Thus,
DRNet+PCA can achieve higher retrieval accuracy.

Table 2: The storage memory of Cifar100 (MB)

Ori DR Ori-PCA  DR-PCA
ResNet50 201 107 23.4 11.7
DenseNet121 106 51.6 11.7 5.90
MobileNetV2 110 64.2 14.6 7.36

It can be seen that features extracted by DRNet occupy 1/2 of the memory of features obtained by
classic CNN in Tab. 2, which can save half of the storage memory and improve the retrieval efficiency.
The storage space of the DRNet+PCA method only accounts for 1/18 of the classical CNN method, which
significantly reduces the memory storage space, shows the superiority of the technique in saving storage
space in this paper.

Acc.
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Figure 3: Comparison between classic CNN and DRNet based on PCA in cifar100

Fig. 3 shows the image retrieval accuracy of DRNet+PCA and classic CNN+PCA achieve the
highest when it is 128 d. Whether it is ResNet50, DenseNet121, or MobileNetV2, classic CNN+PCA is
far lower than that of DRNet+PCA. For example, ResNet50, the dimension of classic CNN is 2048
dimension, and the feature extracted by DRNet is 1024 d, so features storage memory is reduced by half.
The PCA and DRNet achieve the highest retrieval accuracy when the dimension is 128 d, which is 1/32 of
features extraction of classic CNN, significantly reducing the image features storage memory. It can be
seen that the novel method realizes high retrieval accuracy by low dimensional features in this paper.
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4.2 Caltech101 Dataset

The Caltech101 dataset was collected by [24]. It contains 9146 images, 101 classes of pictures,
including camera, chair, football, panda, big tree, watch and so on, each category contains approximately
40 to 800 images. According to the experimental method of [25], 30 images were randomly selected in
each category, 20 of which were used for model training and 10 for testing, and the average accuracy of
top10 each image of the search was calculated.

In the experiment, four feature extraction methods are classical CNN optimal model extraction
feature (Ori); DRNet best model extraction feature (DR); classical CNN+PCA extraction feature (Ori-
PCA); DRNet+PCA extraction feature (DR-PCA).

Table 3: The accuracy of Caltech101

Ori DR Ori-PCA  DR-PCA
ResNet50 0.8776 0.8861 0.8849 0.9067
DenseNet121 ~ 0.9130 0.9259 0.8697 0.9285
MobileNetV2  0.8870 0.9172 0.8815 0.9143

Table 4: Accuracy comparison with existing methods

Method Acc. (%)
Das 85
Walaa 91.5

M PCA 92.85

The experimental results of the Caltech101 dataset on the classical CNN and the DRNet are shown
in Tab. 3, and comparison with previous studies are shown in Tab. 4. Tab. 3 shows that on Caltech101
dataset, the accuracy of DRNet is higher than that of classic CNN, and the accuracy of DRNet+PCA is
higher than that of classic CNN+PCA.

According to Tab. 4, the average accuracy of the image retrieval method proposed in this paper
reached 92.85% on the Caltech101 dataset, 8% higher than that of [26], and 1.4% higher than that of [25].
The experimental results demonstrate the proposed method has higher retrieval accuracy than the
previous image retrieval research on the Caltech dataset.

The research by Walaa et al. did not consider the retrieval efficiency and storage memory of image
retrieval. It can be seen the storage memory studied in this paper is much lower than the conventional
features storage memory in Tab. 5. Fig. 4 shows, the DRNet+PCA in dimension for 128 d of the image
retrieval accuracy is the highest, retrieval accuracy is much higher than 1024 d, achieving higher
precision by lower dimensions. Compared with the classic CNN, the DRNet not only reduces the size but
also improves the retrieval accuracy.

Table 5: The storage memory of Caltech101 (MB)

Ori DR Ori-PCA  DR-PCA
ResNet50 98.4 54.4 11.7 5.94
DenseNet121 55.4 25.6 5.94 2.98

MobileNetV2 51 32.2 7.43 3.72
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Figure 4: Comparison between classic CNN and DRNet based on PCA in Caltech101

5 Conclusion

In this paper, a new DR-Module is set based on classic CNNs, which achieves high retrieval
accuracy by low-dimension features. The PCA-01 method enhances the efficiency of image retrieval by
reducing memory cost. In this scheme, firstly the DR-Module is used for features fusion of image features,
and the compression ratios are 50% as before. Then PCA is utilized to reduce the dimension of the DRNet
features again, and the dimension reduction features are set to 0 or 1 at the same time. The storage
memory of the 0 or 1 is much lower than that of conventional features. The average accuracy of the novel
framework is 92.85% in this paper when the feature dimension is 128 for the small dataset Caltechl101,
which is higher than the previous works. Experimental results strongly demonstrate our method achieves
higher retrieval accuracy and costs lower storage space. In future work, the research group will continue
to improve features extraction and optimize the retrieval features for image retrieval, to achieve better
retrieval performance for massive datasets.
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