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Abstract: In large-scale image retrieval, deep features extracted by Convolutional 
Neural Network (CNN) can effectively express more image information than those 
extracted by traditional manual methods. However, the deep feature dimensions 
obtained by Deep Convolutional Neural Network (DCNN) are too high and 
redundant, which leads to low retrieval efficiency. We propose a novel image 
retrieval method, which combines deep features selection with improved DCNN 
and hash transform based on high-dimension features reduction to gain low-
dimension deep features and realizes efficient image retrieval. Firstly, the 
improved network is based on the existing deep model to build a more profound 
and broader network by adding multiple groups of different branches. Therefore, 
it is named DFS-Net (Deep Feature Selection Network). The adaptive learning 
deep features of the Network can effectively alleviate the influence of over-fitting 
and improve the feature expression of image content. Secondly, the information 
gain rate method is used to filter the extracted deep features to reduce the feature 
dimension and ensure the information loss is small. The last step of the method, 
hash Transform, sparsifies and binarizes this representation to reduce the 
computation and storage pressure while maintaining the retrieval accuracy. Finally, 
the scheme is based on the distinguished ResNet50, InceptionV3, and 
MobileNetV2 models, and studied and evaluated deeply on the CIFAR10 and 
Caltech256 datasets. The experimental results show that the novel method can 
train the deep features with stronger recognition ability on limited training samples, 
and improve the accuracy and efficiency of image retrieval effectively.  
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1 Introduction 
     With the rise of artificial intelligence, pattern recognition technology is widely applied in social life. 
In particular, computer image retrieval technology which is favored by people, because it is intuitive, rapid, 
and accurate characteristics [1]. In recent years, content-based image retrieval (CBIR) [2–3] has developed 
quickly and achieved a mass of research works. 
    The retrieval is usually the process of comparing the identical or similar features of objects to obtains 
multiple images of the same or similar kind, which involves the extraction method of image features and 
the selection of features. The computer is susceptible to the effects of the environment when retrieving 
objects, such as the change of illumination, proportion, angle of view, etc. Meanwhile, there are significant 
intra-class variations and small inter-class differences in the same category of images, which becomes a 
problem that must be solved in image retrieval. If the underlying features (color, texture, and shape) are 
directly selected for description, the difference between the classes is minimal, and the retrieval is 
inefficient with these features. As thus, for image retrieval of similar objects, invariant local features with 
excellent anti-interference performance are usually selected, such as SIFT (Scale-Invariant Feature 
Transform) [4]. But in recent years, these features expressed by the image content will not be able to reflect 
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human perception high-level semantic concepts, the feature expression model dominated by DCNN (Deep 
Convolutional Neural Network) as the mainstream can significantly improve the retrieval accuracy when 
applied to the same category of image retrieval [5–7]. 
    Although the features extracted by DCNN can better reflect the image semantics, its high-dimensional 
features and redundancy lead to poor retrieval performance. It is necessary to train the network model before 
feature extraction. To better reflect the high-level content of the extracted image features, this paper 
proposes a method to improve the structure of DCNN and train the network models to improve the accuracy 
of the models. Even so, there are still high-dimensional features and high redundancy issues. Therefore, in 
the experiment, The Information Gain Rate is adopted to filter features according to the correlation between 
the features, and high-dimensional features reorder from high to low according to the influence degree of 
the expression image content. Finally, the hash dimension reduction of these features not only improves the 
efficiency of image retrieval but also reduces the amount of computation and storage space. 
   The rest of this article is arranged as follows: the second part discusses the relevant work. The third part 
introduces the DFS module of the deep convolutional neural network and explains how its design principle. 
The fourth part is the experiment and analysis. Finally, a comprehensive assessment of the proposed novel 
method is performed by using an improved network and hash in Chapter 5. 

2 Related Work  
This section describes the current state of research on DCNN and image retrieval.  

2.1 Deep Convolutional Neural Network  
Since 2003, the features extracted by the SIFT description operator [8] based on the local description 

have superior performance in the image retrieval direction and translation, so the method has been widely 
adopted and studied. Krizhevsky et al. proposed an improved DCNN model for image recognition tasks 
and used ReLU as the activation function of DCNN to solve the problem of gradient dispersion of Sigmoid 
in the deep network [9]. In the meantime, to avoid the fuzzy effect of average pooling, the whole network 
uses max-pooling and a smaller pooling core to instead of average pooling, so the output of the average-
pooling layer produces overlap and coverage, which enriches the diversity of features. In 2014, Oxford 
University improved VGG based on AlexNet. The characteristic of the network is to repeatedly use 
convolution kernels of the same size to extract more complex and expressive features. Besides, the number 
of network layers is deepened to improve the feature expression effect of image content.  

Deepening the structure of the network is beneficial to the extraction of image features, but merely 
increasing the number of layers of the system will lead to learning stagnation and higher training errors. 
The residual module in the Residual Network (ResNet) solves such problems well, effectively trains deeper 
network, and extracts features from different layers more abundantly [10]. Also, the deeper the network 
features are, the more abstract they are, the more semantic information they have, and the better the retrieval 
effect is. In GoogLeNet [11] and its improved network, horizontal convolution arrangement design is 
adopted, grouping and parallel convolution are selected, and multiple convolutions of different sizes are 
used to extract information of various clusters in the image. In this way, convolution and pooling of different 
scales are integrated. A module on one layer can obtain information on multiple levels, and then multi-scale 
features can be fused to form new features. In the next module, new features can also be extracted from 
different scales for multidimensional feature fusion. 

2.2 Image Retrieval  
In the early years, it found that image content can be described by transforming colors, shapes, textures 

[12], or structures as a single global feature representation. For example, Dong proposed an image retrieval 
method based on the texture features of the target region according to the Otsu algorithm and the Local 
Binary Pattern (LBP) algorithm [13]. As time goes by, it is found that the traditional local descriptors and 
their deformation both have a common problem, that is, these features lack learning ability, which limits 
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the expression ability of their image content and makes it difficult to adapt to a variety of datasets. Sharma 
[14] proposed a new class of data-independent locality-sensitive hashing (LSH) algorithms based on the 
fruit fly olfactory circuit. In this method, the original data of images read directly, and a new hash algorithm 
is used to provide better candidate ranking in a high dimensional space and to quickly find candidate 
neighbors for ranking in a low dimensional area. However, the image data read by this method is the low-
level image pixels recognized by the computer, which fails to extract the deep features of images. Although 
the calculation speed is fast, it is not suitable for large pixel images. To express the high-level semantic 
concept of human perception through the extracted features, Sun et al. [15] applied deep learning to image 
retrieval. In this paper, the author proposed to identify and retrieve the Chinese medicine pictures by using 
the convolutional neural network and added a ternary loss value to retrieve similar images. Nevertheless, 
the VGG19 model employed in this scheme in the excessive use of Fully-Connected (FC) layers, which 
contained a large number of parameters that made the training speed slow, easy to over-fit, and occupied a 
large number of memory resources. Ren [16] proposed that a deep convolutional neural network was used 
to extract the deep features of images. PCA algorithm is adopted to reduce the feature dimension and 
minimize the information loss, which is an excellent solution to the problem of high feature latitude and 
ample storage space extracted from the network. 

In this paper, a modification scheme of network architecture is proposed, that is, adding the DFS 
module to the network, extracting features of different scales and merge them into new features after the 
same convolution, to improve the performance of DCNN descriptor in image retrieval task. Through 
training, the image features extracted by the network and then reordering them according to the degree of 
relevance with the information gain rate, and the redundancy of image features can reduce through 
appropriate dimensionality reduction. The objective is to minimize the Euclidean distance between each 
image representation and its nearest representation. These signals are easy to compress, dimensionality 
reduction, and even faster retrieval. We aim to generate low-dimensional image representation, improve 
retrieval accuracy, and reduce memory. 

3 Algorithm Implementation  
To obtain features with more complementary features and effectively improve the accuracy and 

efficiency of retrieval, we propose a new network, DFS-Net, to promote the expression ability of the 
network and reduce the difficulty of extraction, and then hash the extracted features to reduce storage 
memory and speed up retrieval. For one example, see Fig. 1 below. 
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Figure 1: The DFS-Net for image retrieval  

The key to DFS-net is to use a multi-scale feature selection module. By learning more and more 
differentiated features to have the network adaptive learning deep features and effectively improve the 
retrieval accuracy. To further enhance the retrieval efficiency and reduce the storage requirements, we hash 
the deep features of the image. However, the direct hashing will reduce retrieval accuracy, so we choose 
the feature selection algorithm (information gain rate) based on feature relevance to reorder and reduce the 
dimension of features. On the premise of low information loss, the spatial size is reduced from the 
perspective of lowering feature redundancy. To ensure the effectiveness of DFS-Net and lessen the cost 
resources, the network design will follow the following principles: 

Principle 1: The network framework must be generic, enabling it to be implemented on classic models 
(ResNet50, InceptionV3, etc.) and widespread public datasets. 
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Principle 2: Taking full account of the hardware’s carrying capacity, such as memory and video 
memory overhead. 

3.1 DFS-Module  
Most of the deep layers of the classical convolutional neural network connect to the full connection 

layer or the single convolutional pooling layer, which to some extent, will cause the loss of image feature 
information and is not conducive to the extraction of image features, thus leading to weak image retrieval 
effect. Therefore, this paper adopts the DFS (deep feature selection module) to convolute simultaneously 
on multiple branches and scales, which can extract features of different sizes is shown in Fig. 2. Rich 
features make classification and judgment more accurate. 

28x28x192

1x1

3x3

1x3 3x1 3x1 1x3

Avgpool

1x1

28x28xC1 28x28xC2 28x28xC3 28x28xC4

 
           Figure 2: The deep feature selection module 

The network structure since VGG16 mainly includes the convolutional computing layer and the max-
pooling layer. However, the large-scale convolution kernels require a large number of parameters to be 
trained in deep convolution. For example, there are more than 1.8 million parameters that need to prepare 
if 28 × 28 × 192 features convolve with 5 × 5 convolution with 384 filters, and if 3 × 3 convolution takes 
the place of 5x5 convolution is used, require the training of the parameter are halved, even so, the number 
of parameters to be trained is still quite large. In order to reduce these complex data effectively, a 1 × 1 
convolution operation is first used to compress the output features of the network before entering the DFS 
module, to reduce the computational complexity of subsequent convolution operation while eliminating 
redundancy (principle 2). Max-pooling can be used to filter useless information in the shallow network, but 
it will lose too many high-dimensional details in a deep network. When a convolution neural network, after 
repeatedly convolution and pooling of the input image, some unique information in the image cannot be 
collected or extracted, and the information difference is weak. Therefore, average pooling is selected in the 
module to replace the max-pooling, to prevent high-level information loss caused by deep network pooling 
and ensure the integrity of information.  

By using the principle that the sparse matrix is decomposition into dense matrix calculation, the 
convergence speed is accelerated, and the decomposition of the feature dimension is realized. When the DFS 
module extracts features on multiple scales, the output features are no longer uniformly distributed, but highly 
correlated features cluster together, that is, multiple sub-feature sets of dense distribution. This feature set is 
a set of features with a strong correlation, which are gathered together to weaken the irrelevant non-key 
features and reduce the redundant information of the output features. The natural convergence speed is faster 
when taking the feature set with high classification accuracy as the input of reverse calculation. 
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3.2 Hash Function 
The retrieval time is shortened after the high dimensional features are hashed down directly, but the 

accuracy is not ideal. Therefore, this work first uses the information gain rate to rearrange and reduce the 
dimension of features. The information gain rate uses the ratio of the node information gain to the node 
split information metric; that is, the Gain Rate of each attribute related to the classification evaluation. 
Therefore, the information gain rate can not only make the features of the partition more different but also 
make up for the defects of the information gain algorithm (The information gain always tends to choose 
features with more attribute values). 

The relevant formula of Information Gain Rate is as follows:  

H(D) = −∑ |𝐶𝐶𝑛𝑛|
|𝐷𝐷|

𝑁𝑁
𝑛𝑛=1 𝑙𝑙𝑙𝑙𝑙𝑙2

|𝐶𝐶𝑛𝑛|
|𝐷𝐷|

                                         (1) 

g(D, A) = H(D) − H(D|A)                                         (2) 
𝑔𝑔𝑅𝑅(𝐷𝐷,𝐴𝐴) = 𝛼𝛼 ∙ 𝑔𝑔(𝐷𝐷,𝐴𝐴)                                        (3) 

α = 1
𝐻𝐻𝐴𝐴(𝐷𝐷)                                         (4) 

𝐻𝐻𝐴𝐴(𝐷𝐷) = −∑ |𝐷𝐷𝑖𝑖|
|𝐷𝐷|

𝑚𝑚
𝑖𝑖=1 𝑙𝑙𝑙𝑙𝑙𝑙2

|𝐷𝐷𝑖𝑖|
|𝐷𝐷|

                                         (5) 

In (1), there is the sample set D, assuming that the sample set can be divided into N categories, and the 
probability of each class is |𝐶𝐶𝑛𝑛|

|𝐷𝐷|
, where |𝐶𝐶𝑛𝑛| represents the number of samples of type N, and |D| represents 

the total number of sample sets. In (2), g(D, A), it means using feature A to partition the information gain of 
the data set. 𝑔𝑔𝑅𝑅(𝐷𝐷,𝐴𝐴) represents the information gain rate, which is the product of the penalty parameter α 
and the information gain. Formulas 4 and 5 are the specific expressions of parameter 𝛼𝛼. 

According to the information gain rate, the feature set is reordered. Then, the ordered features are 
converted into binary feature information for similarity recognition. The hash feature descriptor can be 
regarded as a compression expression based on visual content, which has the advantages of small 
computation and high matching speed. The algorithm flow of hash is shown in Algorithm 1. 

Algorithm1: Features of the hash 
Inputs:  𝐹𝐹  =   {𝐹𝐹1, 𝐹𝐹2, ⋅⋅⋅, 𝐹𝐹𝑀𝑀} 

Outputs:  The hash form after feature optimization.  

1:   Hash pretreatment: 

2:          𝐹𝐹𝐼𝐼  =  𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐹𝐹) 

3:         Feature set reordering 

4:    Determine the dimension of image features, expressed as  C ϵ 𝑅𝑅^(1 × 𝑏𝑏)  

5:    Calculate the mean value of the specified dimension θ. 

6:    Compare the feature values according to formula (7), C(i, j) = �1,  θ > C(i, j)
0,  θ ≤ C(i, j) 

7:    The above result is spliced to form a b-bit binary sequence, expressed as 1bRH ×∈ . 

For example: First, the image features are extracted by the DFS-Net and represented by F (M = 2048 
or M = 1280). Secondly, feature optimization is processed in two steps: First, according to the information 
gain rate, the deep features are reordered and reduced, then low-dimensionality features are hashed, and the 
feature values of each dimension are compared with the average value less than or equal to 0 and greater 
than or equal to 1. Finally, the hamming distance is utilized for image retrieval. 
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4 Experimental Results and Analysis  
4.1 Experimental Setup  
4.1.1 Datasets  

Dataset 1: CIFAR-10 consists of 10 categories of objects, each of which consists of 6,000 32 × 32 
color images, with 60,000 images in total. It shows in Fig. 3. 

 
Figure 3: CIFAR-10 example 

Dataset 2: Caltech256 obtains the data set after removing the cluttered data and divides the images 
into 256 categories, each of which has more than 80 images. For example, electrical appliances, plants, 
animals, etc., the number of images of each type is not equal is shown in Fig. 4. 

 
       Figure 4: Caltech256 example 

4.1.2 Comparative Experiment (Based on the Same Dataset)  
Scheme 1: Training the network model (ResNet50, InceptionV3, and MobileNetV2) to extract the 

deep features of the image and retrieve them directly by using Euclidean distance. 
Scheme 2: Training the DFS-Net model, extracting the deep features of the images, and using the 

Euclidean distance for direct retrieval. 
Scheme 3: The DFS-Net model is trained to extract the deep features of the image, processing 

Information Gain Rate and the hash of the features, and using a hamming distance to retrieve the image. 
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4.2 Evaluation Indicators 
In this paper, Mean Average Precision (MAP) is used as the evaluation index. AP (Average Precision) 

is an index to measure the accuracy of each kind of image retrieval. MAP, which is used to measure the 
accuracy of image retrieval of all types, is the average value of AP. The more related images are retrieved, 
the larger the MAP value may be. If the relevant image can’t be found, the MAP defaults to 0.  

4.3 Experimental Evaluation and Analysis  
In this experiment, the Softmax classifier on the last layer is updated, and all layers of the network are 

fine-tuned to verify the effectiveness of DFS-Net in a short time. The performance results of the DFS-Nets 
are shown in Tab. 1 and Tab. 3, indicating the accuracy of each network model (Ori stands for the original 
network.). Tab. 2 and Tab. 4 show the experimental results based on the MAP evaluation criteria. The 
methods proposed in this paper are implemented in three different networks, and three comparative methods 
are proposed. Based on DFS-Net-I and DFS-Net-R, the extraction dimensions are 16, 32, 64, 128, 256, 512, 
1024, 2048. The extraction dimensions based on DFS-Net-M is 16, 32, 64, 128, 256, 512, 1024, 1280. Also, 
the feature dimensions of each method can achieve the best retrieval accuracy. In these three networks, the 
retrieval accuracy is the highest when the dimension is about half of the original, which proves that our 
method has the best retrieval accuracy and efficiency. 

Table 1: Improved model accuracy of network training with CIFAR-10 

Model 1 Accuracy (%) vs. Ori (%) 
DFS-Net-R  87.10 +0.20 
DFS-Net-I 88.80 +1.50 
DFS-Net-M  83.40 +1.50 

Table 2: Experimental retrieval accuracy with CIFAR-10 

DCNN Accuracy (%) vs. Scheme 1 vs. Scheme 2 
DFS-Net-I 87.93 11.45 2.76 
DFS-Net-R 84.60 22.32 8.56 
DFS-Net-M 77.74 9.55 7.95 

Table 3: Experimental retrieval time with CIFAR-10 

DCNN time(s) vs. Scheme 1 vs. Scheme 2 
DFS-Net-I 12.77 –0.08 –0.11 
DFS-Net-R 12.52 –0.51 –0.47 
DFS-Net-M 12.66 –0.54 –0.47 

In the Inception network provided by the official website, the method proposed in this paper has the 
best retrieval accuracy and efficiency. The retrieval accuracy of DFS-Net-I is 87.93%, which is 16.45% 
higher than that of scheme 1. In the improved DFS-Net-R and DFS-Net-M, accuracy is also increased by 
12.32% and 9.55%, respectively.  It can be seen that after the deep feature selection module is added to the 
network, the training model is optimized, and the retrieval efficiency is significantly improved. Compared 
with scheme 3, the unimproved network extracts feature and processes them with information gain rate and 
hash. Its retrieval accuracy is lower than that of DFS-Net, not to mention the retrieval results of the 
comparative method presented here. It confirmed that the deep features extracted by the improved network 
could better express the information content of the image. 
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Inception ResNet MobileNet  
Figure 5: Experimental results based on classical networks  

Experiments show that the DFS-Net-I is the optimal model, and the retrieval accuracy reached to 
83.91%, which is 6.92% higher than scheme 1 in all networks. The efficiency of DFS-Net-R and DFS-Net-
M, increased by 17.1% and 8.03%respectively. It can be seen that after the deep feature selection module 
is added to the network, the training model is optimized, and the retrieval efficiency is significantly 
improved. By comparing with experimental Schemes 2 and 3, it can be seen that the improved network has 
a great contribution to improving the efficiency of feature retrieval. 

From the experimental results in Tab. 3 and Tab. 6, it can be found that by comparing the DFS-Net 
direct features extraction retrieval effect with the unimproved network features extraction retrieval effect, 
and it is proved that the addition of deep feature selection module in the network is conducive to the 
extraction of more distinguishing features, thus improving the retrieval accuracy. 

Table 4: Improved model accuracy of network training with Caltech256 

Model1 Accuracy (%) vs. Ori (%) 
DFS-Net-R  81.29 +0.74 
DFS-Net-I 85.54 +0.69 
DFS-Net-M  80.07 +0.10 

Table 5: Experimental retrieval accuracy with Caltech256 

DCNN Accuracy (%) vs. Scheme 1 vs. Scheme 2 
DFS-Net-I 83.91 +6.92 +1.630 
DFS-Net-R 76.74 +17.10 +11.28 
DFS-Net-M 74.20 +8.03 +3.29 

Table 6: Experimental retrieval time with Caltech256 

DCNN time(s) vs. Scheme 1 vs. Scheme 2 
DFS-Net-I 64.71 –6.41 –3.09 
DFS-Net-R 63.33 –4.26 –4.12 
DFS-Net-M 64.96 –2.21 –3.81 

Our   method, which reprocesses the features extracted by the improved network, takes the information 
gain rate as the standard, tested the strength of each feature recognition ability, and then reordered the 
features according to the strength order of feature recognition ability, which is helpful to remove redundant 
features. The features of different network extractions are improved by using Information Gain Rate and 
hash methods, which enhance the retrieval performance to various degrees. However, generally speaking, 
after the reduction of the Information Gain Rate and hash dimension, the retrieval efficiency of the feature 
extracted by the improved network is further improved. Meanwhile, the time needed and feature dimension 
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required are both low. As shown in Figs. 5 and 6. The experiments show that our method can be applied to 
various networks.   

Inception ResNet MobileNet
 

Figure 6: Experimental results based on classical networks  

5 Conclusion  
This method reconstructs DCNN architecture and uses deep learning to extract features with strong 

recognition ability. The DFS-Net with multiple convolutional branches, which based on the classical 
network model, is added to form a deep feature selector so that it can perceive more details of the image. 
At the same time, the hash transform is introduced, and the corresponding dimensionality reduction strategy 
is proposed to control the calculation cost. Information Gain Rate, as the criterion of feature selection, can 
effectively eliminate the redundancy, extraction, and efficient features of the image correlation. The 
features of improved network extraction are further improved after Information Gain Rate and hash 
transform. Finally, DFS-Net based on the ResNet50, InceptionV3, and MobileNetV2 is thoroughly 
investigated and evaluated on the Cifar10 and Caltech256 datasets, the retrieval accuracy is higher than that 
of unmodified networks. The comprehensive experiments demonstrate that the presented novel method can 
effectively improve the retrieval accuracy and efficiency of small and medium-size datasets. In future work, 
we will further study more advanced network improvement strategies and hash methods for image retrieval. 
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