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Abstract: In recent years, with the rapid growth of generative adversarial 
networks (GANs), a photo-realistic face can be easily generated from a random 
vector. Moreover, the faces generated by advanced GANs are very realistic. It is 
reasonable to acknowledge that even a well-trained viewer has difficulties to 
distinguish artificial from real faces. Therefore, detecting the face generated by 
GANs is a necessary work. This paper mainly introduces some methods to detect 
GAN-generated fake faces, and analyzes the advantages and disadvantages of 
these models based on the network structure and evaluation indexes, and the 
results obtained in the respective data sets. On this basis, the challenges faced in 
this field and future research directions are discussed. 

Keywords: Generative adversarial networks; fake faces detection; deep learning 

1 Introduction 
     With the rapid development of digital images, people can not only perform dermabrasion, 
manipulation and other operations on existing faces, but also generate a completely fake face. In 
particular, some generative adversarial networks (GANs), such as PGGAN [1] and StyleGAN [2] can 
generate very realistic faces. The fake faces are difficult to distinguish in a short period of time, as shown 
in Fig. 1. Nowadays, the media network is so developed and human faces are widely used in biometric-
based face recognition and authentication. Once fake faces and videos are widely spread on the Internet, 
some moral problems, social problems and security problems (e.g., fake news, fraud) may arise. 
Therefore, the authenticity of images is increasingly valued by people. 

The traditional fake faces were mainly caused by tampering on the original image. Any images have 
been tampered with leave traces, leading to changes in statistical data. So, some researchers detect the 
fake faces based on these statistics. For example, the paper [3] detected tampered faces through Binarized 
Statistical Image Feature (BSIF), Local Binary Patterns (LBP), Histogram of Gradients (HOG) and Scale 
Invariant Feature Transform (SIFT). The accuracy of this method exceeds 83.8%. Next, the deep learning 
is applied to detect the falsified image. For example, using the classic AlexNet convolutional neural 
network to learn features from the training data to detect tampering images. The paper [4] proposed a 
constrained convolution layer, which could better learn features and improve the accuracy. MesoNet [5] 
proposed that the features are extracted through the original convolutional layer not enough to classify the 
images. So, the author replaced the first two layers of ordinary convolution with the improved Inception 
module [6] to extract more features. Xception [7] was a further improvement based on Inception-v3, 
which proposed a deep separable convolution. There is a good detection result. The paper [8] proposed a 
method for detecting fake faces in video using RNN. These methods can detect tampering images with a 
high accuracy. But, in recent years, with the rapid development of GANs, many fake faces are generated 
by GANs. Since GANs generate faces from a random vector, the generated faces do not carry any 
tampering information. As a result, the methods above have failed to detect the fake faces. Therefore, 
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researchers have begun to use the deep learning to learn the main differences between the real faces and 
the fake faces directly. This paper wants to review and summarize these deep learning-based methods. 

In order to better understand the following detection methods, the principle and development of 
GANs will be explained in Section 2. Then, some methods for detecting fake faces generated by GANs 
will be described in Section 3. Section 4 describes the possible challenges and possible future research 
directions. Section 5 concludes the paper. 

 
Figure 1: Faces generated by PGGAN 

2 Principle and Development of GANs 
The generative adversarial networks (GANs) was first proposed in 2014 by Goodfellow [9]. The 

basic model is shown in Fig. 2. One simple idea is using two models to fight each other. One of model is 
generator G and the other is discriminator D. Then, it needs to input a random noise z obeying the prior 
probability to the G, and then the G outputs the data as G(z). Finally, the G(z) and the real data P(data x) 
are added to the discriminator. After the training, the D network judges whether the input data is real data 
or generated by the generator. The D improves its discriminating ability through continuous learning, and 
the G makes the data generated by itself more realistic through continuous learning. So as to deceive the 
discriminator, G and D fight each other, making their ability stronger and stronger, and finally form a 
relatively stable state. At this point, the discriminator can't recognize the data generated by the generator, 
and achieve the purpose of falsification. 

 
Figure 2: Basic model of GANs 

The initial GANs has some flaws. Firstly, the training is unstable. It is difficult to guarantee the 
synergy between G and D. Secondly, the fake images lack diversity. Finally, it does not have a uniform 
effective criterion for the quality of the generated image. Therefore, several improvements to GANs have 
been proposed recently. For example, Radford et al. [10] proposed DCGAN (deep convolutional GAN). 
DCGAN mainly improves the original GANs in the network structure. It replaces generator and 
discriminator with two convolutional neural networks, which improved the stability of the network, but it 
did not solve the problem fundamentally. Mao et al. [11] proposed LSGAN, which mainly changed the 
objective function of GANs from cross entropy loss to least squares loss. Arjovsky proposed WGAN 
(Wasserstein GAN) [12], which replaced the JS distance with Wasserstein distance (EM distance). 
WGAN can fundamentally solve the problem of instability. Gulrajani et al. [13] proposed that WGAN-GP 
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which can improve WGAN. EBGAN [14] and BEGAN [15] can also generate very realistic face pictures. 
TeroKarra et al. [1] proposed PGGAN (Pro-GAN), PGGAN and StyleGAN [2] used a step-by-step 
method to generate high-quality, high-resolution images. Other GANs such as CycleGAN [16], StarGAN 
[17] can perform image-to-image translation and style altering. 

3 Deep Learning-Based Methods for Detecting GAN-Generated Fake Faces 
Due to most discriminators and generators used in GANs are mainly based on CNN, it is reasonable 

to use CNN-based methods to detect the fake faces.  

3.1 Methods for PGGAN-Generated Fake Faces 
PGGAN can generate the fake faces with almost the highest quality and resolution among the 

existing GAN models. The generated fake faces are very difficult to identify for people. Therefore, many 
researchers are committed to design the detection method for PGGAN-generated fake faces. 

Nhu et al. [18] employed VGG-Net structure for detection. The net-work is shown in Fig. 3. This 
structure consists of five modules. Each module has a convolutional layer and a max-pooling layer. They 
are used for feature extraction. Then, the feature maps input to fully-connected layer. Finally, the softmax 
layer is used to output the possibility of being a true image. 
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Figure 3: Network structure proposed by Nhu et al. 

Mo et al. [19] proposed that the main differences between the real faces and the fake faces were 
reflected in the residual field. So, firstly, they images are processed with high-pass filter. The resulting 
residuals are input to three-layer groups. Each group includes a convolutional layer and a max-pooling 
layer. The out-feature maps of the last group are aggregated and input to two fully-connected. Finally, the 
softmax layer is used to output the possibility of being a true image. 

The results of the above two detection methods are shown in Tab. 1. The performance of the second 
method is better obviously. 

Table 1: Test results of two methods 

Method Training data set Testing data set Accuracy 

Nhu et al. CelebA + PGGAN PGGAN 80% 

Mo et al. CelebA + PGGAN PGGAN 96.3% 

3.2 General Methods for GAN-Generated Fake Faces 
In most cases, people don’t know the source of fake images from which GAN model. So, it is 

desirable to design a general method for detecting fake faces generated by most of GAN models.  
Hsu et al. [20] proposed the deep forgery discriminator (Deep FD) structure, as shown in Fig. 4. It 

can detect images generated by various GANs, and is no longer limited to images generated by a 
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particular GANs. The paired data is input into the feature extraction network. The network updates the 
parameters of the network through the contrast-loss [21]. In this way, the extracted features will be more 
perfect. In the feature extraction network, joint discriminative feature learning method is employed 
(Jointly Discriminative Feature Learning). After the features are extracted, these feature maps are fed into 
the discriminator to detect the authenticity of the image.  

During training, the author used CelebA as the data set of the real face and used the false face 
generated by DCGAN, LSGAN, WGAN, WGAN-GP and PGGAN as the fake face data set. The test 
results were shown in Tab. 2. 
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Figure 4: Framework proposed in [20] 

Zhuang et al. [22] proposed a coupled network with two-step pairwise learning. As shown in Fig. 5, the 
idea is similar to the idea of the above article. The author of this article believes that the contrast-loss is not 
stable, so the author used triplet-loss [23] to update the parameters of the network. The author also pro-
posed that since the fake faces generated by different GANs may have different characteristics, the original 
one-stream CNN cannot extract all the features. To solve this problem, the paper proposed to use the 
coupled deep neural network (CDNN). The network includes a 3 × 3 convolution kernel and a 5 × 5 size 
convolution kernel. The 3 × 3 convolution kernel is used to extract local false face features, and the 5 × 5 
size convolution kernel is used to capture the global fake face features. Finally, these feature maps are input 
into a classifier that includes two fully connected layers to obtain the final prediction result. 
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       Figure 5: Framework proposed in [22]
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The results of the above two methods are shown in Tab. 2. Precision is the proportion of the correct 
sample predicted in the set of samples that are predicted to be positive. Recall is the proportion of the correct 
sample predicted in the actual positive sample. It can be seen from the results that the two detection methods 
not only can detect images generated by different GANs but also have better performance. 

Table 2: The test results of the above two methods were tested on LSGAN, DCGAN, WGAN, WGAN-
GP, PGGAN respectively 

Method 
Hsu et al.  Zhuang et al.  

Precision Recall Precision Recall 
LSGAN 0.947 0.922 0.981 0.956 
DCGAN 0.871 0.844 0.986 0.986 
WGAN 0.838 0.847 0.895 0.881 

WGAN-GP 0.818 0.835 0876 0.881 
PGGAN 0.926 0.918 0.951 0.936 

By studying the structure of GANs, References [24–25] found some invisible differences between 
real faces and GAN-generated fake faces. The differences of the color spaces were analyzed, namely, 
RGB, HSV and YCbCr. The chi-square distance was used to evaluate the difference between the image 
statistics generated by the GANs and the real image statistics. The larger the chi-square distance, the more 
obvious the difference. So, researchers began try to extract features from the color spaces. 

In [26], the features were extracted from the color spaces and then input into the network for 
detection. The framework is shown in Fig. 6. This structure used the co-occurrence matrix [27] widely 
used in image texture analysis as feature descriptors. For a given image, the features of the color 
components were first calculated and then connected into a feature vector. because high-frequency 
filtering can be better captured by high-pass filtering. So, during the feature extraction process, the image 
was processed by high-pass filtering. Finally, a classifier was trained to detect whether the input image is 
real or generated by the GANs. In the selection of the training data set, the real face selected CelebA and 
the fake face selected the fake face generated by DCGAN, W-GAN, and PGGAN. After training, the final 
test results were ideal, and higher accuracy can be obtained, which can reach more than 95%. 
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            Figure 6: Framework proposed in [26] 
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The above methods do not consider the robustness of the model. In real life, most of the pictures 
transmitted on the network are post-processed pictures (such as JPEG compression, Gaussian noise, etc.). 
This increases the difficulty of detection. 

He et al. [28] proposed that common post-processing attacks will make the abnormal traces in the 
RGB space unreliable, while the statistical characteristics of chrominance information in other color 
spaces may be more distinguishable and robust. Therefore, the author exploited a well-designed shallow 
CNN to extract the features of the chrominance component, and then Random Forest (RF) [29] for 
classification. The flowchart of this method is shown in Fig. 7. Finally, the author did experiments on six 
attack methods such as JPEG compression, Gaussian noise, and bilateral filtering, and achieved very good 
results, proving that the model has good robustness. 
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Figure 7: The flowchart of [28] 

Through experimental and theoretical analysis, Liu et al. [30] got the conclusion that CNN mainly 
extracts regions with rich texture (such as skin) when performing fake face detection. Then, through 
further experiments they came to this conclusion that the global texture can effectively improve the 
robustness of the result. The main architecture of this method is shown in Fig. 8. The author uses the 
gram matrix to extract the global image texture feature and then detects it. Finally, the author tested the 
robustness and generalization of the model, and obtained very good results. 
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Figure 8: The flowchart of [30] 

4 Challenges and Future Research Directions 
The main challenges in the field of detecting fake face images generated by GANs and the problems 

to be solved are as follows: 
(i) Generalization of detectors: The development of GANs is rapid and new GANs may appear in 

the future. Detectors should detect images generated by new GANs. So, researchers can 
consider improving the generalization of detectors. 
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(ii) Robustness of detectors: The fake faces may be compressed on online me-dia. So, researchers 
can consider improving the robustness against compression for the detectors. 

(iii) Mobile device detection: Due to the large amount of computation, existing detectors are not 
suitable for mobile applications. Researchers can consider improving the computational 
complexity of the detectors. 

(iv) Large data set: Currently, there are few large data sets available to the public. 

5 Conclusion 
This paper mainly introduces several detection methods for detecting fake faces generated by GANs. 

From the results, it can be concluded these detection methods have high accuracy. Although the GANs 
are developing faster and faster. Various GANs may emerge in the future. They may generate higher 
quality fake faces. But we can get inspiration from the above methods. The GANs cannot completely 
describe many intrinsic properties of real images, such as differences in color spaces. So, trying to find 
the differences between fake images and true images. Then, according to the differences develop more 
advanced detectors.  
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