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The location of knot points and estimation of the number of knots are undoubtedly known as one of the most difficult problems in B-Spline curve
approximation. In the literature, different researchers have been seen to use more than one optimization algorithm in order to solve this problem. In this
paper, Big Bang-Big Crunch method (BB-BC) which is one of the evolutionary based optimization algorithms was introduced and then the approximation
of B-Spline curve knots was conducted by this method. The technique of reverse engineering was implemented for the curve knot approximation. The
detection of knot locations and the number of knots were randomly selected in the curve approximation which was performed by using BB-BC method.
The experimental results were carried out by utilizing seven different test functions for the curve approximation. The performance of BB-BC algorithm was
examined on these functions and their results were compared with the earlier studies performed by the researchers. In comparison with the other studies, it
was observed that though the number of the knot in BB-BC algorithm was high, this algorithm approximated the B-Spline curves at the rate of minor error.
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1. INTRODUCTION

Curve fitting problem for data points is the primary of
the problems in many application areas. For instance, for
representation of objects in the real-world on digital media,
these objects are firstly required to be scanned. Then, curve
and surface modeling, which will represent the objects by the
acquired data points should be obtained. Reverse engineering
[1] is utilized in order to obtain curve and surface models by
data points. Curve fitting technique is known to be the main
of several innovations in industrially car bonnet designs, ship
hull designs, medical sector in addition to developments in
computer modeling and design [2]. In addition to these, curve
fitting method takes an important place within research issues
in geometrical modeling [3], computer-aided design (CAD),
computer-aided modeling (CAM) [4, 5] and computer-aided
manufacturing areas.

∗Corresponding author: ozkan.inik@gop.edu.tr

Mathematical functions are necessary to be used for repro-
ducing the original aspect of the object by utilizing data points
acquired from real objects. Different functions can be utilized
for this process. Especially, as long as complexity level of shape
increases, it is necessary to use different mathematical func-
tions. Functions with free-form piecewise polynomial functions
such as Bezier, B-Spline and Non-Uniform Rational B-Spline
(NURBS) [6–13] are used for the complex shapes. The most
commonly used functions within these functions are B-Splines.
In B-Spline curves, the whole curve is not influenced when any
parameter of the curve is changed. So, parameter changes have
only local effects on the B-Spline curve. Calculating B-Splines
causes more effort than Bezier basis functions and evaluating
NURBS should cause even more effort because they consist of
a fraction with B-Splines in the numerator and denominator. In
contrast to B-Splines, NURBS allow to represent a perfect circle
so they are more powerful in geometrical terms. In contrast
to Bezier curves, B-Spline curves are continuous for a higher
derivative.
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Figure 1 B-Spline curve and control polygon.

The most important issue for B-Splines is the knot vector.
Particularly, knot selection remarkably affects the shape of curve
[14, 15]. In order to obtain a good approximation, a suitable
determination of B-Spline parameters is essential [12]. This
problem is NP-Hard problem. Especially given the point cloud
is large, Utilization of other alternative optimization techniques
instead of mathematical techniques has given more successful
results for B-Spline knot vector approximation. Optimization
methods available in the field of artificial intelligence become
a part of an activity in solving maximization or minimization
problems. The most optimal solutions for B-Spline knot vector
have been seen to be obtained by several artificial intelligence
techniques [16, 17]. Big Bang-Big Crunch (BB-BC) which is
one of the evolutionary based optimization algorithms was firstly
discussed for B-Spline knot approximation in this paper. The
most important reason for choosing the BB-BC method is to
obtain the best value with less iteration.

For B-Spline curve fitting problem, different artificial intelli-
gence techniques have been utilized in the literature. Yoshimoto
et al. [18] used genetic algorithm (GA) for the operation
of automatic knot placement in data fitting problem. Gálvez
and Iglesias [10] applied the GA paradigm iteratively to fit
a given cloud of data points by using strictly polynomial
B-spline surfaces. Sarfraz and Raza [19] also incorporated a
corner detection algorithm to detect significant points which are
necessary to capture a pleasant looking spline fitting for shapes
such as fonts. Kumar et al. [20] presented an approach based on
GA for the parameter optimization in Non-Uniform B-Spline
curve fitting. Pittman [21] presented an adaptive modeling
technique referred to as adaptive genetic splines which combines
the optimization power of a GA with the flexibility of polynomial
splines. Sarfraz and Raza presented a method to transform
the original problem into a discrete combinatorial optimization
problem and solved it by a GA. They also incorporated a
comer detection algorithm to detect significant points (comer
points), which are necessary to capture a pleasant looking
spline fitting for 2D and 3D data [22]. Ulker and Arslan [16]
performed B-Spline knot placement by using Artificial Immune
System. Gálvez et al. [23] introduced an adapted elitist clonal
selection algorithm for automatic knot adjustment of B-spline
curves. Gálvez and Iglesias presented a new method to overcome
difficulties of reconstruction of freeform objects. Some these
difficulties are correct determination of the length of knot vectors
and the calculation cost and slow in the concavities or holes that
contain numerous data points. The method applies the particle
swarm optimization (PSO) paradigm to compute an appropriate
location of knots automatically [24].

The rest of the paper is organized as follows. In Section 2
describes previous work related to this study and this section

gives information about B-Spline curves. BB-BC algorithm [25]
which is one of the evolutionary based optimization algorithms
is explained in Section 3. How a B-Spline curve approximation
is carried out is gradually described in Section 4. The test
results obtained by BB-BC method on B-Spline curve fitting
and comparisons with other studies are given in Section 5. The
final section concludes the article.

2. B-SPLINE CURVES

Although occurrence of B-Splines dates back to 1947, when they
were firstly proposed by De Boor [26] , they gained industrial
popularity [16]. B-Spline curves are developed of Bezier
curves. However, B-Spline curves do not always consist of one-
piece curve like Bezier curve. B-Spline curve is composed of
combination of at least one or more polynomial segments. In
case B-Spline curve is composed of only one segment, this curve
is Bezier curve as well.

B-Spline curves and surfaces are identified by vertices named
as control points. Although the curves and surfaces obtained
by using these points do not come around to the control points,
the form of the curve or surface completely shapes according
to positions of these points. The polygon which these control
points generate is named as the control polygon. These points
enable the curve to track the shape of the polygon by acting like
a magnet and ultimately, the characteristic and smooth curve
located within the boundaries of the control polygon is acquired
[27]. B-Spline curves own an effective geometric feature that a
local effect occurs by changing only one part of the curve when
one of the points moves. However, in the Bezier curves, the
whole curve is affected from the first point to the end when only
one of the points in data set moves. A typical B-Spline curve
and control polygon are presented in Figure 1.

The definition of B-Spline curves are as follow:

C(t) =
n∑

i=0

Pi Ni,k (t) (1)

Pi is one of n+1 control point. t is knot vector. The i th B-Spline
basis function Ni,k (t) of order k (or degree d = k − 1) can be
defined recursive relations given as follow [28, 29].

Ni,1(t) =
{

1 ti � t < ti+1

0 otherwi se
(2)

Ni,k (t) = (t − ti )

ti+k−1 − ti
Ni,k−1(t) + (ti+k − t)

ti+k − ti+1
Ni+1,k−1(t) (3)
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Figure 2 The flowchart of BB-BC algorithm.

3. BIG BANG-BIG CRUNCH(BB-BC)
METHOD

BB-BC algorithm was firstly presented in 2006 as an evolution-
based optimization algorithm [25]. The most important feature
of the algorithm is that it has high convergence speed in addition
to low computational time. For instance, while evolution-based
algorithms used in solution of an optimization problem present
the best optimal solution in the result of too much iteration,
BB-BC algorithm generally attains solutions very close to the
optimal solution of this problem on far less iterations. The
operating logic of this evolutionary method is indicated as
transformation of ideal solution into an irregular status which
comprises of new solution set [25]. The flowchart of BB-BC
algorithm is given in Figure 2.

BB-BC algorithm consists of two phases: Big Bang and Big
Crunch.

First Phase: This stage is named as Big Bang phase. At
this phase, initial population is randomly generated similar to
genetic algorithm. The candidate solutions which are randomly
generated are spread into search space in a uniform way.

Second Phase: At the phase called Big Crunch, the center of
gravity of the population and the most optimal individual of the
population are calculated. The point representing the center of
gravity of mass is indicated as Xc and it is calculated according
to the following formula.

Xc =
∑H

i=1
1
f i Xi

∑H
i=1

1
f i

(4)

where xi is a point generated in h-dimensional search space and
f i is a fitness function of this point value. H is a population size
in Big Bang phase as well After the second stage completes, i th

new individuals (Xnew
i ) are once again calculated for Big Bang

stage according to the formula below.

Xnew
i = Xc + lr

s
i = 1, 2, 3, . . . . . . H (5)

where r is a randomly generated value between 0–1. s is iteration
number. l upper bounds of parameters. l possible value for
each candidate that creates a solution. If a binary problem is
solved, the possible values are 0 or 1. In this case, l becomes
1. If the problem is a numerical problem, the solution interval
depends on the problem. Accelerate convergence with r close
1. Convergence is slow if the number of iterations increases. In
Table 1, the steps of BB-BC method are given in summary.

4. B-SPLINE CURVE APPROXIMATION BY
BB-BC METHOD

Today, computer modeling,computer aided design and computer
analysis are seen to take part on the basis of many technological
developments. Mathematical optimization methods are seen not
to be sufficient in finding solution for obtaining objects in the
real world especially in modeling and design. There may be
many parameters in designing the object desired to be obtained.
So, artificial intelligence techniques have been developed for
solving these kind of problems. In this paper, approximation of
B-spline curves by BB-BC are implemented. The problem aimed
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Table 1 The steps of BB-BC method

Description
Preparation Stage Specify the population size, the number of iterations and the fitness function to start the algorithm.
Step 1: Create a population of random consists of N individuals in the search field.
Step 2: Calculate all candidate solutions (individuals) using their fitness function.
Step 3: Determine the center of gravity or the most optimal individual as Big Bang point by the help of Eq. (4).
Step 4: Generate a new population around the center of gravity or the most optimal individual By Eq. (5).
Step 5: Go to Step 2 until the stopping criterion (number of iteration or error value) is reached.

Figure 3 Selection of knots with BB-BC

at being solved is to obtain B-Spline curves to ideally represent a
point cloud. Control points, knot vector and parameterization of
B-Spline are known to be required for obtain a B-Spline curve.
B-spline curve fitting is based on reverse engineering. For a
better understanding of the proposed method, the B-spline curve
fitting main frame is shown as follows:

1. Fi , (i = 0, 1, 2, . . . G) is given as a point cloud. Some of
these points (Qi , (i = 0, 1, 2, . . . g) g < G) are selected
by BB-BC as knots. As an example in Figure 3 Fconsists
of 17 points(G = 16). Six of these points(Q) are selected
for knots by BB − BC(g = 5) in initial. Each individual
consists of 0–1. Each bit represents a point in F. The
Size of the individual in BB-BC algorithm is equal to the
point number of point cloud The points denoted by 1 are
designated as knot points. Thus, every iteration the BB-BC
algorithm selects different points as knot points.

2. The knot vector is calculated after the knot points are
determined. A variety of methods are available for
calculation of knot vector. These methods are Uniform,
chord and Centripetal methods [30]. According to these
methods, suitable parameterization for the curve can be
calculated. In this study, calculation of knot vector was
conducted by means of Centripetal method. Centripetal
knot are calculated as follows.

β0 = 0, βg = 1 (6)

βi = i − 1 +
√|Qi − Qi−1|∑g

j=0

√∣∣Q j − Q j−1
∣∣ (7)

|Qi − Qi−1| =
√

(xi − xi−1)
2 + (yi − yi−1)

2 (8)

Where β shows Centripetal knot, xi and yi are the
coordinate value of i th point.

3. After calculated Centripetal knots, estimated B-Spline
knots are calculated by the following equation.

ui = (u,...,ud,ud+1,.........ug,ug+1....ug+d)

u j+d = 1

d

j+d−1∑
i= j

ui j = 1, . . . g − d (9)

Where d shows B-Spline curve degree. For non-periodic
B-Spline curve a knot vector with multiple knots at the
beginning and end. Usually the number of identical knots
depends on the function degree, thus the first d + 1 point
forming the knot vector consist of 0 and the last d +1 point
consist of 1.

4. P = Q × R can be accepted as matrix representation
for defination of B-Spline curve. R is a matrix produced
according to the B-spline blending functions (Eq. 2–3).
P represents control points matrix and is calculated as
P = Q × R−1.

5. After obtaining P matrix, B-Spline curve approximation
can be obtained by the following defination.

S(t) =
n∑

i=0

Pi Ni,k (t) (10)
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Table 2 The performance of BB-BC algorithm in titanium heat data.

De Boor and Rice
(1968)

Jupp’s Algorithm
(1978)

Yuan Yuan et al.
(2013)

Proposed Algorithm

Number of Knot 5 5 6 7
RMSE 0.01305 0.01227 0.01174 0.0302
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x
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original graphic
proposed graphic

Figure 4 The graph of titanium heat data obtained by BB-BC algorithm.

6. The total error value is calculated between estimated point
and real point for all point in F as follows.

Error =
√√√√ G∑

i=0

(Fi − Si )2 (11)

The aim in our proposed method is to obtain the lowest
Error by selecting knot points with BB-BC. There exist
different error functions in the literature. In this paper, the
best ideal solution have been tried to find by means of Mean
Squared Error (MSE) and Residual Mean Squared Error
(RMSE) error calculation method. MSE is calculated by
the following formula.

M SE = 1

G
Error (12)

RM SE = 1

G − 2
Error2 (13)

In addition to the MSE and RMSE, Akaike Information
Criterion (AIC) [31, 32] and Bayesian Information Crite-
rion (BIC) [33] can be calculated. The calculation of these
models is calculated according to the following equation.

AIC = G ∗ Ln (M SE) + 2 (2 ∗ g + d) (14)

B IC = G ∗ Ln (M SE) + Ln (G) ∗ 2 ∗ (2 ∗ g + d) (15)

5. EXPERIMENTAL STUDIES

In this study, many commonly used functions in the literature
were used. Seven of these functions are presented in this paper.
Especially the reason for choosing these functions is that they
are frequently used in the curve fitting problems. The size of
the initial population of the method used for all functions is
between 50 and 150, and the number of iterations is between 10
and 25. This interval was found as the number of interferences

in which the lowest error was obtained in the experiments
performed. B-Spline degree is given as three (cubic) unless
there is any special condition. The test functions used in the
study and experimental results are presented below. All the
experimental results have been obtained by utilizing MATLAB
R2014a software package.

5.1 Test Functions 1

The first function is the test function known as titanium heat data
in the literature. This test function was used by De Boor and Rice
[34]. For knot selection algorithms and was used by Jupp [35] in
estimating the optimal internal knots. In addition to, this function
was used by Yuan at al. [36] for adaptive knots placement for
B-Spline curve fitting. The titanium heat data function consists
of 49 points. In Figure 4, original curve points and predicted
curve points via BB-BC method are given. In curve estimation,
the knots and error have been stored. The results obtained by
the proposed algorithm were compared with the result found by
De Boor and Rice [34], Jupp [35] and Yuan Yuan et al. [36] are
presented in Table 2.

Because only interior knots are given in the studies in the
literature, the selected first and last knots were ignored in Table 2
in the process of calculating the number of knots. When
examined Table 2, the obtained number of knots is close to the
other studies although the error value appears to be a little high
compared to other studies.

5.2 Test Function 2

This test function is used by Yuan et al. [36] and Schwetlick and
Schütze [37]. Noise was added to the point cloud in their work.
The equation of the function is as follow:

F (x) = 10x(
1 + 100x2

) , x ∈ [−2,+2] (16)
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Table 3 The performance of BB-BC algorithm in Function 2.

Schwetlick and Schutze
(1995)

Yuan Yuan et al.
(2013)

Proposed Algorithm

Number of Knot Not reported 6 42
MSE 0.0739568 0.067471 0.012038

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

x

F 
( x

 )

Noise
Original Graphic
Proposed Graphic

Figure 5 The graph of Function 2 obtained by BB-BC algorithm.
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Figure 6 The graph of Function 3 obtained by BB-BC algorithm.

Table 4 The performance of BB-BC algorithm in Function 3.

Valenzuela at all. (2013) Proposed Algorithm
Knot Min MSE Max MSE Mean MSE STD MSA Knot Min MSE Max MSE Mean MSE STD MSA
10 0.00241 0.0915 0.0208 0.0395 115 0.00823 0.0110 0.0096 0.00117

Schwetlick and Schutze have studied to solve knot fitting
problem by using Gauss-Newton with this function. Besides,
Yuan at al. have utilized this function for adaptive B-Spline
knot selection. Because the point number is taken as 90 in
these studies, the point number is taken as 90 for the proposed
algorithm as well. 10% noise value in the range of −0.05
and 0.05 is randomly inserted into the point set obtained by
the function. The original curve points and curve points
approximated by the BB-BC method are given in Figure 5. The
MSE error and knot points, which are calculated for the curve,
are stored. The results of Schwetlick and Schutze and Yuan et al.
and the results obtained by the proposed algorithm are presented
in Table 3.

Because the obtained knot numbers have not been reported in
the other studies, knot numbers are not presented in the table.

When looked at the error in Table 3, the error acquired by the
proposed method is observed to be lower than those of the other
studies.

5.3 Test Function 3

Improved Clustering Algorithm was used for this test function
in the B-Spline knot fitting problem [38]. The equation of this
function is as follow:

F(x) = 0.2e−0.5x sin 5x + 4 x ∈ 0, 4π (17)

Initially, 200 points are used for properly obtaining the original
function. The most suitable knot number and the lowest MSE
error are searched by running ten times for the detection of knot
number and knot location owing to the BB-BC method. The
original and obtained curves are presented in Figure 6. The
knot numbers, Min, Max, MSE values and standard deviation are
given in Table 4 by calculating these values in the experimental
study.

When viewed the Min and Max error in Table 4, it is observed
that while the Max MSE-Min MSE values have been obtained as
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Figure 7 The graph of Function 4 obtained by BB-BC algorithm.

Table 5 The performance of BB-BC algorithm in Function 4.

O. Valenzuela at all. (2013) Proposed Algorithm
Knot Min MSE Max MSE Mean MSE STD MSA Knot Min MSE Max MSE Mean MSE STD MSA
10 0.0094 0.2170 0.0649 0.0867 117 0.0105405 0.0157915 0.013098 0.00193

Table 6 The performance of BB-BC algorithm for Function 5.

Yoshimoto et al. (2003) Zhao et al (2011) Akemi Gálvez, Andrés Iglesias (2011) Proposed Algorithm
Number of iterations 200–300 200 10 10
BIC 1150–1170 Not applicable 1012 2259
Computation time Tens of seconds Not reported 0.1–1 s 77s
MSE Not reported Not reported Not reported 1.9

0.08909 in the studies of Valenzuela et al. (2013), this values
has been found as 0.00277 in the proposed algorithm. When
looking at the standard deviation in Table 4, while the standard
deviation is 0.00117 for the proposed approach, Valenzuela at al.
(2013) obtained this value as 0.0395. The proposed algorithm
has been observed to consistently converge the optimal solution
for this difficult function as well.

5.4 Test Function 4

Equation of another test function used in studies of Valenzuela
et al. [38] is given as follow:

F(x) = 0.5 + 0.5e−5(x− π
2 )2

sin(4πx) cos(4πx) x ∈ 0, π (18)

As in Test Function 3, the number of knot for this test function
is also selected as 200. The graph of the test function is
presented in Figure 7. The knot vector is randomly selected
by the program for the curve predicted through the BB-BC
approach. MSE and standard deviation values obtained in the
consequence of experimental studies and these values reported
in the literature are presented in Table 5. The proposed algorithm
is seen converge to optimal solution for this hard problem. When
examining the mean error values obtained from the results, it
is seen that while the proposed algorithm has been found as
0.013098 for the mean error value, Valenzuela et al. [38] found
as 0.0649 in their study.

5.5 Test Function 5

This problem is used in solution of different problems by
Yoshimoto et al. [39], Zhao et al. [40] and Akemi Gálvez,
Andrés Iglesias [24]. The definition of the function is given as
follow:

F(x) = 100

e|10x−5| + (10x − 5)5

500
x ∈ 0, 1 (19)

The number of point is taken as 201 for this problem. The
graph acquired by the BB-BC is presented in Figure 8. The
number of iteration is taken as 10 in the experimental studies.
Although MSE values are not report in other studies,MSE values
were calculated in this study. The BIC results and the calculation
time are based on the comparison. In Table 6, the performance
of the developed algorithm is summarized.

When analyzed Table 6, the results acquired by Gálvez and
Iglesias could not be achieved for this problem. However, the
approximation curve is obtained quite close to the original curve
in terms of figure. The MSE value is gained as 1.9.

5.6 Other Test Functions

These functions are used by Li et al. [41], Yoshimoto et al. [18],
Sarfraz and Raza [19] Yoshimoto et al. [39] , Zhao et al. [40]
and Gálvez, Iglesias [24]. The equations of the function are
presented as follow:
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Figure 8 The graph of Function 5 by BB-BC algorithm.
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Figure 9 The graph of Function 6 obtained by the BB-BC algorithm.
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Figure 10 The graph of Function 7 obtained by the BB-BC algorithm.

F(x) = sin(x) + 2e−30x2
x ∈ −2, 2 (20)

F(x) = sin(2x) + 2e−16x2 + 2 x ∈ −2, 2 (21)

The points number are 201 for these functions and the curves
are given in Figure 9 and 10 respectively. In the experimental
study, the iteration numbers, the BIC values, the computational
times and MSE errors are calculated. The performance of the
proposed algorithm and the results of the other approaches are
presented in Table 7 and 8, respectively.

When examining Table 7 and 8, it is seen that though the BIC
values is high, the computational time is reasonable. In addition,

it is observed that the proposed approach has been reached to the
optimal solutions in short periods such as 10 iterations in terms
of especially iteration number. However, when viewed at Figure
9 and 10, the obtained curve has been seen to a large extent to
seem to the original curve except for sharp winding.

6. CONCLUSION

In this paper, within the scope of the B-Spline curve approxima-
tion, utilization of Big Bang-Big Crunch algorithm (BB-BC)
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Table 7 The performance of the BB-BC algorithm for Function 6.

Yoshimoto
et al. [18]

Sarfraz and
Raza [19]

Yoshimoto
et al. [39]

Zhao et al.
[40]

Akemi Gálvez
and Andrés
Iglesias [24]

Proposed Algorithm

Number of
iterations

200 120 200–300 200 10 10

BIC −46 Not reported −193 Not applicable −279 1684
Computation
time

5–15s Tens of seconds–
minutes

Tens of seconds Not reported 0.1–1s 98s

MSE Not reported Not reported Not reported Not reported Not reported 0.0411

Table 8 The performance of the BB-BC algorithm for Function 7.

Yoshimoto
et al. [18]

Sarfraz and
Raza [19]

Yoshimoto
et al. [39]

Ulker and
Arslan
[16]

Zhao et al.
[40]

Gálvez and
Iglesias
[24]

Proposed
Algorithm

Number of
iterations

200 120 200–300 500 200 10 10

BIC 134 Not reported 49 362 Not applicable −63 1543
Computation
time

5–15s Tens of
seconds–
minutes

Tens of seconds Tens of
seconds–
minutes

Not reported 0.1–1s 388s

MSE Not reported Not reported Not reported Not reported Not reported Not reported 0.0265

which is one of the optimization algorithms has been given
together with its results. While reverse engineering has been
used in curve approximation, Centripetal technique has been
used for knot approximation. The BB-BC algorithm has stepped
in the process of knot approximation. Finally, the following
results have been obtained in the B-Spline curve approximation:

1. By means of the developed method, the knot points
have been dynamically determined in the B-Spline curve
approximation.

2. It is observed that because the number of knot point has been
assigned by the program, this number has been generally
at high rate. For the flexibility of the program, the number
of nodes is not limited. Some problems may have the best
results if the number of nodes is high. On the contrary,
there may be better results when the number of nodes is
small. As the best results were shared, the number of knots
has been high. The number of nodes can be lower in the
second best solution and third best solution etc.

3. The studies over seven different sample curves from the
test functions which are frequently used in the literature
have been carried out, and the reasonable curves have been
attained from all the functions.

4. For the B-Spline curve estimation, the convergence speed
of the BB-BC algorithm is high and curve has been obtained
with much shorter iterations.
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