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Abstract: Precise recovery of Coalbed Methane (CBM) based on transparent
reconstruction of geological conditions is a branch of intelligent mining.
The process of permeability reconstruction, ranging from data perception
to real-time data visualization, is applicable to disaster risk warning and
intelligent decision-making on gas drainage. In this study, a machine learning
method integrating the Random Forest (RF) and the Genetic Algorithm
(GA) was established for permeability prediction in the Xishan Coalfield
based on Uniaxial Compressive Strength (UCS), effective stress, temperature
and gas pressure. A total of 50 sets of data collected by a self-developed
apparatus were used to generate datasets for training and validating mod-
els. Statistical measures including the coefficient of determination (R2) and
Root Mean Square Error (RMSE) were selected to validate and compare
the predictive performances of the single RF model and the hybrid RF–
GA model. Furthermore, sensitivity studies were conducted to evaluate the
importance of input parameters. The results show that, the proposed RF–GA
model is robust in predicting the permeability; UCS is directly correlated to
permeability, while all other inputs are inversely related to permeability; the
effective stress exerts the greatest impact on permeability based on importance
score, followed by the temperature (or gas pressure) and UCS. The partial
dependence plots, indicative of marginal utility of each feature in permeability
prediction, are in line with experimental results. Thus, the proposed hybrid
model (RF–GA) is capable of predicting permeability and thus beneficial to
precise CBM recovery.
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GA Genetic Algorithm;
UCS Uniaxial Compressive Strength;
RMSE Root Mean Square Error;
CNN Convolutional Neural Networks;
BP Back Propagation;
APSO Adaptive Particle Swarm Optimization;
LSSVM Least Squares Support Vector Machine;
WLS-SVM Weighted Least Square Support Vector Machine;
MABC Modified Artificial Bee Colony;
CEA Cross Entropy Algorithm;
REV Representative Elementary Volume;
DT Decision Tree;
OOB Out-of-Bag;
LWD Logging-While-Drilling;
IS Importance Score;
PDP Partial Dependence Plot.

1 Introduction

Coalbed Methane (CBM) is a form of unconventional natural gas found in underground
coal mines, where the porous media and fracture networks store and transport CBM [1,2].
CBM is also considered a potential hazard and thus vented out before coal extraction [3]. Coal
seam permeability is a measure of gas flowability in the reservoir and governs the production
performance and recovery efficiency of CBM [4,5]. Precise CBM recovery based on transparent
reconstruction of geological conditions is a branch of intelligent mining, and its flowchart is
shown in Fig. 1. The foundation of this process is to construct a database with selected elements
including geological data, working condition data and disaster monitoring data [6]. Then, as the
existing field sources (e.g., A, B, and C in Fig. 1 denote stress–strain field, temperature field, and
seepage field, respectively) would change definitely under any control action, intellisense, early
warning (or intelligent decision-making) and intelligent control steps circulate, as a result, the
dynamic reconstruction process will make information stereoscopic. From data perception to real-
time data visualization, three-dimensional static permeability is reconstructed, which can serve
for early warning to hazards; in addition, visualization helps identify favorable areas of CBM
recovery based on reservoir permeability assessment [7], followed by gas extraction in the workable
zone or in situ modification to enhance gas recovery in the unworkable zone. So the permeability
prediction is an essential part of intellisense, serving for decision-making and control action.

The research on multi-field multi-source coupled evolution mechanism and disaster breeding
evolution pattern supports theoretically transparent reconstruction of geological conditions for
precise CBM extraction [8]. Ye et al. [9] believed that the dynamic change of coal permeability
depends on multiple factors. Tao et al. [10] analyzed the patterns of permeability variation in
coal seam No. 3 of Qinshui Coalfield and their influences on CBM recovery. To date, researchers
have studied experimentally the effect(s) of one or a few variables on permeability. In the ini-
tial stage of CBM production, the effective stress level was found to be the controlling factor
in permeability reduction [11], and the permeability–strain curve of coal corresponds well to
its full stress–strain curve, implying that flowing characteristics of CBM are closely related to
damage evolution in the coal during loading [12]. In recent years, the development of triaxial
loading devices equipped with high precision sensors and servo control systems has allowed the
permeability evolution to be deliberated, stress, as a main controlling factor, and other factors
(e.g., moisture [13], temperature [14], geoelectric field [15], type of adsorbed gas [16], etc.) for
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simulating the heat rejection, gas displacement, and hydraulic fracturing, etc., have been added
to investigate the permeability change tendency [17–21]. With advances in scientific knowledge
and field observations, remarkable progresses have been made in analytical permeability models to
predict the unique permeability behavior of CBM reservoirs [22–25]. The permeability variation
models can be classified into two categories: Porosity-based models where permeability is cubically
related to porosity, and stress–strain based models where permeability is exponentially related to
the variation in effective stress [26]. Admittedly, empirical formulas for permeability evolution
determined by test data fitting are often used in engineering practice, such as the Langmuir-type
curve [27].
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Figure 1: Flowchart of transparent reconstruction of geological conditions

Permeability of gas-saturated coal are affected by numerous factors, making gas seepage
process time-variant, nonlinear, and fuzzy, technical bottlenecks of transparent reconstruction of
geological conditions are complex procedure, difficulty in nonlinear relationship representation,
focusing on univariate analysis and prediction while weakening multivariate impact, and limited
model scope, etc., so dynamic geological information transparency fails to satisfy the demand of
modern manufacturing. Relying on powerful data processing capability, machine learning simu-
lates spontaneously human learning activity and finds latent rules of the data through analysis so
as to enable analytical research and spontaneous decision making on new samples. Recently, Tian
et al. [28] used CNN modelling to investigate the inherent relationships between permeability and
the microstructural parameters of porous media. Yin et al. [29] and Xie et al. [30] employed BP
neural network model to predict the permeability of gas-saturated coal, but this neural network
gets easily into local minimum and converges slowly. Some scholars modeled and predicted
small-sample data of permeability of gas-saturated coal by using PSO-LSSVM [31], APSO-WLS-
SVM [32], MABC-SVM [33], CEA-SVM [34], etc., kernel function and parameters have to be
selected in SVM, while in LSSVM, advantages of standard SVM in robustness and sparsity are
lost. Habibi et al. [35] predicted the permeability in dual fracture media by multivariate regression
analysis. Sharma et al. [36] evaluated the permeability of Indian coal using adaptive neuro-fuzzy
inference system technique and compared the outcomes with those obtained by the traditional
statistical method of multiple regression analysis. Xie et al. [37] constructed a permeability pre-
diction model using rough set theory based on conditional attributes of the reservoir in Qinshui
Basin including reservoir pressure, in situ stress, thickness, and depth, but the prediction result
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is not a specific value but a range. As can be seen, machine learning excels in prediction, but
selection of input variables limits applicability of the algorithm, in addition, another important
challenge is about improving the accuracy and reliability of predictions.

The main objective of this study is to develop a novel hybrid model RF–GA using goodness
of individual models for better permeability prediction of gas-saturated raw coal at Xishan
Coalfield which is one of the largest CBM reservoirs in China, based on Uniaxial Compressive
Strength (UCS), effective stress, temperature, and gas pressure. The study is organized as follows:
firstly, the dataset was prepared by a self-developed apparatus to conduct series of seepage tests
and UCS tests; then, R2 and RMSE were used to estimate the prediction performance of the RF
and RF–GA models; thirdly, correlations and sensitivity analysis were carried out to analyze the
change tendency of permeability with input variables.

2 Experimental Program and Data Collection

2.1 Materials and Apparatus
The coal samples were collected from coal seam No. 8 at Xishan Coalfield, Shanxi Province,

China (Fig. 2a). The coal seam is characterized by high gas content and low permeability. In
order to obtain a dataset with multidimensional experimental values, raw coal samples in standard
size (ϕ50×100 mm) were fabricated using a diamond wire cutting machine. Forced drying of the
samples was avoided and the average moisture content w was set to 1.86%.

The dataset was collected through a self-developed triaxial testing apparatus as shown in
Fig. 2b. Detailed design of the experimental apparatus can be found in the literature [38]. The
testing apparatus enables UCS tests and seepage tests by changing the force head, and mainly
consists of a loading frame, a servo hydraulic station, an air path system, a triaxial chamber, a
constant-temperature oil bath, and a data acquisition system. The specimen was placed in the
chamber, and the paths, rates and target values of loading and heating can be adjusted during
the process or set in advance. Seepage test was followed by mechanical test using the same batch
of coal samples, yielding values of permeability and UCS at variable temperatures, gas pressures,
and stresses.

A dual-porosity seepage model is illustrated in Fig. 2c. The model consists of matrix blocks
known as Representative Elementary Volumes (REVs) and fracture network. The REV has pore
clusters supported by skeletons, and can be represented by a capillary bundle seepage model.
Under the action of loading and heating, the void space or the tortuosity path will change
obviously. External loading affects matrix skeleton deformation or tube rearrangement, while
heating (<100◦C) enables thermal expansion and sorption-induced shrinkage of the blocks. In
addition, gas pressure will also induce elastic deformation of skeletons. Thus, volumetric strain
of a skeleton in the REV is εm = εes+ εT + εp+ εs (Fig. 2c) in which,

Strain εes due to effective stress can be defined as

εes =− 1
Km

Δσm (1)

where Δσm is the increment of effective stress (MPa) and Km is the stiffness of the matrix. The
effective stress can be calculated by Eq. (2), without considering the contributions of adsorbed
gas and temperature to effective stress.

σm = 1
3

(σ1+ 2σ2)− 1
2

(P1+P2) (2)
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where σ1 and σ2 represent the axial stress and confining pressure (MPa), respectively; P1 and P2
denote the inlet and outlet gas pressure, MPa.

Figure 2: Materials and apparatus: (a) Sampling site; (b) Testing apparatus; (c) Dual-porosity
seepage model

Strain εT due to thermal expansion can be described as [39]:

εT = αTΔT (3)

where αT is the coefficient of volumetric thermal expansion (K−1) and ΔT is the increment of
temperature (K).

Tube compression by gas pressure yields strain εp:

εp =−CYΔP (4)

where CY is the coefficient of volumetric compression, MPa−1;

Strain εs due to sorption-induced shrinkage can be expressed by the following equation where
a temperature correction term is introduced based on the Langmuir formula [40]:

εs =
[

εLPm
PL+Pm

exp
(
− c2ΔT
1+ c1Pm

)
− εLPm0

PL+Pm0

] /
(1−ϕ0) (5)

where εL is the coefficient of gas sorption-induced expansion; Pm is the current gas pressure,
MPa; PL is the Langmuir pressure, MPa; c2 is the coefficient of temperature correction, K−1; c1
is the coefficient of pressure correction, MPa−1; Pmo is the initial gas pressure, MPa; and ϕ0 is
the initial absolute porosity, %.
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On the assumption that the moisture in the tubes occupies the pores uniformly, porosity ϕmw
of aqueous matrix is [41]

ϕmw = (1−w)

[
1− 1−ϕ0

1+ e
(1+ εm)

]
(6)

where e is the measured volumetric strain of REV and w is the moisture content of pores.

From the definition of the coefficient of volumetric compression, we have [42]

1+ e= exp (−CYΔσm) (7)

By integrating Eqs. (1)–(7), a porosity evolution model in consideration of temperature, gas
pressure, and effective stress can be obtained:

ϕmw = (1−w)

[
1− 1−ϕ0

exp (−CYΔσm)

(
1+ εes+ εT + εS + εp

)]
(8)

The relationship between permeability and porosity is given in the Kozeny–Carman equation
established on the basis of the capillary tubes model [43]. By integrating Eqs. (1)–(5) and (8),
coal permeability km can be obtained:

km = km0 (1−w)

exp (−CYΔσm)

×
⎧⎨
⎩1+

e−
(
αTΔT − 1

Km
Δσm−CYΔP

)
(1−ϕ0)−

[
εLPm
PL+Pm exp

(
− c2ΔT

1+c1Pm
)
− εLPm0

PL+Pm0
]

ϕ0

⎫⎬
⎭

3

(9)

2.2 Dataset Used
2.2.1 Input Variables

In dynamic prediction of permeability km, attention should be paid to initial reservoir
conditions, seepage path deformation, and sorption state change, as shown in Fig. 3.

Initial reservoir permeability kmo varies significantly with geological conditions, such as tem-
perature field, moisture content, pore-fracture space, gas pressure, coal metamorphism (or coal
rank), etc. Fracturing and heat injection around the surface wells or boreholes always encounter
different temperatures and moisture contents. In this paper, the samples are deemed consistent in
moisture content, and temperature range is 20–70◦C. Coal metamorphism (or coal rank) governs
gas content in the coal seam. Prior to permeability test, the samples were saturated. Pore-fracture
space of specimen determines the gas flow path, the higher the UCS of a specimen, the less likely
the pore-fracture path gets distorted.

The actual change in permeability of coal reservoirs is also dominated by the seepage path
deformation. The effective stress, which is an equivalent value in consideration of both external
and internal stresses in porous coal, is able to cause unrecoverable structural deformation. In this
study, the unidirectional loading path was set, and the loading rate was kept constant (0.1 MPa/s)
until the setpoints were reached. The variations in temperature and gas pressure will lead to force
rebalancing around the tubes because of the thermal expansion, sorption-induced shrinkage and
gas pressure compression (Fig. 2c), and the bulk deformation is recoverable.
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Apart from in situ modification of the seepage path, the other method of improving per-
meability is to apply forcibly physical fields (microwave irradiation, geoelectric field, sound field,
etc.) to coal, and its operating principle is normally enhancing thermal effect or reducing sorption
potential to promote the transformation from adsorbed gas to free gas.

The objective of permeability prediction in this study is to serve the industrial field, database
construction requires selected input variables that (1) have high grey relation to permeability (the
output), 2) have strong timeliness (e.g., μ CT imaging is technically difficult and not timely), and
(3) are easily monitored. Therefore, UCS, effective stress, temperature, and gas pressure in Fig. 3
were selected as input variables.

Figure 3: Input variables in the dataset used

2.2.2 Output
The output of this study is the permeability of gas-saturated raw coal under different experi-

mental conditions. Regardless of the starting pressure gradient, the permeability of a coal sample
is calculated according to the Darcy’s law by Eq. (10) [44]:

k= 2QPaμL

A
(
P1

2−P2
2) (10)

where k is permeability of the coal sample, 10–3 μm2; Q is the gas flow rate at the outlet, cm3/s;
Pa is the atmospheric pressure, 0.1 MPa; μ is the dynamic viscosity coefficient of gas, Pa · s,
μ= 1.36×10−4T0.77; L is the length of deformed coal sample, cm; and A is the area of deformed
coal sample,cm2;

L=L′ − l1 (11)

A= 1
4
π

(
d+ l2

π

)2

(12)

where L′ and d are the initial height and diameter of the coal sample, mm; l1 is the axial
deformation of the coal sample after the force loading, mm; l2 is the radial deformation of the
coal sample after the force loading, mm. l1 and l2 are measured by the axial displacement sensor
and circumferential extensometer.
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In this study, 50 sets of permeability data of gas-saturated coals varying in compressive
strength, gas pressure, effective stress, and temperature were acquired. For such 50 sets of per-
meability data, Min value was 0.028× 10−15 m2, Max value was 1.236× 10−15 m2, Mean value
was 0.705×10−15 m2, and Standard deviation was 0.225. Boxplots are excellent representation of
distribution frequencies and features of the permeability data within the range from the minimum
to the maximum in the cases of four input variables (Fig. 4), a short interquartile range, i.e., the
distance between the first quartile and the third quartile, indicates many values distributed within
a very small range, and a long whisker indicates that the data have very high standard deviation
and variance [45]. There are very few outliers in Fig. 4, indicating that the test data are reliable for
permeability prediction. Longer interquartile ranges are observed in Figs. 4a–4d, indicating that,
under univariate condition, three other variables have significant impact on the output, too, thus
conventional analytical methods (e.g., permeability models, or empirical formulas) have limitations
in presence of multiple variables having complex coupling relationships, whereas machine learning
is advantageous in handing highly nonlinear problems and multivariate analysis.
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Figure 4: Boxplots of experimental results
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3 Machine Learning Modelling

3.1 Fundamentals of RF and GA
3.1.1 Random Forest (RF)

Random Forest (RF) is a powerful integrated learning algorithm that was first introduced
by Breiman for solving regression, unsupervised learning, and classification problems [46]. RF
consists of a committee of Decision Trees (DT), and each individual tree is a fairly simple model
that has root nodes, split nodes and leaves. The randomness of node selection is the core of RF.

As shown in Fig. 5 random forest is built by DT evaluation using Boostrap/Bagging algo-
rithm, and the flow of the RF model is described as follows:

Step 1: Bootstrap sampling. From original training dataset (N samples, M-dimensional
features), k new independent subsets are randomly selected with replacement by
Bootstrap.

Step 2: Model training. For subsets, k decision trees are constructed. For one DT, m (m<M)
features are randomly selected from M features at each node of the tree and split
in the principle of node impurity minimization. The samples not selected in each
sampling constitute k Out-of-Bag (OOB) data for model estimation.

Step 3: Model predicting. These learners end up making predictions.
Step 4: Result aggregating. For example, in the case of classification, this can be a majority

voting; and in the case of regression, this can be averaging upon the predicted values.

Bootstrap  Set 1

In-Bag 1 OOB 1

Training Set

Bootstrap  Set 2 Bootstrap  Set k

In-Bag 2 OOB 2 In-Bag k OOB k

teS
gnitse

T

Average Value 1 Average Value 2 Average Value k

Final Prediction

Root nodes

Split nodes

Leaves

Decision tree 
1

Decision tree 
2

Decision tree 
k

Figure 5: A typical RF process
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3.1.2 Genetic Algorithm (GA)
Genetic Algorithm (GA), proposed by John Holland in 1970s, is a method of searching for

the optimal solution by simulating natural evolutionary process [47], and is used to tune the
architecture of the RF for expert performance. It is mainly characterized by direct manipulation
of the structural object without limitations in taking the derivative and function continuity,
intrinsic implicit parallelism and better global optimization capability, and the use of probabilistic
optimization method to obtain automatically and guide the optimal search space without estab-
lished rules and to tune adaptively the search direction. Since its proposal, GA has matured as
one of the most popular evolutionary algorithms for optimization.

GA simulates reproduction, crossover, and genetic mutation phenomena during natural selec-
tion and natural inheritance, and can better handle problems with local optima [48]. Core
elements of this algorithm include parameter encoding, initial population setting, individual
fitness assessment, and GA operators and controlling parameters; a typical GA process is shown
in Fig. 6. Firstly, phenotype-to-genotype mapping has to be done, which is usually simplified as
binary codes to initialize a population. Then according to the principle of survival of the fittest,
the population evolves generation by generation to yield better and better approximate solutions.
In each generation, the fitness value of each chromosome is determined by the fitness function.
The greater the fitness value, the higher the probability that the chromosome is selected into
the next population. With genetic operators of natural genetics, the genes undergo crossover and
mutation to generate a population representative of new solution set. Like natural evolution, this
process will make the next generation population more adapted to environment than its previous
generation, and the optimal individual among the last generation population can be decoded as
the approximate optimal solution to the problem.

3.2 Modeling and Hyperparameters Tuning
A dataset consisting of 50 samples were split into training set and testing set. The RF model

was trained on the training set, while its generalization ability was tested on the testing set. As
RF architecture influences its prediction performance, GA was used to optimize the architecture
of the RF model. Optimization parameters, and their definitions and valuing ranges are detailed
in Tab. 1.

In the current study, a maximum of 100 generations was allowed. In each generation, a total
of 10 chromosomes were built. The tournament selection was used for chromosome selection.
Crossover probability was set to 0.60, and mutation probability was set to 0.02. All parameter
settings in GA were determined by testing.

In the process of hyperparameters tuning, the training performance from 5-fold CV was
selected as the fitness function of GA. Every set of hyperparameters were expressed by one
chromosome in GA. Gene sequences were updated by chromosomal evolution so as to maximize
fitness value. After optimization of GA, the optimal hyperparameters were selected. Finally, the
RF model with the optimum hyperparameters was experimentally validated.

3.3 RF–GAModel Assessment
In this study, the RF model was assessed as per the criteria of coefficient of determination

(R2) and Root Mean Square Error (RMSE), and both parameters are most common in validation
and comparison of machine learning models [49]. The closer to 1 the value of R2, the better the
prediction accuracy. RMSE represents the sample standard deviation between the predicted value
and the observed value. The smaller the RMSE value, the better the model performance. These
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parameters are expressed using the following formulas, respectively:

R2 = 1− SSresidual
SStotal

= 1−
∑m

i=1
(
ŷ(i) − y(i)

)2
∑m

i=1
(
y− y(i)

)2 (13)

RMSE =
√√√√ 1
m

m∑
i=1

(
y(i) − ŷ(i)

)2 (14)

where SSresidual denotes the residual sum of squares of the differences between the predicted value
and the actual value of sample i, SStotal denotes the total sum of squares of the differences
between the mean value and the actual value of the sample, m denotes the number of samples,
�
y

(i)
denotes the predicted value of sample i, y(i) denotes the actual value of sample i, and y

denotes the sample mean.
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Figure 6: A typical GA process
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Table 1: Description of hyperparameters and their tuning ranges

No. Hyperparameter Explanation Range

1 Max_depth The maximum depth of DTs 1–20
2 Min_samples_split The minimum number of

samples for the split
2–10

3 Min_samples_leaf The minimum number of
samples at the leaf node

1–10

4 Max_DT The maximum number of DT
models in the ensemble

1–200

5 Max_features The number of features
considered during the selection
of the best splitting
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Figure 7: Correlation map of selected variables

4 Results and Discussion

4.1 Input-to-Output Correlations
Based on the training and testing of the RF–GA, the relationships between four input

variables and the output have been investigated using the Pearson correlation coefficient. Fig. 7
shows the distribution map of correlation coefficients between variables.

UCS is directly correlated to permeability, whereas, effective stress, gas pressure, and temper-
ature are all inversely related to permeability. The absolute value of inverse correlation coefficient
between effective stress and permeability is the maximum, indicating that the effect of structural
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deformation on permeability is greater than that of the bulk deformation of tube bundle, and
as effective stress increases, coal pores and fractures are compressed to become smaller so that
gas flow path shrinks; the effect of temperature on coal permeability is embodied in change of
gas state equation, change of gas viscosity, thermal expansion of coal matrix, and gas sorption-
desorption re-equilibrium; gas pressure is weakly inversely correlated to permeability, because
under low osmotic pressure in this study, the gas was prone to “slip flow effect” [50] and the
inflection point was postponed, then the permeability–gas pressure curve tended to be flat with
increasing gas pressure.

4.2 Hyperparameters Tuning

Fig. 8 shows the iteration process of GA finding the maximum R2 value. It can be seen
that the value of R2 increases gradually as GA iterates, indicating that the GA is efficient
in tuning RF architecture. At the first iteration, the highest R2 was 0.65, while at the 36th
iteration, R2 increased to 0.916, when optimal hyperparameters of RF were max_depth = 13,
min_sample_split= 3, min_samples_leaf = 1, Max_DT= 20, and max_features= 0.821.
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0.70

0.75
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2

Iteration

Figure 8: Hyperparameters tuning using GA model

4.3 Predictive Capability of the Models
Fig. 9 compares visually prediction performance of typical RF model with that of RF–GA

model on the testing set. The sample data consist of 50 points, 80% of which served as the
training set while 20% of which were used as the testing set. In prediction with RF model, R2

value was 0.456, and RMSE value was 0.151. After hyperparameters of the RF model were
optimized by GA, R2 value was 0.841, and RMSE value was 0.082. Fig. 10 compares errors of
RF model with those of RF–GA model, demonstrating the feasibility of GA in improvement of
RF modeling performance.

As shown by prediction performance, both the hybrid RF–GA model and the single RF
model are capable of permeability prediction, though the prediction effect of RF–GA model is
superior to that of RF model. GA is an intelligent optimization algorithm that can be efficiently
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implemented at ease, thus it is able to solve complex optimization problems effectively. Therefore,
GA can be effectively used to improve performance of RF model. In general, the RF–GA
model proposed in this paper are able to predict permeability quickly and efficiently, though
performance of this model may have to be modified somewhat depending on data source and
feature distribution.
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Figure 9: Comparison between RF model and RF–GA model in permeability
prediction performance
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4.4 Relative Importance of Input Variables
A sensitivity study of input variables was undertaken for a better understanding of perme-

ability change tendency. Normalized variable Importance Score (IS) and Partial Dependence Plot
(PDP) were chosen as methods for interpreting the importance of input variables [51,52].
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The RF algorithm was employed to calculate IS of data on the basis of depth of the tree for
a variable and mean decrease impurity of nodes, as shown in Fig. 11. The results manifest that
the effective stress (IS 0.742) exerts the maximum impact on permeability prediction, followed by
temperature or gas pressure (IS 0.102), and then UCS (IS 0.054). The effective stress level was
found to be the controlling factor for permeability reduction either in the experiment [53–55] or
in CBM production [11]. In Fig. 3a, the interquartile ranges in the effective stress–permeability
boxplots were generally short, implying that the data are relatively centered, while the longer
interquartile ranges in Figs. 3b–3c prove data discretion due to effective stress. The score of UCS
is the lowest because all the samples came from coal seam No. 8 and evidently fractured samples
were rejected in advance, leading to narrow range of UCS (10.62–14.15 MPa) which does not
impact permeability much.
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Figure 11: Importance scores of input variables

PDPs were introduced by Friedman for understanding the marginal effect of one feature on
prediction performance of a machine learning model [56–58], in other words, they are used to
study how features influence the prediction. PDPs are obtained by choosing a number of values
of the influencing variables, predicting the output using each of those values for all cases of other
influencing variables, and then calculating the mean output across the cases.

Fig. 12a shows change tendencies of permeability with the increment of effective stress, where
k20 is the permeability at 20◦C. Fig. 12b is the PDP of the effective stress on permeability
prediction, showing that the permeability of coal samples decreases nonlinearly at a reduced
rate with the increase of effective stress, which concurs with the tendencies in Fig. 12a. The
relationship between permeability and the increment of effective stress can be expressed by the
function km =A · (1−B ·Δσm)3 / exp (−C ·Δσm) which agrees with Eq. (9), where A, B, and C are
fitting coefficients.

The mechanism of effective stress influencing permeability is described as follows: (1) As
effective stress increases, the coal is further compacted, the pores and fractures wherein are
compressed, resulting in narrower gas seepage paths and lower permeability; and (2) After gas
seepage paths are compressed to some extent, the compressive effect of effective stress on the
seepage paths dwindles, and then the size of seepage paths will tend to be stable.
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mean effective stress; (b) PDP of the effective stress on permeability prediction (Note: The data
in Fig. 12a are derived from the samples from coal seam No. 8, panel 18506, Malan Coal Mine,
Xishan Coalfield)

Fig. 13a shows change tendencies of permeability with gas pressure. Fig. 13b is a PDP of
effective stress on permeability prediction, showing that the change of permeability with gas
pressure is not simple monotonic change, but there is an inflection point halfway at gas pressures
of 1.0–1.4 MPa, basically in agreement with the test data in Fig. 13a where there are too few
data points to determine the range of inflection point very well.
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Figure 13: Change in permeability with gas pressure: (a) Curves of permeability–gas pressure;
(b) PDP of gas pressure on permeability prediction (Note: The data in Fig. 13a are derived from
the samples from coal seam No. 8, panel 18506, Malan Coal Mine, Xishan Coalfield)

The reason for occurrence of the above phenomenon in the change of gas pressure versus
permeability is Klinbenberg effect that slip flow occurs between gas molecules and solid walls at
a low osmotic pressure [50,59,60]. Gas molecules collide each other and with pore-walls when
traveling through the pore medium. When the pore radius approaches to the mean free path
of gas molecules, the frequency of collision between gas molecules and solid walls increases.
Therefore, this additional flux due to the gas flow at the wall surface, which is called slip
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flow, becomes effective to enhance the flow rate. When gas pressure further increases, the slip
flow phenomenon diminishes gradually while the sorption-induced expansion of skeletons makes
seepage paths shrink, then the adsorbed gas will occupy the effective pore path area, resulting
in reduced effective pore path section and lower coal permeability. The permeability decreasing
tendency will become gradually gentle and there will be an inflection point due to limited space
of sorption-induced expansion. Furthermore, the postponement of inflection point enabled very
small coefficient of inverse correlation between gas pressure and permeability in Fig. 7.

Fig. 14a shows change tendencies of permeability with temperature. Fig. 14b is a PDP of
temperature on permeability prediction, showing that the permeability decreased nonlinearly with
increasing temperature. The mechanism of temperature influencing permeability is described as
follows: (1) Thermal expansion outperforms sorption-induced shrinkage in leading to seepage path
compression; and (2) As temperature rises, gas viscosity increases accordingly, and gas flow in the
seepage path becomes slower, resulting in reduction in coal permeability.
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Figure 14: Change in permeability with temperature: (a) curves of kN—increment of temperature,
where kN is the ratio of current permeability to initial permeability and the initial temperature is
20◦C; (b) PDP of temperature on permeability prediction (Note: The data in Fig. 14a are derived
from the samples from coal seam No. 8, panel 18506, Malan Coal Mine, Xishan Coalfield)

Fig. 15 is a PDP of UCS on permeability prediction, showing that compressive strength
was weakly directly correlated to permeability. Because coals varying in coal rank and coal
quality characteristics differ much in compressive strength, in other words, under equal pressures,
they will produce deformation and fractures to variable extents, the higher the compressive
strength of coal, the better the primary pores and fractures are protected, and the higher the
permeability [61].

5 Limitations and Outlooks

It has shown that the permeability prediction using RF–GA model is quite promising, but
challenges still remain. First, the dataset was collected from Xishan Coalfield in China, resulting
in a high possibility that the trained model cannot be generalized to other coalfields. This
challenge is mainly due to small dimensionality and volume of the dataset that comprises only
four input variables in this study. Another important challenge is about improving the accuracy
and reliability of predictions. A prerequisite for solving the above problems is to establish a



1152 CMES, 2020, vol.125, no.3

big data information base of static geological elements that includes in situ stress data, basic
gas parameters, geo-temperature parameters, and parameters of other physical fields, serving for
permeability prediction, dynamic intellisense, intelligent decision-making, and intelligent control
of CBM recovery (Fig. 1).
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Figure 15: PDP of UCS on permeability prediction

To note, input variables in the dataset should be the data obtained from the engineering
field and facilitate prediction of permeability dynamics, though laboratory study is indispensable
during database establishment. UCS used in this study was measured with a time delay, as
laboratory testing is required to characterize pore–fracture characteristic X13, so we have to
establish the relationship of Logging-While-Drilling (LWD) parameter X13

′ vs. UCS in the future.
Metamorphism degree X14 determines normally gas content X14

′ of the coal seam which consists
of volume of desorbed gas on site, volume of lost gas, and volume of residual gas, and these are
basic gas parameters to be frequently determined in engineering practice. However, the content
of gas lost due to gas desorption induced by high temperature of friction during the drilling
often relies on empirical formulas that cause errors. To solve two problems above, we developed
a gas sorption-desorption apparatus matching Fig. 2b, for which a sorption tank was specially
designed, including a temperature-measuring drill and a magnetic drive device (Fig. 16a). The
apparatus enables the study on sorption and desorption of gas in lump coal and acquisition
of LWD parameters and real-time drilling temperature, thereby the relationship of UCS–LWD
parameters–drilling line temperature–volume of lost gas can be established to characterize X13
and X14 with X13

′ and X14
′, respectively. In this study, temperature range was 20–70◦ C, but in

fact, the temperature at heat injection site might be higher than 200◦C, hence, we designed a
geo-temperature tester including a data bus fitted with multi-point temperature sensors and a data
logger (Fig. 16b), acquired geo-temperature in the heat injection affected region and conducted
permeability evolution test at a temperature above 70◦C.

Finally, the expected form of the input dataset is k= f
(
X11,X12,X ′

13,X
′
14,X15,X21,X22,X23, . . .

)
,

where f is a function representing the best robustness machine learning algorithm.
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6 Conclusions

An intelligent modelling framework for the prediction of raw coal permeability based on
Random Forest and Genetic Algorithm was proposed in this study. The coal samples were
collected from coal seam No. 8 at Xishan Coalfield in China. Four input variables, including UCS,
effective stress, temperature, and gas pressure, were selected based on the established dual-porosity
seepage model. A total of 50 seepage and UCS tests were performed using the self-developed
triaxial testing apparatus. During hyper-parameters tuning, 5-fold CV was used. Statistical mea-
sures including R2 and RMSE were used to validate and compare the prediction performance
of the RF and RF-GA models. Based on the results and discussion, the following conclusions
were drawn:

(1) The RF–GA model was found to be more suitable for permeability prediction with
R2 = 0.841 and RMSE = 0.082, indicating that GA is efficient in tuning RF archi-
tecture. The optimal RF hyperparameters were max_depth = 13, min_sample_split = 3,
min_samples_leaf = 1, Max_DT= 20, and max_features= 0.821.

(2) UCS is directly correlated to permeability, whereas, effective stress, gas pressure, and
temperature are all inversely related to permeability.

(3) A sensitivity study of input variables was undertaken using the methods of Importance
Scores and Partial Dependence Plots. The results manifest that the effect stress (IS 0.742)
exerts the maximum impact on permeability prediction, followed by temperature or gas
pressure (IS 0.102), and then UCS (IS 0.054). PDPs showed the marginal effect of one
feature on prediction result, and the results are in agreement with the test results.
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In the future, an expanded dataset can be collected to improve the generalization capability
of the modelling. We have developed relevant equipment and highlight the practicality of inputs
in field engineering.
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11. Somerton, W. H., Söylemezoḡlu, I., Dudley, R. (1975). Effect of stress on permeability of coal.
International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 12(5–6), 129–
145.

12. Wang, D. K., Lv, R. H., Wei, J. P., Fu, Q. C., Wang, Y. T. et al. (2019). An experimental study
of seepage properties of gas-saturated coal under different loading conditions. Energy Science &
Engineering, 7(3), 799–808.

13. Pan, Z. J., Connell, L. D., Camilleri, M., Connelly, L. (2010). Effects of matrix moisture on gas
diffusion and flow in coal. Fuel, 89(11), 3207–3217.

14. Feng, Z. J., Wan, Z. J., Zhao, Y. S., Li, G. W., Zhang, Y. et al. (2010). Experimental study of
permeability of anthracite and gas coal masses under high temperature and triaxial stress. Chinese
Journal of Rock Mechanics & Engineering, 29(4), 689–696.

15. Wang, E. Y., Zhang, L., He, X. Q., Liu, Z. T. (2004). Electric field response of gas permeability of
coal. Journal of China University of Mining & Technology, 33(1), 62–65.

http://dx.doi.org/10.1016/j.coal.2020.103552


CMES, 2020, vol.125, no.3 1155

16. Zhou, J. P., Xian, X. F., Li, X. H., Xu, J. U. (2010). Effect of different adsorptional gases on
permeability of coal. Chinese Journal of Rock Mechanics & Engineering, 29(11), 2256–2262.

17. Chao, Z. M., Ma, G. T., Wang, M. (2020). Experimental and numerical modelling of the mechan-
ical behaviour of low-permeability sandstone considering hydromechanics. Mechanics of Materials,
148, 103454.

18. Wang, M., Wang, F., Zhu, Z. M., Dong, Y. Q., Nezhad, M. M. et al. (2019). Modelling of crack
propagation in rocks under SHPB impacts using a damage method. Fatigue & Fracture of Engineering
Materials & Structures, 42(8), 1699–1710.

19. Wang, M., Zhu, Z., Dong, Y., Zhou, L. (2017). Study of mixed-mode I/II fractures using single
cleavage semicircle compression specimens under impacting loads. Engineering FractureMechanics, 177,
33–44.

20. Yin, Q., Ma, G., Jing, H., Wang, H., Su, H. et al. (2017). Hydraulic properties of 3D rough-walled
fractures during shearing: An experimental study. Journal of Hydrology, 555, 169–184.

21. Yin, Q., Jing, H., Ma, G., Su, H., Liu, R. (2018). Investigating the roles of included angle and loading
condition on the critical hydraulic gradient of real rock fracture networks. Rock Mechanics and Rock
Engineering, 51(10), 3167–3177.

22. Seidle, J., Huitt, L. (1995). Experimental measurement of coal matrix shrinkage due to gas desorption
and implications for cleat permeability increases. InternationalMeeting on Petroleum Engineering, Society
of Petroleum Engineers, Beijing, China. DOI 10.2118/30010-MS.

23. Palmer, I., Mansoori, J. (1996). How permeability depends on stress and pore pressure in coalbeds:
A new model. SPE Reservoir Evaluation & Engineering, 1(06), 539–544.

24. Shi, J., Durucan, S. (2004). Drawdown induced changes in permeability of coalbeds: A new interpre-
tation of the reservoir response to primary recovery. Transport in Porous Media, 56(1), 1–16.

25. Yin, Q., Liu, R., Jing, H., Su, H., Yu, L. et al. (2019). Experimental study of nonlinear flow behaviors
through fractured rock samples after high-temperature exposure. RockMechanics and Rock Engineering,
52(9), 2963–2983.

26. Zhou, H. W., Rong, T. L., Mou, R. Y., Wang, L. J., Ren, W. G. (2019). Development in modeling
approaches to mining-induced permeability of coals. Journal of the China Coal Society, 44(1), 221–235.

27. Levine, J. R. (1996). Model study of the influence of matrix shrinkage on absolute permeability of
coal bed reservoirs. Geological Society, Lonsdon, Special Publications, 109(1), 197–212.

28. Tian, J. W., Qi, C. C., Sun, Y. F., Yaseen, Z. M. (2020). Surrogate permeability modelling of low-
permeable rocks using convolutional neural networks. Computer Methods in Applied Mechanics and
Engineering, 366, 113103.

29. Yin, G. Z., Li, M. H., Li, W. P., Cao, J., Li, X. (2013). Model of coal gas permeability prediction
based on improved BP neural network. Journal of China Coal Society, 38(7), 1179–1184.

30. Xie, L. R., Lu, P., Wang, J. R., Gao, L., Niu, Y. Q. et al. (2017). LVQ-CPSO-BP-based prediction
technique of coal gas permeability rate. Journal of Mining and Safety Engineering, 34(2), 398–404.

31. Shao, L. S., Ma, H. (2015). Model of coal gas permeability prediction based on PSO-LSSVM. Coal
Geology & Exploration, 38(7), 1179–1184.

32. Mao, Z. Y., Huang, C. J., Lu, S. C., Han, R. Y. (2019). Model of gas-bearing coal permeability
prediction based on APSO-WLS-SVM. Coal Geology & Exploration, 47(2), 66–71,78.

33. Tang, G. S., Zhang, H. W., Han, J., Song, W. H. (2015). Prediction model on permeability of gas-
bearing coal based on MABC-SVM. Journal of Safety ence and Technology, (2), 11–16.

34. Li, B., Zhang, X. X., Li, T. T., Che, X. Q. (2016). Prediction method of reservoir permeability of coal
bed methane. Journal of Hlongjiang University of ence and Technology, 26(5), 480–484.

35. Habibi, M. J., Mokhtari, A. R., Baghbanan, A., Namdari, S. (2014). Prediction of permeability in
dual fracture media by multivariate regression analysis. Journal of Petroleum Science and Engineering,
120, 194–201.

36. Sharma, L., Vishal, V., Singh, T. (2017). Predicting CO2 permeability of bituminous coal using
statistical and adaptive neuro-fuzzy analysis. Journal of Natural Gas Science and Engineering, 42,
216–225.

http://dx.doi.org/10.2118/30010-MS


1156 CMES, 2020, vol.125, no.3

37. Xie, Y. N. (2011). Study on rough set theory in the prediction of coal resevoir permeability (Ph.D. Thesis).
China University of Geoscience, Qingdao.

38. Wang, J., Wan, Z., Wang, Y., Liu, Z., Liu, S. et al. (2020). Effect of stress and moisture content on
permeability of gas-saturated raw coal. Geofluids, 2020, 8837758.

39. Zhu, W. C., Wei, C. H., Liu, J., Qu, H. Y., Elsworth, D. (2011). A model of coal-gas interaction under
variable temperatures. International Journal of Coal Geology, 86(2–3), 213–221.

40. Teng, T., Wang, J. G., Gao, F., Ju, Y., Jiang, C. C. (2016). A thermally sensitive permeability model
for coal-gas interactions including thermal fracturing and volatilization. Journal of Natural Gas Science
and Engineering, 32, 319–333.

41. Zhao, Y., Cao, S. G., Li, Y., Zhang, Z. Y., Guo, P. et al. (2018). The occurrence state of moisture in
coal and its influence model on pore seepage. RSC Advances, 8(10), 5420–5432.

42. Tao, Y. Q., Xu, J., Cheng, M. J., Li, S. C., Peng, S. J. (2009). Theoretical analysis and experimental
study on permeability of gas-bearing coal. Chinese Journal of Rock Mechanics and Engineering, 28(S2),
3364–3370.

43. Bear, J., Corapcioglu, M. Y. (1983). Mechanics of fluids in porous media. Eos, Transactions American
Geophysical Union, 64(11), 109–110.

44. Scheidegger, A. E. (1958). The physics of flow through porous media. Soil Science, 86(6), 355.
45. Sun, Y., Genton, M. G. (2011). Functional boxplots. Journal of Computational and Graphical Statistics,

20(2), 316–334.
46. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
47. Lingaraj, H. (2016). A study on genetic algorithm and its applications. International Journal of

Computerences & Engineering, 4(10), 139–143.
48. Qi, C. C., Chen, Q. S., Fourie, A., Zhang, Q. L. (2018). An intelligent modelling framework for

mechanical properties of cemented paste backfill. Minerals Engineering, 123, 16–27.
49. Qasem, S. N., Samadianfard, S., Nahand, H. S., Mosavi, A., Shamshirband, S. et al. (2019). Estimating

daily dew point temperature using machine learning algorithms. Water, 11(3), 582.
50. Foroozesh, J., Abdalla, A. I. M., Zhang, Z. (2019). Pore network modeling of shale gas reservoirs:

Gas desorption and slip flow effects. Transport in Porous Media, 126(3), 633–653.
51. Sun, Y., Zhang, J., Li, G., Wang, Y., Sun, J. et al. (2019). Optimized neural network using beetle anten-

nae search for predicting the unconfined compressive strength of jet grouting coalcretes. International
Journal for Numerical and Analytical Methods in Geomechanics, 43(4), 801–813.

52. Sun, Y., Zhang, J., Li, G., Ma, G., Huang, Y. et al. (2019). Determination of Young’s modulus of jet
grouted coalcretes using an intelligent model. Engineering Geology, 252, 43–53.

53. Liu, R., Huang, N., Jiang, Y., Jing, H., Yu, L. (2020). A numerical study of shear-induced evolutions
of geometric and hydraulic properties of self-affine rough-walled rock fractures. International Journal
of Rock Mechanics and Mining Sciences, 127, 104211.

54. Liu, R., He, M., Huang, N., Jiang, Y., Yu, L. (2020). Three-dimensional double-rough-walled modeling
of fluid flow through self-affine shear fractures. Journal of RockMechanics and Geotechnical Engineering,
12(1), 41–49.

55. Li, Y., Tang, D. Z., Xu, H., Meng, Y. J., Li, J. (2014). Experimental research on coal permeability: The
roles of effective stress and gas slippage. Journal of Natural Gas Science and Engineering, 21, 481–488.

56. Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of
Statistics, 29(5), 1189–1232.

57. Zhang, J., Li, D., Wang, Y. (2020). Predicting tunnel squeezing using a hybrid classifier ensemble with
incomplete data. Bulletin of Engineering Geology and the Environment, 79(6), 3245–3256.



CMES, 2020, vol.125, no.3 1157

58. Zhang, J., Wang, Y., Sun, Y., Li, G. (2020). Strength of ensemble learning in multiclass classification of
rockburst intensity. International Journal for Numerical and Analytical Methods in Geomechanics, 44(13),
1833–1853.

59. Wang, J. J., Yu, L., Yuan, Q. W. (2019). Experimental study on permeability in tight porous media
considering gas adsorption and slippage effect. Fuel, 253, 561–570.

60. Li, B., Wei, J. P., Wang, K., Jia, Y. N. (2014). Experimental study of nonlinear motion law for gas
seepage in coal seams. Chinese Journal of Rock Mechanics & Engineering, 33, 3219–3224.

61. Hao, M. (2019). Study on evolution characteristics of hydraulic fracture and gas seepage law in low
permeability coal seam (Ph.D. Thesis). Xi‘an University of Science and Technology, Xi‘an.




