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Abstract: The Computer Aided Diagnosis (CAD) systems are gaining more 
recognition and being used as an aid by clinicians for detection and interpretation 
of diseases every passing day due to their increasing accuracy and reliability. The 
lung(s) nodule detection is a very crucial and difficult step for CAD systems.  In 
this paper, a hybrid approach for the lung nodule detection using a deformable 
model and distance transform has been proposed. The proposed method has the 
ability to detect all major kinds of nodules such as the juxta-plueral, isolated, and 
the juxta-vescular, along with the non-solid nodules automatically and 
intelligently. Results show an impressive 95.2% accuracy with 4.85 false positives 
per scan. One significant achievement of the proposed work is its ability to detect 
various sizes of nodules from 3 mm to 30 mm. The proposed technique has been 
tested on the publicly available Lung(s) Image Database Consortium (LIDC). The 
results clearly show the effectiveness of the proposed technique in early detection 
with impressive accuracy. 
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pulmonary nodules; Juxta-Plueral; Juxta-Vescular 

1 Introduction 
Research shows that lung cancer is one of the most prevalent types of cancer [1–2] and lung cancer is 

the most frequent cause of death among all the types of cancers [3–4]. Among the cancers, lung cancer has 
the second-lowest survival rate only topped by pancreatic cancer in the five-year relative survival data. The 
survival rates are less than 10% for both male and female [5]. Recent reports on lung cancer suggest that 
the continued existence rate of lung cancer in the past five years varies between 13% to 21% [6].  This rate 
shows an increase of up to 50% when lung nodules are diagnosed in early stages. As per statistics from 
2008, lung cancer is a prevalent disease, which affects a very large population of people throughout the 
world. As per the last global estimates, annually a total of 1,200,000 new cases of lung infections are 
reported [7] and the numbers are on the rise. However, unfortunately despite all the latest technologies 
available to us, diagnoses are still regularly made late, affecting treatment results. Diagnosing lung cancer 
using low dose computed tomography is a big hope for changing this situation as such and would be more 
proactive and effective at arriving at conclusions about lung tumors. 

Research shows two major reasons for the tendency of late diagnosis. First, using available methods, 
it is difficult to diagnose lung cancer at early stages due to insufficiency of symptoms. Second, poor 
prognostics also contribute to the problem. It is a hard challenge to diagnose early whether a pulmonary 
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nodule exists or not, and whether the nodule is malignant or not. During the diagnosis, radiologists need to 
analyze hundreds of Computed Tomography (CT) images relying solely on human judgment. This results 
in vulnerability and the enhanced probability of mistakes by the radiologists. The need of including 
automated intelligent support for the radiologists is spurring an increased interest in CAD systems [8–9].  

The CAD-based diagnosis system supports findings made by radiologists based on quantitative 
analysis of the radiological image. The basic idea/steps used in the CAD schemes are first, processing of 
images for extraction and detection of the nodule candidates from the images. Second, image feature’s 
quantitation is the candidates of abnormalities. Third, classification of the data between abnormal and 
normal features of lungs images (benign and malignant) and last, a quantitative assessment and recovery of 
pictures like those of obscure sores. In a lung’s tumor detection, computed tomography (CT) imaging 
techniques are widely considered the most significant and most responsive method of detecting lung 
nodules. A figured tomography (CT) sweep is an imaging technique that uses X-beams to make pictures of 
a cross-area of the body. Automated nodule recognition plans have been shown to significantly increase 
indicative precision in radiological imaging [10–11]. Fig. 1 shows a description of the different structures 
of lungs [12]. 

 

Figure 1:  An image of a Lung CT scan where the white color shows Lung Nodules, and the green color 
represents the Pulmonary and the red color are the Human Airways 

An important aspect, which needs to be considered is that a radiologist analysis is mainly based on the 
morphological structures under investigation, which can be checked in a 3D space. The examination of a 
CT is performed through the bi-dimensional picture so in essence there is a tradeoff between the 
radiologist’s needs to be the perceptive and what is provided to him. This requires a remodeling of the tri-
dimensional parts of the tissue under investigation. This is an intricate undertaking, which therefore leaves 
the door open for many mistakes. That’s the major reason there is a great demand for computational 
frameworks, which helps with the task of discovery and analysis when it pertains to lung nodules [13]. A 
representation of a chest X-ray and CT image are shown in Fig. 2. 

The paper is organized as follows: After the introduction, we present a brief and concise literature 
review outlining previous work and the current state of research in this domain. In Section 3, the proposed 
methodology is explained followed by a discussion of the experimental results achieved in Section 4. 
Section 5 is the conclusion and future work is described. 
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Figure 2: Representation of a Chest X-Ray image with Labelling 

2 Literature Review  
Literature studies show that Dehmeshki et al. [14] presented a CAD plan named as the hereditary 

calculation format coordinating for the programmed recognition of lung knobs. This was based on the 
premise of the geometric state of the voxels and with the worldwide conveyance of the knob power performs 
the calculation of the wellness capacity. Sousa et al. [8] presented a CAD plan to perform divisions at 
numerous stages. Every division stage was responsible for segments of the volume of CT image. Ye et al. 
[9] proposed a CAD sachem in which they utilized five elements containing force data, shape record and a 
3D spatial area. Opfer et al. [15] demonstrated impressive results of the CAD-based identification with lung 
knob demonstrating 89% affectability in recognizing the knobs having sizes more noteworthy than 4mm 
and 60% affectability for having measurements under 4mm. Messay et al. [16] connected various dim level 
limits to the volumetric lung areas to distinguish knob hopefuls. Likewise, various format coordinating 
based routines have been worked on. Pei et al. [17] introduced a three-stage technique, utilizing a 2D multi-
scale channel, separation of blob-molded knobs and on-knobs and lastly, extraction and classification of 
the shape elements. They performed testing on 30 exams and displayed an affectability of 100% and a false 
positive rate of 8.4 for each exam. The CAD proposed by Tan et al. [18] was based on the neural system. 
The hereditary calculation furthermore incorporates developments such as the utilization of another 
classifier of elements depicted as the highlight deselected neuro-advancing enlarging of the topologies. Two 
different classifiers were additionally utilized, i.e., the settled topology manufactured neural systems and 
the SVM. The model during testing showed the affectability calculation of (87.5%). Lee et al. [19] proposed 
a two staged method of classifiers called sporadic woods. In the first stage, the area of lung handles was 
chosen, and in the second stage, there was an effort to reduce the false positives. The results demonstrated 
by them showed a 100% accuracy for the bonafide positives and 1.4% for the false positives for every 
picture. Camarlinghi et al. [20] proposed the combination of various CAD frameworks for the upgraded 
performance to the lung knob ID. Their analysis was then contrasted with consequences of the individual 
frameworks by the method for the ROC curve. The results showed that the higher the quantity of the CAD 
frameworks utilized as a part of the identification, the higher the quantity of the genuine positives of 65, 
and the lower the quantity of the false positives of 139 and over the LIDC base of 69 pictures containing 
114 lung knobs. Chama et al. [21] presented a system that uses mean-movement taken after by the methods 
in view of geometric properties, for example, the Region of interest (ROI), made from the symmetric 
centered guide of two typical topics. They performed experimentation on 429 pictures, (133 ordinary and 
296 strange) from the LIDC-IDRI from the Interstitial Lung Disease (ILD) databases. The proposed 
technique accomplished sensitivities and specificities of 97% and 99%, (ordinary pictures) and 83% and 
99%, (unusual pictures), separately. 
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Choi et al. [22] introduced a hereditary programming-based component change and grouping for the 
programmed identification of the pneumonic knobs on processed tomography pictures. This CAD approach 
worked in three fundamental steps. In the initial step, the lung division was performed utilizing the 
thresholding and 3D part marking. In the second step, the ideal thresholding and manage based pruning for 
the location of the knob applicants are utilized and in the last step, a GP-based classifier is used to sort the 
knobs and non-knob elements. 

Recently with the development of the convolution neural network (CNN), more and more researchers 
[23–28] used the CNN for detection of lung nodules. Juang et al. [29] used an Automatic Multi-
Thresholding for the tumor classification. Similarly, Xu et al. [30] also proposed a novel technique for the 
medical image segmentation using the self-adaptive PCNN model. 

The major contributions in this paper are the following: (1) The proposed technique does not focus on 
a single type of nodule. Instead, it detects all types of lung nodules including isolated nodules, juxta-plueral 
nodules, and juxta-vescular nodules. (2) It can detect the juxta-vescular nodules of a large size, which were 
not detected earlier in any technique due to their complex structure. The Juxta-vescular nodules are complex 
to work with, because they are attached to other structures such as vessels and the bronchi tree. 

The proposed scheme is based on a four-step approach, which works as follows: Initially a lung 
segmentation is performed using a linear interpolation and lung parenchymal identification technique. In 
the second stage, we detect the Region of Interest (RoI) using multiple thresholds for the ROI, contour 
correction and a seed point choice. After detection, in the third stage, the process of the nodule detection is 
carried out using both the deformable model for detection (for Juxta-plueral nodules and isolated nodules) 
and the Distance Transform (for juxta-vescular nodules). In the final stage, the false-positive reduction is 
achieved using Fuzzy rule-based pruning. 

This brief overview of literature shows that despite impressive developments in this field, there are still 
significant shortcomings hampering the effectiveness of the CAD based systems in a true sense. The limitations 
we are focusing on in this paper include a comprehensive mechanism that can work with various kinds of 
nodules simultaneously. Another area of interest for us on which no previous work has focused on so far deals 
with the large size juxtavescular nodules. In the Section 3, we explain the structure of proposed methodology. 

3 The Proposed Methodology 
The lung(s) segmentation is the process to detect the lungs part from the whole CT Scan image of the 

lungs. There are many different organs available in the complete CT scan lung image, therefore it is 
important to segment the lungs for the detection of the nodules available only in the lungs. The lung(s) 
segmentation, nodule detection is a very important and crucial step to extract the nodules. There are four 
types of lung(s) nodules that are required to detect. The proposed methodology consists of four steps to 
perform the whole process.  

• The lung parenchymal and linear interpolation techniques are used to performed the Lung 
Segmentation.  

• The Region of Interest (RoI) has been detected using a multiple threshold. 
• The nodule detection is carried out using the deformable model (for Juxta-pleural nodules and 

isolated nodules) and the Distance Transform (for juxta-vescular nodules). 
• The false-positive reduction is achieved using the Fuzzy rule-based pruning. 
Graphical representation of our proposed methodology is given below in Fig. 3. 
In the following subsections, we explain the complete process of each stage separately in detail. 

3.1 Linear Interpolation  
The performance of any CAD system depends greatly on the examination based on the volume of the 

Computer Tomography pictures. For the first step, we transform all the voxels into a 3D coordinate system 
network with uniform 3D spatial determination. This helps overcome the risk of blunder due to the 



 
IASC, 2020, vol.26, no.5 861 

anisotropic representations of lattices. This approach used in our work, despite its simplicity, is a strategy 
that is broadly used for informal recreation. Keep in mind that the spatial determination along the hub 
heading in the CT examination is not the same as the spatial determination inside every cut. That is why 
we have used a straight addition along the hub bearing as shown in the image.  

3.2 Lung Parenchymal Volume Identification  
In any CAD scheme the lung segmentation is necessary, because to detect the nodules from the input 

image is a difficult task. In our work, the input image is segmented into several slices to minimize the 
computation complexity and the FPs. We calculate the initial volume of the interest (VOI) for separation 
of the lung(s) portions. The objective is to better identify the juxta-vescular nodules, the isolated nodules 
and the juxta-pleural nodule. The segmentation makes it easier to find different types of nodules from the 
image. The most used technique for the lung segmentation in the literature is the threshold- based region 
filling. The limitation of this technique is that it erroneously removes the important regions including the 
juxta-pleural nodules, because these nodules are attached with the pleura. The simple thresholding filling 
technique or algorithm is not able to detect the juxta-pleural nodules separately. To overcome this limitation, 
the proposed technique works on following two steps: 

• The Inclusion Process 
A 3D Region Growing algorithm is used for the lung parenchyma identification. 
• The Connectivity Analysis  
To incorporate the interior structures with the high-power esteem (knobs and vessels) and the pleura layer 

neighboring inward lung volume, a widening procedure is connected, which is called the Connectivity analysis.  

3.2.1 The Inclusion Process  
When we examine the structure of the lungs, we find that the bronchial tree and air lies in the interior 

lung volume. In the CT Images, these appear as a low power voxel encompassed by the high force voxels, 
which are connected to the pleura surface. We use this information to divide the interior lung volume using 
a 3D RG (Region Growing) calculation. Our technique begins from a seed point, which is the incremental 
appending, so it combines adjacent focuses, which have the comparable properties to the seed. This process 
keeps iterating until there are no more focuses fulfilling the predefined criteria. The most challenging task 
in the RG (Region Growing) calculation is to pick a better incorporation process with a proper seed point. 
For this purpose, we have utilized the Simple Bottom Threshold (SBT). In this technique, if the power of a 
nonexclusive voxel is lower than the edge esteem, this voxel is added to the area. The termination point is 
consequently chosen by the system proposed by Ridler et al. [31]. This procedure depends on the CT voxel 
dim quality circulation, which is comprised of two parts: One has air, bronchial tree, trachea, and lung 
parenchyma. The other is comprised of muscles, bones, vascular tree, and fat. The ideal edge is set between 
these two locales. The RG calculation utilizes the two seed focuses, and determines the criteria of the seed 
point as described by Cascio et al. [32] shown as follows: 

1. The start point on the central voxel (P0) is set first. 
2. Then left of a voxel, a shift is performed.  
3. Start the RG for such voxel, if the rule of inclusion is satisfied, then go to the Step 2. 
4. If the magnitude order of the selected volume and expected lung volume are the same at the end of 

the RG process, then end the trial phase, otherwise go to Step 2.  
A point of the lung volume is chosen from the histogram of the CTs dark tones and evaluating the 

territory under the second top from the left. This part relates to the voxels having a place with the lung 
parenchymal and bronchi. To select the required volume of pulmonary, all the above steps are repeated. 
Below Fig. 3 displays an example of the inclusion process. 
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Figure 3: Image after the inclusion process 

3.2.2 The Connectivity Analysis  
After the inclusion process, we receive the segmented image. However, in this image the internal 

nodule, vessels and air walls are not included. In order to include these nodules, a dilation process called 
the connectivity analysis is applied. For an accurate application, the connectivity analysis is applied. After 
applying the connectivity analysis, the juxta-pleural nodules are also included into the segmented image. 
Fig. 4 represents the proposed methodology diagram. 

 

Figure 4: The proposed methodology diagram 

3.3 The Multiple Optimal threshold for the ROI Extraction 
The process of selecting multiple optimal thresholds is shown in Fig. 5. As we know, there are different 

intensities of nodules and varying levels of vessel attachments. In order to extract the Region of Interest 
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(ROI) in such a situation, we use multiple thresholds. We have used the optimal threshold to detect the ROI. 
The Thoracic CT consists of two main groups of pixels, a high-intensity pixel located in the body (body 
pixels) and a low-intensity pixel, which are in the lungs and surrounded air, which are called the non-body 
pixels. The larger intensity difference between these two group of pixels ensures the thresholding is the best 
mechanism to separate these groups. The method proposed by Choi et al. [22] used five static threshold 
values, which is not an optimal threshold. In our technique we use the method of the optimal thresholding 
defined by Hu et al. [33]. This technique iteratively figures the estimation of a limit so that the two 
gatherings of the pixels are all around isolated. 

 

Figure 5: The multiple optimal threshold selection process 
Let 𝑇𝑇𝑤𝑤 be the edge esteem at step w and µ𝑎𝑎 , µ𝑏𝑏 is  the normal power estimation of the body pixels, 

(i.e., with the force higher than 𝑇𝑇𝑤𝑤), and separately the non-body pixels (power lower than 𝑇𝑇𝑤𝑤). The limit 
for step w + 1 is: 

𝑇𝑇𝑤𝑤+1 =   µ𝑎𝑎 + µ𝑏𝑏 
2

 (1) 

This technique is rehashed until the union, i.e., and until step e, where  𝑇𝑇𝑒𝑒  = 𝑇𝑇𝑒𝑒−1. The introductory 
limit of  𝑇𝑇0 is set to 128, which is the middle dim level. At the point when joining is finished, the picture is 
thresholded at quality 𝑇𝑇𝑒𝑒 . The body pixels are set to 0 and the non-body pixels are set to 1. 

3.4 The Seed Points Choice  
The seeds chosen work as the information for the step is called the “Deformable Model”. The knobs 

have a more prominent force as for the pneumonic parenchyma and they can be effortlessly found by 
searching for the neighborhood maxima in the volume of interest. A voxel-level operation is performed 
as follows: 

O(a,b,c) = (M(a,b,c)- N(a,b,c)) . I(a,b,c) (2) 
where M(a.b,c) is the matrix after the connectivity analysis process, N(a,b,c) is the matrix we get after the 
RG process, I(a,b,c) is the input image, and O(a,b,c) is the resultant matrix. Fig. 6 represents the result of 
Eq. (1). After getting the matrix O(a,b,c), we apply a hit the highest point detector algorithm on it to discover 
the confined maxima and select the seed points, which will be used in the next step. The process of the Seed 
Point Choice is shown in Fig. 6. 
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3.5 The Nodule Detection  
In this stage, we detect all the various types of nodule candidates from other structures. To detect these 

nodules, we used two techniques. The first one is the deformable model to detect the isolated nodules and 
the juxta-pleural nodules and the second one is the distance transform to detect the juxtavescular nodules. 
Detailed description of these methodologies is given below. 

 

Figure 6: The resultant image after the seed point choice 

3.5.1 The Deformable Model  
This model is used to detect the isolated and juxtapleural nodules from the lung parenchyma. This 

model is also called the Mass Spring Model. The basic aim of the deformable model is to identify the shape 
of the object. We have used it to identify the nodule’s shape among other structures. The Deformable model 
uses a priori knowledge by definition and parameterization. The Deformable model discovers the balance 
between the inner strengths (portraying the model shape) and the outer powers (depicting the picture data). 
In the material science-based displaying worldview, the shape relates to the connected (outside) powers on 
the deformable model so that the model converges into the shape of an object, while the inside powers keep 
the model smooth amid disfigurement. The deformable model is adjusted considering the vitality term until 
the vitality is insignificant. 

 The Design of the Deformable Model  
We need to locate a suitable vitality capacity from which we get an answer for the knob form. This model 

was introduced by Cascio et al. [32]. In the first stages of the 3D deformable model, we took a circular cross-
section of mass. The model begins from an augmented position where the mass cross-section holds on to the 
potential knobs. The seed focuses, which were picked in the past section are taken as the focal point of every 
circle network. We marked the circle with the N value of the mass focus that make the dynamic model and 
with the t number of the mass purposes of a solitary cut that makes a connection of L = t.u, where u is the total 
number of slices. Each mass in the sphere N(j) (j = 1…t) is connected with two other masses N(j – 1), N(j + 
1), which belongs to the same slice and with two slices N(j – n)  and N(j + n), which belongs to the previous 
slice. We have written it in a more generalized way as: 

𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 = ∑ [𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖) + 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖)]𝑁𝑁
𝑖𝑖=1  (3) 

As shown in Eq. (2), every single element in the proposed model plays an important role with external 
and internal energies to the functional energy. Now we will describe internal and external forces in detail. 

Internal Energy  
The internal energy 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖) of the deformable model is achieved by the calculation and addition 

of all following energies. 

Elastic Energy  
In order to get the shape of the segmented object, the first step is the Elastic energy. The vertex 𝑖𝑖is connected 

to the z-plane and 𝑥𝑥𝑥𝑥-plane of its four neighbors. Those four points are contributing to the elastic energy. 
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𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖) = 𝛼𝛼[𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖−1(𝑖𝑖) + 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖+1(𝑖𝑖) + 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖−𝑛𝑛(𝑖𝑖) + 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖+𝑛𝑛(𝑖𝑖)] (4) 
where 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 𝑗𝑗(𝑖𝑖)  represents the elastic energy of the model, which is attached with the two masses i and j. 

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 𝑗𝑗(𝑖𝑖) = 1
2
𝑘𝑘∆𝑥𝑥2  (5) 

The two-mass points distance is represented by ∆𝑥𝑥 and 𝑘𝑘, which denotes the spring constant, as a 
parameter. 

Bending Energy 
The second step is to apply the bending energy on the object. The model must adjust to the diverse 

bends that the object might show. In this way we apply the bending energy. Here the bending energy is 
linked with the general vertex I, which is defined as follows: 

𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =  𝛽𝛽‖𝑃𝑃𝑖𝑖−1 − 2𝑃𝑃𝑖𝑖 + 𝑃𝑃𝑖𝑖+‖2 (6) 
where 𝑃𝑃𝑖𝑖 indicates the position of the 𝑖𝑖𝑖𝑖ℎ vertex. 

Attraction Energy  
The vertices belong to the same slice, and the geometric centre of those positions are taken as a linking 

point for the calculation to separate the vertices normal (𝑑̅𝑑) and standard deviation (𝜎𝜎𝑑𝑑). If the 𝑖𝑖𝑖𝑖ℎ vertex 
has the distance of 𝑑𝑑𝑖𝑖 from the center, then it is represented as: 

𝑑𝑑𝑖𝑖 >  𝑑̅𝑑 + 𝜎𝜎𝑑𝑑 (7)  
Then the attraction energy is linked with the 𝑖𝑖𝑖𝑖ℎ vertex and given as:  

𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑖𝑖) =  𝛾𝛾 𝑑𝑑𝑖𝑖
𝑑𝑑�

 (8) 

With respect to the average distance as the vertex is from the center caused the larger amount of energy 
contribution. This contribution makes the points on the model surface almost spherical, which are most 
likely nodules. 

External Energy  
Internal energy evaluates the contour points as well as the contraction and bending but it does not provide 

any pulling force with which we can separate our desired object from the rest of the image [32]. Therefore, 
we apply external forces for this task. The external energy 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is the combination of the gradient and 
potential energies. Now we describe the contribution of each energy in our work one by one respectively. 

Gradient Energy  
Gradient energy has a high gradient evolution towards the location. A very small amount of energy 

will be associated with the 𝑖𝑖𝑖𝑖ℎ vertex if it is located on the edge point, which is represented by Eq. (9) [32]: 

𝐸𝐸𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑖𝑖) = −𝛿𝛿‖𝛻𝛻𝛻𝛻(𝑃𝑃𝑖𝑖)‖ (9) 
where 𝐼𝐼(𝑃𝑃𝑖𝑖) is the intensity of the 𝑖𝑖𝑖𝑖ℎ vertex at the 𝑃𝑃𝑖𝑖 position. 

Potential Energy  
Every point of the model is linked with potential energy. If the point is with high intensity, then it 

means more energy is linked with it. If a pixel moves from a low-intensity value to a large intensity value 
like the pleura surface, then it must pay the additional energy function such as: 

𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖) = 𝐼𝐼(𝑃𝑃𝑖𝑖) (10) 
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Energy Functional  
After calculating the internal and external forces we must sum up all the energies to get the total energy 

function, which is represented as follows: 

𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =  𝛼𝛼𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖) + 𝛽𝛽𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑖𝑖) + 𝛾𝛾𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑖𝑖) + 𝛿𝛿𝐸𝐸𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑖𝑖) + 𝜖𝜖𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖) (11) 
Dimensional parameters like ε, β, α, γ and δ are empirically reduced. Various sizes of the artificial 

objects are introduced in the image for identification of theses parameters. At the start of the methodology, 
we mentioned that our aim is to detect the isolated and juxta-pleural nodules, and both types of nodules 
were detected successfully. 

Now for the detection of the juxta vescular nodules, we use the distance transform technique. A 
detailed description of this technique is given. 

3.5.2 The Distance Transform  
After applying the deformable model, we get the isolated, juxta-pleural and some small juxta-vescular 

nodules. The deformable model excludes the larger juxta-vescular nodules due to their complex structure. 
To include those larger juxta-vescular nodules, we apply the distance transform using the 3D region 
growing algorithm. We used the seed points, which were identified earlier. As a matter of the first 
importance, the structures are regrouped by utilizing the 3D district developing calculation. This helps in 
joining the structures with one another. Initially, the resultant structures are not partitioned into the genuine 
structures (knobs, vessels and bronchi).  

The shape of the knobs is the most important element, which is utilized to distinguish it from the 
different structures. It provides us with essential data about the shape and we use this data for analysis. The 
difficulty arises from distinguishing the round shapes (more probable knobs) from the barrel-shaped shapes 
(more probable vessels). The distance change is figured [8] in each of the structures in all the voxels of the 
edges. As we traverse to the inward voxel, it is increased until there are one or two voxels left that are 
distinguished from the edge. The structures with the expansive grouping of the knobs have a high estimation 
of the separation change. This information about the lung knob is used to separate the bigger juxta-vescular 
knobs from alternate structures, for example, the vessel and bronchi and so on. 

3.5.3 The Nodules Fusion  
After detection of all the types of nodule candidates at this stage, we merge all those types of nodules 

before performing the rule-based pruning. We take union of all the detected nodules to avoid duplication 
and to make the rule-based pruning much easier. 

3.6 The False-Positive Reduction Using the Fuzzy Rule-Based Pruning  
There is probability of non-nodule elements present in the earlier stage detection module. These non-

nodule elements are unnecessary and affect the accuracy of the system. Rule based pruning has been 
performed and four rules are defined to remove these unwanted non-nodules. Nodule candidates are 
characterized by their volume (v), area (a), elongation (e), diameter (d) and circularity (c). Maximum and 
minimum threshold has been defined and is used for the distinguishing nodules from non-nodules elements.  

For the symbolic representation of minimum and maximum thresholds of volume, area and diameter  
𝑇𝑇𝑣𝑣

(min ) ,𝑇𝑇𝑎𝑎
(𝑚𝑚𝑚𝑚𝑚𝑚) ,𝑇𝑇𝑑𝑑

(𝑚𝑚𝑚𝑚𝑚𝑚), 𝑇𝑇𝑣𝑣
(𝑚𝑚𝑚𝑚𝑚𝑚) , 𝑇𝑇𝑎𝑎

(𝑚𝑚𝑚𝑚𝑚𝑚) and 𝑇𝑇𝑑𝑑
(𝑚𝑚𝑚𝑚𝑚𝑚)values are used for nodule candidates respectively. This 

threshold is used non-nodule candidates’ separation. Objects falling below or above threshold are considered 
as non-nodule candidates and objects values lying within the threshold are categorized as nodule candidates. 

Pruning Rules: 
Rule R1: 

Diameter (l) < 𝑇𝑇𝑑𝑑
(𝑚𝑚𝑚𝑚𝑚𝑚)  

Rule R2: 
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Volume (l) > 𝑇𝑇𝑣𝑣
(𝑚𝑚𝑚𝑚𝑚𝑚) or Overlapped (l, VS) > T0 or (Elongation (l)>Te and Volume (l)> 𝑇𝑇𝑣𝑣

(𝑚𝑚𝑚𝑚𝑚𝑚) ) 
Rule R3: 

Diameter (l) >𝑇𝑇𝑑𝑑
(𝑚𝑚𝑚𝑚𝑚𝑚) 

Rule R4: 

Circularity (l) >Tc and Area(l) > 𝑇𝑇𝑎𝑎
(min ) and Area(l) < 𝑇𝑇𝑎𝑎

(𝑚𝑚𝑚𝑚𝑚𝑚). 
All these four rules can help us in separating the non-nodules candidates from nodule candidate. The 

fuzzy rule-based pruning algorithm is presented here:  

 

4 The Results/Comparisons with Other Works 
Nodules are mainly categorized into three types namely juxta-vascular, juxta-plueral and isolated-

nodules. Techniques developed by [22] have addressed the problem of detection of all types of nodules. 
Their technique was unable to detect some of the large and non-solid nodules. However, there is 
deterioration in accuracy of juxta-vascular nodules detection. It is only because of the larger size and 
complicated structure of these types of nodules. Our proposed technique has been successful in categorizing 
larger juxta-vescular type nodules along with some non-solid nodules. In order to detect the larger juxta-
vescular nodules, which were not detected through earlier techniques, we used the distance transform 
technique. As shown in Tab. 1, three different distribution of 30–70%, 50–50% and 70–30% are used for 
training and testing purposes.  

Table 1: The results of the proposed nodule detection technique 

Training-Testing Accuracy (%) Sensitivity (%) Specificity (%) AUC 

30-70 92.45 82.58 99.23 0.9616 

50-50 96.25 96.42 99.64 0.9938 

70-30 97.23 96.82 99.72 0.9926 

Accuracy, specificity, and sensitivity measurements are used to check the system performance with 
training to testing ratio. Tab. 1 illustrates that the accuracy and sensitivity gradually increased with an 
increase in the training sample. However, the specificity rate, which shows the relationship between the 
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false positive and the true negative are almost consistent with an increase in the training samples. The best 
results are obtained with 70–30% training to testing ratio.  

It is important to compare the results of the proposed method in the same domain with existing methods. 
It is a challenging task due to the change in the evaluation parameters like the results metrics, nodule size 
and dataset. For fair comparison we have considered the methods using the same experimental protocols as 
shown in Tab. 2. The number of the false-positive rate is the most important evaluation parameter, which 
greatly affects the accuracy of any good diagnosis system. It is also the key requirement of any diagnosis 
system to reduce the false-positive rate. Tab. 2 shows the clear picture that the results of the proposed 
method are better than the existing method with respect to the average false positive rate and sensitivity. 
Suzuki et al. [34] achieved 80.3% sensitivity with a 16.1% false-positive rate. The methods reported in [16] 
and [22] used the same size nodule as ours, however, their sensitivity rate is less than our proposed method. 

Table 2: The comparative analysis of the proposed nodule detection technique 

CAD system 
Nodule size used 

(mm) 
Average false positives per 

case Sensitivity 

Suzuki et al. [34] 8–20 16.1 80.3 
Opfer et al. [15] ≥4 4 74 
Messay et al. [16] 3–30 3 82.66 
Choi et al. [22] 3–30 5.45 94.1 
Proposed CAD 3–30 4.85 95.2 

Fig. 7 shows the proposed method performance in terms of the scatter plot. It shows the classification 
of correct and incorrect nodules. The figure depicts that the proposed method has reduced the false positive 
rate and increased the true positive rate.   

The results clearly show the performance improvement using our proposed technique for the false-
positive detection against most of the standard techniques. At the same time, we can see that the efficiency 
of the proposed technique is much better than most of the already existing methodologies as shown in Fig. 
8. Fig. 8 shows the illustration of the ROC curve, the AUC and the results of the current classifier. The 
results in Fig. 8 also show the different features for each group, which are described in terms of false 
positives and true positives. Our proposed method improved the performance in terms of the true positives, 
sensitivity, accuracy and specificity. 

 
Figure 7:  The scatter plot of the proposed method 
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Figure 8: The false-positive ate using the proposed method 

5 Conclusion and Future Work  
There is a significant rise in the use of CAD systems to help radiologists detect lung modules and increase 

the survival rate of lung cancer patients. These systems are very helpful for the radiologists and patient’s 
survival rate has been drastically increased. However, there are few limitations of these types of systems when 
applied using CT-Scan images. A novel framework for CAD Systems is developed and is presented in this 
research paper. Lungs are segmented using Linear Interpolation and Lung Parenchymal Volume Identification 
methodology. We have used multiple optimal thresholding method for region of interest extraction. Candidate 
nodules are detected by applying deformable model and distance transform. Proposed technique performs 
better than the existing methods and is capable of detecting all types of nodules. System detects malignant 
and benign lesions. However, categorization of benign and malignant is left.  In our experiments we have used 
LIDC datasets and results are generated. It has been observed that there is significant improvement in 
sensitivity, i.e., 95.2% and deterioration in false positive rate, i.e., 4.85%. 
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