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Abstract: K-means is a simple and commonly used algorithm, which is widely 
applied in many fields due to its fast convergence and distinctive performance. In 
this paper, a novel algorithm is proposed to help K-means jump out of a local 
optimum on the basis of several ideas from evolutionary computation, through 
the use of random and evolutionary processes. The experimental results show 
that the proposed algorithm is capable of improving the accuracy of K-means 
and decreasing the SSE of K-means, which indicates that the proposed algorithm 
can prevent K-means from falling into the local optimum to some extent. 
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1 Introduction 
With the rapid advancement of technology, it has now entered the information age of big data. Then, 

big data technologies nowadays can be applied in some fields, such as cyber-physical systems [1], green 
applications [2], Internet of Things [3], and many others [4–7]. Meanwhile, extracting valuable 
information from big data plays a key role. 

Clustering, as the process of dividing multiple objects into multiple classes of similar objects, is 
helpful in mining useful information from unsupervised data, while extracting valuable information. It 
looks for similar samples in the dataset and then groups them. Its goal is to make the objects within the 
same group similar and the objects between different groups different as much as possible. The higher the 
similarity in the same group is and the lower the similarities between different groups are, the better the 
clustering effect is. Clustering is an important technique in data mining. It can divide data into meaningful 
clusters, in which each can be regarded as a classification. Dividing data into different groups means 
marking different data with different features and highlighting the salient features of different types of 
data, which can help us better understand the data. Clustering techniques can be used for anomaly 
detection. In the data cleaning process, clustering can clean out some abnormal data with obvious 
problems, and it can also find abnormal users. In addition, clustering can be applied in outlier detection 
[8]. In search engines, the query purposes of many users are similar, but they use different keywords, and 
some users do not even think of important keywords. Via clustering different classes or different topics, 
keyword recommendation during the search process can be performed. In image segmentation, pixels of 
an image can be mapped into a feature space. The clustering algorithms are able to analyze the feature 
points of the pixels in the feature space and divide them in accordance with the aggregation results, and 
then map these points back to the pixel space to obtain the segmentation results. 
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The K-means algorithm, as one of clustering algorithms, is simple to implement with a fast 
convergence speed, while achieving good effect [9]. It is widely used in the industry and some other 
fields. However, it has many disadvantages as well, one of which is that it is sensitive to initial values and 
is prone to fall into local optimum. To overcome those limitations, there are many variants of K-means. K 
medians [10] is an algorithm that is very similar to K-means. K-means is to continuously update the 
centers of the cluster during constant iterations. Its selection of the centers is determined according to the 
mean of samples of each category while K-medians’ selection is achieved according to the median. 
Therefore, the impact of noise on the cluster center is accordingly reduced. K-means is a hard clustering 
compared with fuzzy C-means clustering (FCM), a kind of soft clustering [11]. FCM can indicate the 
degree of membership of a sample point to any cluster. K-means++ [12] attempts to solve the initial value 
selection problem of K-means to some extent by selecting points farther from the current cluster center 
points. Kernel functions are often used to solve nonlinear problems [13]. Then, the kernel K-means [14] 
maps the points of the input space into a high-dimensional space through nonlinear mapping. This method 
of mapping data into high dimensional space can highlight the differences between sample categories, 
making the data approximately linearly separable. The Bisecting K-means [15] is not affected by the 
initial value problem, and can speed up the convergence of K-means. Its clustering result is relatively 
better than K-means. The Mini-Batch K-means [16] is an improvement of K-means designed for larger 
data sets. It obtains a subset of samples from a small amount of samples at each iteration, and uses these 
randomly generated subsets of samples to update the centers. 

However, most algorithms do not provide solutions to solve the problem that K-means is sensitive to 
the initial center points. The choice of the first cluster center of K-means++ is very significant while noise 
points will have greater impacts on the choice of cluster centers. In the clustering process of Bisecting K-
means, once one point is divided into one cluster, it can no longer be clustered with the points in other 
cluster. It may lead to an issue that some points which belong to the same cluster in principle are divided 
into different clusters, and there is no chance to be clustered together for them. 

Considering that many good ideas are given for the issue of jumping out of the local optimum in the 
evolutionary computation field, we propose an improved algorithm of K-means in this paper to solve the 
problem that K-means is easy to fall into local optimum, on the basis of several evolutionary algorithms. 
In our algorithm, the random process is added, and there is a possibility of jumping out of the local 
optimum from beginning to end. In the experiments, we can find that the clustering effect has been 
improved while more time are spent. 

The remainder of this paper is organized as follows. Section 2 reviews the related work, while 
Section 3 analyzes our proposed algorithm. The experimental results are summarized in Section 4, and a 
short conclusion is provided in Section 5. 

2 Related Work 
2.1 K-means Algorithm 

Here, we provide a short description of K-means algorithm. Firstly, k centers are randomly selected, 
and then the distance between the j-th sample 𝑥𝑥𝑗𝑗 and the i-th center 𝑐𝑐𝑖𝑖 is calculated as: 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑑𝑑, 𝑗𝑗) =  ∑ (𝑥𝑥𝑗𝑗𝑗𝑗 − 𝑐𝑐𝑖𝑖𝑗𝑗)2𝑑𝑑
𝑗𝑗=1 , (1) 

where d is the dimension of samples. 
Then, each sample is assigned to the cluster center closest to it. In the next step, each cluster center is 

updated as: 

𝑐𝑐𝑖𝑖′ =  1
𝑚𝑚𝑖𝑖
∑ 𝑥𝑥𝑗𝑗𝑥𝑥𝑗𝑗∅𝑐𝑐𝑖𝑖 , (2) 

where 𝑥𝑥𝑗𝑗∅𝑐𝑐𝑖𝑖  refers to that sample 𝑥𝑥𝑗𝑗  belongs to the group determined by the centre 𝑐𝑐𝑖𝑖 , and the total 
number of samples belonging to this group is 𝑚𝑚𝑖𝑖. The distance between each sample and each cluster 
center is recalculated. This process is repeated until the algorithm converges. 
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The objective function SSE in the entire clustering algorithm is as follows: 
𝑆𝑆𝑆𝑆𝑆𝑆 = ∑ 𝑓𝑓(𝑐𝑐𝑖𝑖)𝑗𝑗

𝑖𝑖=1 , (3) 

𝑓𝑓(𝑐𝑐𝑖𝑖) = ∑ �𝑐𝑐𝑖𝑖 − 𝑥𝑥𝑗𝑗�
2

𝑥𝑥𝑗𝑗∅𝑐𝑐𝑖𝑖 . (4) 
The metric SSE is continually minimized, and when the optimization converges the clustering 

centers we look for are obtained.  

2.2 Evolutionary Computation 
Evolutionary computation is a group-oriented randomized computational model that simulates the 

evolution of natural organisms. Evolutionary computation algorithms can be used to solve constrained 
and unconstrained optimization problems.  

Currently, there have been many practical problems that are difficult to be solved with traditional 
methods. Then, evolutionary computation methods could be used to address them. Evolutionary 
computation has characteristics of self-organization, self-learning and self-optimization, and its principles 
are often simple. Meanwhile, evolutionary algorithms usually have excellent global optimal solutions. 

Evolutionary computation uses a kind of group search strategy that basically does not rely on 
knowledge of the search space and other ancillary information. So far, there have been many outstanding 
algorithms in the field of evolutionary computation. 

The most representative method is the genetic algorithm (GA), which searches for the optimal 
solution by simulating the natural evolution process [17]. Particle swarm optimization (PSO) is a swarm 
intelligence algorithm designed by simulating the predation behavior of birds to search for optimal 
solutions and was introduced in [18]. The ant colony optimization [19] is a simulation optimization 
algorithm that simulates the foraging behavior of ants. The differential evolution (DE) algorithm is based 
on the simple mutation of the score and the one-to-one competitive selection strategy, which reduces the 
complexity of genetic operations [20]. Li proposed the fish-swarm algorithm in 2002 [21]. The simulated 
annealing (SA) algorithm [22] draws on the annealing principle of solids. This algorithm is a method 
based on Monte Carlo thought designed to solve the optimization problem. It accepts a solution that is 
worse than the current solution with a certain probability at each iteration, and thus may jump out of the 
current local optimum. Based on the inspiration of night sky fireworks explosion, a new swarm 
intelligence optimization algorithm, named fireworks algorithm, was proposed in [23]. Later in 2011, the 
brainstorming algorithm was proposed based on a swarm intelligence algorithm, which simulated the 
innovative thinking of human brainstorming [24]. It is very suitable for solving complex multi-peak and 
high-dimensional function problems. Jaya algorithm is a novel optimization algorithm proposed in [25], 
without algorithm-specific control parameters. Jaya is a widely used optimization algorithm. A GPU-
accelerated parallel Jaya algorithm was presented to estimate Li-ion battery model parameters [26]. An 
elite opposition-based Jaya was proposed to estimate the parameters of photovoltaic cell models [27]. 

More recently, there are some methods introduced to combine K-means and evolutionary algorithms. 
For example, a one-step K-means mechanism was used to enhance the performance of the original Jaya 
algorithm [28]. A combination of bare bones fireworks algorithm and K-means was proposed to cluster data 
[29]. A genetic-based algorithm was used to obtain the best parameters in two improved K-means algorithms 
[30]. An enhanced K-means clustering with PSO was introduced to obtain refined set of data points [31]. 

Different from the above methods, rather than combine several algorithms, we refer to several 
significant ideas from evolutionary computation to help solve the problem that K-means is easy to fall 
into local optimum. 

3 The proposed Algorithm 
As shown in Fig. 1, the new algorithm adds two new processes, i.e., random and evolutionary 

processes of clustering centers, into the original algorithm. In the E step, samples are divided into several 
parts by grouping the sample points with its nearest center point into a class. In the M step, the clustering 
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centers are updated with new centers obtained by calculating the mean of each set of sample points. 
Hence, the proposed algorithm increases two process, including random process and evolution process. 
Here, the random process is the stochastic process of the center points and the evolution process is the 
evolution of central points, between the E step and the M step. 

 

Figure 1: Structure of the proposed algorithm 

3.1 Random Process 
In random process, new random clustering centers are created randomly, which is a key module for 

the algorithm to jump out of local optimum. With the stochastic process in evolutionary computation, 
many methods can be used in this part. For example, a simple random process within a specified range 
can be used, or random swimming behavior and foraging behavior of the fish-swarm algorithm can be 
simulated. We can also refer to the intersection and variation processes of GA. For the same reason, the 
intersection and variation processes of DE can also be imitated. 

Since the result of K-means algorithm is deterministic after the initial values of clustering centers 
determined, the random process of clustering centers here is particularly significant. Many ideas for 
generating stochastic processes can be used as references. Here, we introduce two simple random ideas 
from fish-swarm algorithm. 

3.1.1 Swimming Random 
Free swimming is a default behavior of fish-swarm algorithm. When there is no other behavior, the 

fish individual swims within the field of view. In order to jump out of the local optimality of K-means 
and look for global optimality, the horizon of fish is expanded to all searchable areas. The swimming 
behavior can be described as follows: 
𝑐𝑐𝑖𝑖𝑠𝑠𝑠𝑠 =  𝑐𝑐𝑖𝑖 + 𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 ,                                                                                                                                       (5) 
where 𝑐𝑐𝑖𝑖 is the i-th center of all clustering centers and 𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 is the swimming step of the i-th center. It 
should be noted here that 𝑐𝑐𝑖𝑖𝑠𝑠𝑠𝑠 is random in all feasible solutions, which is a key point to help K-means to 
jump out of local optimum. 

3.1.2 Foraging Random 
Based on the current state of a fish, another state is randomly generated within its sensing range in 

fish-swam algorithm. Here, we use 𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑓𝑓 to control the foraging step. 

𝑐𝑐𝑖𝑖
𝑓𝑓𝑠𝑠 =  𝑐𝑐𝑖𝑖 + 𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑓𝑓 , (6) 

where cifr is a random candidate solution of the i-th center generated in visual field. 
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3.2 Evolution Process 
After generating new random cluster center points, the next operation is to update centers. This 

updating process of the cluster centers is called evolution process, which in fact is the selection of 
clustering centers. Similarly, there are many selection mechanisms. Here, we introduce two methods 
based on Jaya optimization algorithm and SA algorithm. 

3.2.1 Jaya Selection 
According to the idea of Jaya optimization algorithm, the center points are supposed to be further to 

the less effective candidate solutions generated randomly and be closer to the better candidate solutions 
with a certain step size. The selection process is as follows: 
𝑐𝑐𝑖𝑖′ =  𝑐𝑐𝑖𝑖 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 × (𝑐𝑐𝑖𝑖𝑠𝑠 − 𝑐𝑐𝑖𝑖) × 𝑠𝑠 , (7) 

where 𝑐𝑐𝑖𝑖𝑠𝑠 is 𝑐𝑐𝑖𝑖𝑠𝑠𝑠𝑠 or 𝑐𝑐𝑖𝑖
𝑓𝑓𝑠𝑠 or other clustering centers generated randomly for the i-th center, and flag is 1 if 

the new clustering center 𝑐𝑐𝑖𝑖𝑠𝑠 is better than current center 𝑐𝑐𝑖𝑖 or -1 in contrast. Here, we use 𝑠𝑠 which ranges 
within [0, 1] to control the updating step size, since the ranges are different in different dimensions of 
clustering centers. Then, 𝑐𝑐𝑖𝑖′, i.e., the updated center of 𝑐𝑐𝑖𝑖 after one iteration, is obtained. 

3.2.2 Simulated Annealing (SA) Selection 
When it is searching for the best solution, the SA algorithm will accept a bad solution with a certain 

probability, which may be helpful in jumping out of the local optimum. This probability gradually 
decreases with time. The probability can be described by: 

𝑦𝑦 = �
1,                   𝑓𝑓(𝑐𝑐𝑖𝑖𝑠𝑠) − 𝑓𝑓(𝑐𝑐𝑖𝑖) < 0

𝑠𝑠−
𝑑𝑑𝑑𝑑
𝑇𝑇 ,            𝑓𝑓(𝑐𝑐𝑖𝑖𝑠𝑠) − 𝑓𝑓(𝑐𝑐𝑖𝑖) ≥ 0

  , (8) 

where y represents the probability described above and T is the temperature which will decrease gradually. 
Moreover, df represents 𝑓𝑓(𝑐𝑐𝑖𝑖𝑠𝑠) − 𝑓𝑓(𝑐𝑐𝑖𝑖). If df < 0, then T is updated as: 
𝑇𝑇 = 𝑇𝑇 × 𝛼𝛼 , (9) 
where 𝛼𝛼 which ranges from 0 to 1 controls the rate of change of temperature T. 

It is obvious that the higher the temperature is, the higher the probability is, and more likely it is to 
jump out of the current local solution. We also set parameters to maintain the best centers throughout the 
iterations of our proposed algorithm. If the centers obtained when the cluster converges are worse than the 
best centers, the set of best centers is the final solution. 

3.3 Computational Complex Analysis 
Supposing we want to find k center points from n sample points. Each sample is d-dimensional and 

the number of iteration is t.  
We analyze the time complexity of K-means first. In each iteration, the distances between each 

sample and k centers are calculated, so the time complexity is O(n × k × d). In each iteration, k cluster 
centers are also calculated. Considering that the time spent by addition and subtraction in the CPU is 
much less than multiplication and division, only the time of multiplication and division is considered here, 
where the time complexity is O(k). Therefore, the total time complexity is about O(t × (n × k × d + k)), 
which is equivalent to O(t × n × k × d). 

In the proposed algorithm, supposing that we try the random process and evolution process for s 
times during each iteration, then the time complexity of proposed algorithm is about O(s × t × n × k × d). 
If we consider s, t, k, and d as constants, the time complexity of our proposed algorithm is O(n). 
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4 Experimental Results and Discussion 
4.1 Experimental Environment and Metrics 

The computer used here is a server with an 8-core CPU and a GeForce GTX 1080Ti graphics card. 
The operating system is a 64-bit Ubuntu system while the server’s memory is 31.3 GB and the SSD size 
is 218.2 GB. In addition, Spyder, a free integrated development environment with Anaconda that is an 
open-source platform for python data science, is applied. In our experiments, the K-means 
implementation in the Scikit-learn which is a free efficient tool for machine learning in Python, is 
modified and called to help achieve our algorithm.  

The Accuracy (Acc) is described as follows: 

𝐴𝐴𝑐𝑐𝑐𝑐 =  𝑁𝑁𝑐𝑐
𝑁𝑁𝑡𝑡

 , (10) 

where 𝑁𝑁𝑐𝑐 is the number of correct predictions and 𝑁𝑁𝑡𝑡 is the total number of predictions. It is noted here 
that after the data is clustered, the label with the most occurrences in each cluster is taken as the label of 
the samples of corresponding cluster. Specifically, some other metrics are also applied to evaluate the 
performance of our algorithm. The Davies-Bouldin index (DBI) was presented [32]. The adjusted rand 
index (ARI) was introduced [33]. The silhouette (SIL) coefficient was proposed in [34]. The mean SIL of 
all samples are calculated in the experiments. In addition, the adjusted mutual information (AMI) 
proposed in [35], is applied in our experiments. 

In general, a total of 7 metrics which include running time on the CPU, Acc, SSE, DBI, ARI, AMI, 
and SIL are accordingly computed in the experiments. 

4.2 Experimental Results 
4.2.1 Datasets 

Two datasets, i.e., Iris dataset and Glass dataset, are evaluated in this section. These datasets are both 
from UCI machine learning repository [36]. All samples will be used for clustering, and the evaluation for 
metrics will be performed on all samples. 

The Iris dataset collected three types of irises: Setosa Iris, Versicolour Iris, and Virginica Iris. Each 
type of iris flower collected 50 sample records for a total of 150 records. This dataset consists of four 
attributes, the length of the flower bud, the width of the flower bud, the length of the petals, and the width 
of the petals. Hence, we have 150 samples, and each one is with 4 attributes and 1 label. 

The Glass dataset is not related to agriculture field, and it is used to verify the effectiveness of the 
proposed algorithm. This dataset is a Glass identification dataset. It is made up of ten attributes, including 
id, refractive index and some others. The number of instances is 214. 

Firstly, the methods are applied in Iris dataset which has 150 samples with features of 4 dimensions 
and corresponding labels. The methods that we choose to compare are listed in Tab. 1. 

Specifically, we randomly select initial centers for K-means and record the results of the K-means 
algorithm. Furthermore, these methods are run 100 times and the average results are taken to evaluate the 
performance. 

4.2.2 Comparison 
Tab. 2 shows the performance of proposed algorithm on Iris dataset. In the KSJ algorithm, we 

perform random perturbations in the full range, and then advance or retreat in a certain step learning from 
Jaya Algorithm. After the random perturbation process in the KSAJ algorithm, we first use the 
mechanism of SA algorithm to accept or abandon the new candidate solution of the current sample, and 
then make the sample approach or stay away from the solution in the Jaya mechanism. In the KFJ and 
KFAJ algorithms, the processing is similar to the previous two algorithms. The difference is that in the 
random process we take a fixed step size to achieve the random process within a certain range. 
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Table 1: Methods and its abbreviation 

Abbreviation Methods 

K K-means 
KSJ K-means + Swimming + Jaya 
KSAJ K-means + Swimming + Annealing + Jaya 
KFJ K-means + Foraging 
KFAJ K-means + Foraging + Annealing + Jaya 
BK BisectingKmeans 
K++ K-means++ 
KSJ++ Swimming + Jaya + K-means++ 
KSAJ++ Swimming + Annealing + Jaya + Kmeans++ 
KFJ++ Foraging + K-means++ 
KFAJ++ Foraging + Annealing + Jaya + Kmeans++ 

 

Table 2: Performance comparison on Iris dataset 
Methods Time/s Acc SSE DBI ARI AMI SIL 
K 0.830 0.667 142.754 0.993 0.429 0.528 0.519 
BK 12.093 0.865 85.868 0.667 0.672 0.677 0.538 
KSJ 5.198 0.810 101.902 0.779 0.617 0.664 0.538 
KSAJ 6.673 0.862 86.451  0.701 0.686 0.713 0.546 
KFJ 4.852 0.750 121.576 0.872 0.538 0.608 0.528 
KFAJ 10.292 0.885 80.161 0.670 0.717 0.736 0.551 

The values in time column show that the new methods take about 10 times the time of the original 
algorithm generally, which corresponds to the stochastic process that generates random centers for 10 
times in the random step. The new methods have improved the accuracy of K-means. Among these 
methods, the KSAJ method is relatively better in the Iris dataset whose accuracy is about 0.2 higher than 
0.667 of K, while the KFAJ method performs best in the Iris dataset whose accuracy reaches 0.885, about 
22 percent higher than K. The SSE column shows that different methods can reduce SSE to different 
extents and obtain better results. The best of these methods is KFAJ, which reduces the original SSE value 
from 142.754 to 80.161. In the DBI item, the lower the DBI is the better the result is. The best one is the 
KFAJ method which reduces the DBI from 0.993 to 0.670, which is a good result relatively. 

Table 3: Performance of improved K++ on Iris dataset 

Methods Time/s Acc MSE DBI ARI AMI SIL 

K++ 1.124 0.883 80.798 0.656 0.717 0.734 0.556 
KSJ++ 6.718 0.889 78.854 0.665 0.721 0.739 0.552 
KSAJ++ 53.222 0.889 78.854 0.664 0.722 0.739 0.552 
KFJ++ 6.181 0.887 79.493 0.662 0.721 0.738 0.553 
KFAJ++ 204.971 0.893 78.852 0.662 0.730 0.748 0.553 

AMI evaluates the agreement of two assignments, while the ARI measures the similarity of two 
assignments. SIL combines both cohesion and resolution and can be used to evaluate different algorithms 
based on the same raw data. For these metrics, the higher the values are, the better the result is. From Tab. 
2, we can easily find that the proposed algorithm is able to improve the performance of initial K-means on 
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these three metrics. And BK and KSAJ perform similarly on the Acc metric. On the whole, the KSAJ and 
KFAJ algorithms outperform the BK algorithm. 

To verify the versatility of the random process and evolution process, these two processes are added 
to the K++ algorithm. The experimental results are in Tab. 3. 

The results in Tab. 3 show that the time of clustering increases after the K-means++ algorithm is 
improved. The KFAJ++ algorithm takes the most time, which is about 205 seconds and it also achieves 
the most improvement in accuracy. Specifically, KFAJ++ increases the accuracy from 0.883 to 0.893.  

In addition, the MSE metric has been reduced to varying degrees, while the results on ARI and AMI 
are also improved. The KFAJ++ algorithm achieves the most obvious improvement, increasing ARI by 
1.3 percent and increasing AMI by 1.5 percentage points. There is basically no change in DBI and SIL. 

On Glass dataset, we take a similar configuration in the previous experiments on Iris dataset. The 
results are in Tab. 4. 

Table 4: Performance comparison on Glass dataset 

Methods Time/s Acc MSE DBI ARI AMI SIL 

K 1.016 0.449 704.298 1.247 0.224 0.222 0.568 
KSJ 4.801 0.455 691.844 1.205 0.224 0.226 0.568 

KSAJ 4.890 0.456 693.273 1.196 0.223 0.225 0.562 
KFJ 5.399 0.471 671.698 1.105 0.223 0.231 0.542 

KFAJ 6.238 0.481 660.695 1.051 0.219 0.232 0.527 
 

From the experimental results in Tab. 4, it is evident the new methods still spend more time than K, 
but the time taken is less than 10 times the time of K. Besides, new methods are able to improve the 
accuracy rate by a few percentage points compared with K. The algorithm with the least improvement is 
KSJ which is about 1 percent better than K, while the highest is KFAJ which is about 3 percent. 

From the experimental results in Tab. 2, we can conclude that the proposed algorithm improves the 
accuracy of clustering on the Iris agricultural dataset and performs well on several other metrics. It 
improves the original K-means algorithm and has an advantage over another improved algorithm BK. The 
results in Tab. 4 can also verify the effectiveness of the proposed algorithm. From the experimental 
results in Tab. 3, we can find that after applying the improved K-means++ algorithm to the Iris 
agricultural dataset, good clustering results can be achieved. 

In practical applications, agricultural data is generally very complex. The clustering results of 
agricultural data are improved, which means that we can more easily extract the hidden information in the 
data and mine the rules that are difficult to find. In so doing, the agricultural data can be better analyzed. 

4.2.3 Impact of Parameters 
In order to explore the effect of different parameters on the results, different values of two important 

parameters, i.e., T and α appeared in (8) and (9) of KSAJ, are set in experiments on the Iris dataset.  
First, T is set to 100, then the value of α is changed and the results are in Fig. 2. The results show 

that the larger α is, the more time is consumed, and the higher the accuracy is in general. The explanation 
for this phenomenon is that if α is larger, T will decrease more slowly, and the search range will be 
expanded while the time will increase correspondingly. 

Then, α is set to 0.95, and then the value of T is changed. The results are in Fig. 3, which indicate 
that the larger T is, the longer the consumption time is, and the better the corresponding accuracy is. The 
explanation for this phenomenon is that if T is larger, the search range will be expanded, and the time will 
increase correspondingly. 
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In general, the newly proposed algorithm has achieved satisfactory performance, but it also has its 
shortcomings as well. For those data with global optimal solution and local optimal solutions far away, 
we recommend the KSAJ method and for those cases where the global optimal solution and most of the 
local optimal solutions are relatively close, we recommend the KFAJ method. 

 

Figure 2: Experimental results of running time and Acc of KSAJ with different α 

 

Figure 3: Experimental results of running time and Acc of KSAJ with different T 

5 Conclusion 
In this paper, motivated by evolutionary computation paradigms, a new algorithm used to improve 

traditional K-means is proposed. Stochastic process and evolutionary process are incorporated into initial 
iterative process. The experimental performance on the Iris and the Glass datasets show that our new 
algorithm is able to improve the result of K-means. Meanwhile, the metrics MSE and DBI can be lowered, 
and several other metrics can be improved to varying degrees. 

In the future work, we will try more combinations in the proposed algorithm framework, such as 
trying to combine GA which is very representative in evolutionary computation with Jaya algorithm, with 
the purpose of further improving the computational performance. 
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