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Abstract: Three-dimensional (3D) modelling of high-speed railways, bad 
geology, and special geotechnical engineering inferences may involve problems, 
such as inaccurate geological data, hidden underground geological phenomena, 
and complex geological processes. In this study, surface geological boundaries, 
drainage, transportation networks, covers, lenses, and small geological units are 
established using topographic surveying and mapping data, geological data, and 
geological exploration data acquisition. The 3D model of the karst system 
combines geological and mathematical interpolation curved surface 3D model 
simulation analysis, trend surface fitting, and interpolation of the NURBS surface 
and correct analysis. The model is used to describe the properties of objects, 
including the geometry, topology, and attribute information. It can describe 
complex geological spatial information (geometric information and topological 
relationship) and the characteristics of various geological units and can satisfy 
the requirements for the expression and analysis of a complex geological body. 
Thus, 3D modelling is used as a reference for boundary representation and data 
in engineering geology. 

Keywords: High-speed railway; 3D model; small geological unit of lens body; 
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1 Introduction 
Computer graphics and three-dimensional (3D) modelling are prominent topics in the field of virtual 

reality. Achieving high precision, strong processing, and 3D information for engineering surveys, 
geological mapping, road maintenance, traffic management, and urban planning plays an important role 
[1]. In recent years, with the rapid development of information science and computer technology, there 
have been significant changes in surveying and mapping science and technology. These changes are 
observed using 3D laser scanning technology, which is gradually being used in 3D modelling, geological 
prospecting, deformation monitoring, and other fields. High-precision 3D modelling and 3D laser 
scanning technology are mainly used in machinery, moulding, product miniaturisation, and production. 
For tall buildings, collecting the information about the terrain, structure of the building itself, and 
influence of the environmental conditions will cause the point cloud data to be absent or noisy, so that 
achieving a high-precision modelling effect is difficult [2]. Compared with two-dimensional (2D) 
graphics, 3D models produce more realistic observation results because the latter involve more data, more 
complex spatial relationships, and more difficult processes than the former. Three-dimensional models are 
also more appropriate for engineering geology, owing to the availability of large amounts of data. 
However, the precision of 3D models has been questioned, because 3D technology over a very long 
period presents only a “signal” nature, and its practical degree is low. With the development of data and 



 
1024 IASC, 2020, vol.26, no.5 

image acquisition technology and information technology and significant improvement in the 
performance of computers, 3D modelling technology is developing rapidly in many industries. Some 
examples are machinery manufacturing, architectural design, resource exploration, oil exploration, 
environmental assessment, water conservancy and hydropower, geological disasters, medical research, 
and other fields. In three dimensions, generally, (x, y, z) can be used to represent the spatial coordinates 
of any point in space. Two or more spatial coordinate points when connected form a space line, and a 
series of spaces with the same node level of grid coordinates represent a space curved surface. It is used 
with multiple series of grids or units to simulate a spatial unit, which can be a space point, line, face, or 
body unit forming a 3D spatial model. To build engineering geological 3D models, geological 
engineering studies can yield the required data. Moreover, data organisation, data simulation, and the 
characteristics of a 3D model in engineering geology are closely related. 

To solve the existing problems with the 3D geological modelling, mathematical and geological 
interpolation are combined with a curved surface treatment in this study. The D-interaction of an artificial 
interpolation 3D-aided modelling (section) method can effectively compensate the drawbacks. This is 
done to a certain extent, overcome the engineering geology, 3D modelling some problems caused by 
insufficient data, improve the inferential reasonable degree, the engineering geology, 3D model conforms 
to the law and rule out some uncertainty. Traditionally, using 2D maps and expressions, it has been 
difficult to meet the needs of a physical model. Therefore, providing designers with a relatively more 
intuitive 3D visualisation of the tunnel rock mass of an underground geological model will assist in 
developing the stratigraphic structure and geological characteristics, such as comprehensive consideration. 
This improves the efficiency of the construction and greatly reduces the risk of tunnel excavation [3]. 

2 Engineering Geological Survey 
The Zhengzhou–Wanzhou high-speed railway line from the Nanyang–Xiangyang basin climbs the 

large Hongshan-odd arteries, Jjingshan mountains (highest elevation of 1942 m), and Daba mountains 
(highest elevation of 2497 m). It passes via the Xiangyang and Na Zhang basins and crosses the Tang 
Baihe and Han rivers, falling, savage river, was, big NingHe springs the plum river, soup, and finally, the 
Chongqing Wanzhou district along the north shore of the Yangtze river. 

The Xiangyang basin enters a transition zone from the third step to the second step. The topography 
of the entire line is generally low in the north and high in the south. The Xiangyang to Nanzhou 
(approximately 100 km) section is dominated by an open alluvial plain, with gentle hills and valleys on 
the edge of the plain. The ground elevation is 50–130 m, the relative height difference is 2–50 m, and the 
line crosses the Han river in the Sanhe village. In this section, the terrain is low, gentle, and flat, and the 
flat areas are mostly paddy fields. The hilly trough area is open and flat, and vegetation is relatively 
developed. From Nanzhangzhou to Huazhuang (approximately 100 km), the line crosses the north section 
of the Jingshan mountain. The area near Nanzhangzhou is hilly, and the ground elevation is 100–300 m. 
The remaining sections are middle to low-mountainous areas. The mountains are mostly long and narrow, 
the ground elevation is 500–1200 m, and the height difference is 200–500 m. Flowers to Zhuang, eastern 
(80 km) for the dragon of Dabashan mountain system frame, karst. The ground elevation is 500–2000 m, 
the relative height difference is 500–800 m, and from south to north, the terrain gradually increases. There 
also exist a mountainous grotesque ridge and a mountainous high-depth valley. the valley is numerous, 
forming uvala, Karst cave, into the pit, to have, the stone forest and so on various types of Karst landform; 
Padang to Wanzhou (200 km) long march in Padang mountain edge of Sichuan basin is a tectonic 
denudation, erosion in lower, cross Wushan, JiYueShan, such as mountains, across the stream, god 
NingHe, mei springs, soup Xinzhai, peng springs, such as the Yangtze, strong erosion cutting by the 
Yangtze river and its tributaries, grotesque ridge, deep mountain valley, canyon and mountainous. 

The regional stratigraphic development is relatively complete, from the former Sinian system to the 
fourth system. The Nanxiang basin is mainly covered by the fourth system. The Dabashan mountain, the 
Jingshan partition before Sinian system. The Sinian system and the Cambrian, Ordovician, and Silurian 
strata dominate the river near the Permian and Triassic strata distributions, whereas the tertiary and 



 
IASC, 2020, vol.26, no.5 1025 

cretaceous strata dominate under the Na Zhang basin distribution. The stratigraphy of the Sichuan basin is 
mainly Jurassic and Triassic. The quaternary loose layer of the entire line is mainly distributed in the 
groove between the hills, and the slope zone is intermittently covered with a small amount of slope and 
residual stratum. The topography, geomorphology, and stratigraphic distribution along the route are 
shown in Figs. 1 and 2. 
 

 
Figure 1: Zhengwan high-speed rail topography 

 

 
Figure 2: Strata distribution along Zhengwan high-speed railway route. (Figure: I formation of north 
China area, I1 north Qinling partitions, II formation in Qinling area, II1 basin south duct partition, II1 
south Qinling partition, III Yangzi stratums area, III1 Dabashan mountain–Jingshan partition, partition 
III2 Sichuan basin, III3 Bamian mountain partition, partition III4 Jianghan basin.) 

3 Bad Geology and Distinct Geotechnical Evaluation of Zhengwan High-Speed Railway 
3.1 Karst 

The terrain and geological conditions along the Zhengwan line are complex, and the tectonic 
movement is strong. The topographic cutting is strong, and the stratigraphic rocks are mixed. The 
solvable rock formations are distributed well from the Sinian to Permian strata. The lithology of the most 
soluble rock strata comprises relatively pure limestone, dolomite, and dolomite limestone. The lower 
Permian and lower Triassic systems belonging to the karst are strongly developed strata. The karst 
morphology of the surface mainly includes karst caves, Dihehe, a water hole, a funnel, a karst depression, 
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and a karst trough valley. The Ordovician, Cambrian, and Sinian systems contain an old stratum formed 
under the distribution conditions of the landform, geological structure, and various influencing factors. 
Most of the strata distribution area has a high degree of karst development, a karst cave, and an 
underground river. In addition, there are water leakage holes, holes, a karst trough valley, and karst 
phenomena, such as developments. The data show that the karst rate of the SE disk in the complex synclinal 
zone of Julongshan and the Xinhua fault zone is generally more than 5%, and even more than 20% in some 
locations. There is a rich karst water problem in the control of the railway main engineering geological 
problems of Zheng. Based on the statistics across the board, in a length of 125.71 km, the lava area of the 
karst development area is 61.55 km, which is given priority in engineering. 

This study selected a line length of 41.27 km across the mountains; thus, the railway lines are under 
complex geological conditions, and there are karst geological variations, particularly cement outstanding, 
as well as various problems, such as surface collapse. It is worth mentioning that the hidden risk is 
extremely high, the number of involved tunnels is 14, the total length is 21.21 km, and the tunnels 
account for 51.3% of the total length. When the total length of a tunnel is longer, the risk factor is higher, 
and therefore, mechanical construction is more convenient. The main tunnel (No. 1) has a total length of 
1900 m and a maximum depth of 345 m, and mainly has surrounding rocks Ⅱ and Ⅲ, way of 
development for the head. The longest dimensions of tunnel No. 2 are a length of 6550 m and a maximum 
depth of 690 m. Seven tunnels are built using grade Ⅱ and Ⅲ materials from the surrounding rock. The 
major problem is bad lava geology, which is a secondary risk. Thus, there are serious safety hazards. 

3.2 Soft Soil  
The soft soil along the route is mainly distributed in the Nanxiang basin between the starting point 

and Nanzhang, the mountain depression, and the alluvial–diluvial terrace of the branch gully from 
Nanzhou to Wanzhou. Between the starting point and Na Zhang, for the south duct basin, the terrain is 
flat and relatively open. The Han river terrace surface distribution of soft soil is 12 in. There is a lens-
shaped output, overlying a crust of 0–3 m, with a thick layer of soft soil of thickness 0–5 m. The local can 
have maximum thickness of up to 10 m. From the Nan Zhang to Wan Zhou section, the soft soil is mainly 
distributed in the intermountain depression and TE-6 of the pluvial terrace. Throughout the surface layer, 
its thickness is generally within 3 m, owing to the long-term soaking and leading to the formation of silty 
clay. Settlement and stability examinations should be conducted when a roadbed and a bridge pass 
through soft soil and loose soft soil. When the settlement and stability do not meet the requirements, the 
corresponding reinforcement measures should be adopted. In addition, when a bridge passes through an 
area with deep soft soil, the foundation of the bridge must pass through a soft soil layer. Moreover, in this 
case, large-area stowage or heavy-load construction near the line is prohibited, to avoid causing secondary 
settlement of the ground, which can affect the bridge foundation. 

3.3 Fault Rupture Zone 
Broadly by the fault is more the wide economy around the deep fracture, fracture NaZhang-Jingmen, 

rock-on spring flat fracture, river, pond, river city-Cui home burst fracture, Xinhua fracture. There also 
exist numerous smaller faults. The width of the fault rupture zone varies. When a tunnel passes through a 
fault zone, roof collapse, water inrush, mudslides, and other accidents can easily occur. 

4 Analysis of Key Links of 3D Data Modelling 
An engineering geological 3D model is built for the digital simulation of the engineering geology 

research area or from the data from a geological engineering survey, and the original data are obtained 
and analysed. The technical support required is scientific visualization technology. From the survey for 
obtaining and analysing data, a 3D model is built in the virtual space; it includes the earth’s surface, 
formation, structure, and geological factors, such as groundwater and karst caves. To a certain extent, 
such models are built for the complete digital reconstruction of an engineering geological research area or 
with a panoramic and even the whole property simulation. Engineering geological 3D models can be used 
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throughout and comprehensively in engineering geological surveys and analyses and in engineering 
design and construction of boundaries and attributes, to form an accurate 3D surface of the earth [4–6]. 

4.1 Data Collection of Geological Survey 
Geological prospecting data engineering geological 3D modelling is the main basis for building 

underground geological structures. For obtaining various underground geological data interfaces or 
borders for the main control unit, the more the data collected, the more accurate the established 
engineering geological 3D model. To establish an accurate underground geological structure model, 
generally, at least drilling data are required. Generally, drilling data can be used to determine the 
underground geological spatial locations of the interface control points, geological properties, geophysical 
prospecting, exploratory adit, pit pit, and test data. Moreover, they can complement space control point 
data and rich properties of each geological unit. 

4.2 3D Geological Profile Generation 
According to the exploration data obtained from the survey, the longitudinal and transverse profile 

maps are compiled. The section and three-dimensional borehole due to after the analysis of the geological 
engineer and confirmed, will serve as a 3D model of the skeleton or determined the main basis, three-
dimensional model on the basis of the other part is to the skeleton and inference (interpolation). Therefore, 
it can be seen that the predicted part accounts for a large proportion in the engineering geological 3D 
model, and whether the predicted part is reasonable determines the reasonable degree of the overall model. 
Two-dimensional profile was established on the basis of the geological engineer experience a skeleton of 
a 3D model, 2D profile of the production process, to a certain extent, can be regarded as a geological 
engineer according to drilling data of underground geological unit interface interpolation process, is also 
the process of underground geological unit division and classified. Due to the inadequacies of geological 
data, the geological engineer to confirm the profile, the more experience on the basis of geological 
regularity and geological engineer increase the more control points, 3D model of skeleton is plump, 
accuracy and rationality of engineering geological 3D model. 

4.3 Topographic Survey and Geological Survey Data Collation 
Topographic data collation is performed mainly to collect measured topographic data, i.e., 

topographic map data. These types of data form the data subject of the 3D surface of the model. 
Topographic map data are stored in the AutoCAD format. The AutoCAD software primitives 
management basic is open and has no constraints. Thus, it establishes the engineering geology to 
standardise the topographic map before the 3D modelling. It should be ensured that all types of terrain 
factors have a layer form. This facilitates the use of the various topographic map layer data to establish 
the corresponding relationship with the 3D layer, e.g., the calculation of a 2D curve layer can only be 
based on calculated curve data. If there are other data, then the calculated curve generating 3D surfaces 
will present errors. Topographic map image layer attribution is not mandatory for the judge basis and the 
standard compulsive process. It can cause this part of the data or layer attribution of an operation a must 
to do and determine not easy work, often can appear some singular point data, thus to judge, layer 
classification, delete, or repair. 

Geological surveying and mapping data are generally superimposed on the topographic map. This 
part of the data includes the ground of the cover layer or the open boundaries to determine the basis, and 
it is particularly important for 3D layer modelling. It is also used for hierarchical classification to clear or 
complete operations. The objective of topographic surveys is to use the survey data to categorize the 
various geographical units. A clear division of the geological units is achieved with a strict hierarchical 
classification, and in general, there is a need to clarify at least the locations of the contour, geographical, 
and geological factors. 

Based on the exploration data obtained from the survey, longitudinal and transverse profile maps are 
compiled. The section and 3D borehole obtained from the analysis of the geological engineer serve as a 
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3D model of the skeleton or determine the main basis. The 3D model based on the other part provides the 
skeleton and inference (interpolation). Therefore, it can be seen that the predicted part accounts for a large 
proportion of the engineering geological 3D model, and the appropriateness of the predicted part 
determines the degree of reasonability of the overall model. A 2D profile of the skeleton of a 3D model 
was established based on the experience of a geological engineer. The 2D profile of a production process 
can be regarded as a geological engineer based on the drilling data of the underground geological unit 
interface interpolation process, which is also the process of underground geological unit division and 
classification. Owing to the inadequacies of geological data, the geological engineer has to confirm the 
profile. Increase in the experience based on geological regularity and increase in the number of control 
points by the geological engineer, make the 3D model of the skeleton large, and the accuracy and 
rationality of the engineering geological 3D model. 

5 Surface Interpolation Processing and Correction Analysis 
5.1 TIN Analysis Based on Recursion 

Higher and more reasonable dates obtained from geological studies lead to higher accuracy of the 
engineering geological 3D model. 

Data acquisition mainly depends on the degree of detail of the engineering geology study, which is 
the objective condition of engineering geology.  

Once a 3D model is set up, the three elements of geology, direction, orientation, and the tilt angle of the 
basic and objective elements are determined. The spatial data model and data processing method determine 
the engineering geological 3D model accuracy. The rationality of the technical elements, engineering 
geology, and 3D model of the spatial data structure is governed by a 3D organisation model [7]. 

There are mature algorithms for the generation of TIN by triangulation, including divide and conquer, 
growth triangulation, and point-by-point insertion. A new TIN data structure is designed (Fig. 5), and the 
TIN point, edge, and triangle for the virtual base class in the element subclass and between each other are 
defined. They are stored using pointers and indexes to prevent redundancy. Moreover, the data structure 
can save the complete TIN topology information, has a flexible structure, and achieve rapid retrieval. The 
dynamic point-to-point insertion method is used to construct the TIN. Incoming data points are inserted 
sequentially, and the topological records are updated according to the maximum and minimum angle 
principle of the Delaunay triangulation and the dynamic network of the hollow circle characteristics. 
Logging network result cleanup [8]. 
 

 
Figure 3: Schematic of TIN 

5.2 Data Analysis of Surface Interpolation 
Using TIN, a grid, trend surface fitting, and the NURBS surface in building surface, curved surface 

interpolation is conducted. An interpolation algorithm is applied for the implementation of the 
mathematical or geometrical rules for the interpolation. The present scenarios of engineering geology is a 
very complex process, frequently involving multiple geological movements and long-term results of the 
comprehensive effect of various geological effects. Each process of a geological movement follows a 
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mathematical pattern. However, in the long-term geological processes, large amounts of data rules or the 
processes of motions are completely stacked. Therefore, it is difficult to use a certain or some type of 
mathematical or geometrical rule and perfect expression. Therefore, the interpolation results produced by 
these commonly used interpolation methods are frequently not completely consistent with the geological 
law. In the discrete point modelling of a continuous process of a geologic body, the method of scattered 
data interpolation must be adopted. Although there is numerous phyletic interpolation method, there are 
also different geological data; therefore, the appropriate interpolation algorithm must be chosen [9]. By 
analysing the common 3D data structures and combining the advantages of reducing the NURBS surface 
and b-rep entity 3D data structures, 3D data structures for 3D solid modelling in complex slope 
engineering can be established. With NURBS as an engineering structure. A 3D model of the boundary 
curve and a cut of the NURBS surface (Fig. 4) are used for the application of b-rep to cut half of the 
entity data structure of the spatial topological relations of the NURBS surface. To realise a complex rock 
slope engineering 3D geological model of the surface of the earth surface and its geological structure, 
ground and underground excavation space-geometry information description is obtained [10]. 

 
Figure 4: TIN diagram with surface parameters 

5.3 Combination of Mathematical Interpolation and Geological Interpolation with Surface Treatment and 
Correction Analysis 
Mathematical interpolation combined with geological interpolation curved surface processing, using 

2D and 3D interactive artificial interpolation sections with a 3D-aided modelling (section) method can 
effectively compensate the problems. It can also to a certain extent, overcome the issue of engineering 
geology and 3D modelling problems caused by insufficient data as well as improve the inferential 
reasonable degree and engineering geology. The 3D model conforms to the law and prevents uncertainty. 

Based on the exploration data and using the common curved surface interpolation methods, such as 
NURBS surface, a complex geologic body of each interface of the plastid units around the boundary 
surface and the initial 3D surface model are generated. 

 

Figure 5: Trimmed NURBS curved surface 
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Ore geology exploration data in a relatively small area change a larger area via a vector shear, and 
produce a series of profiles, i.e., a 3D surface model, using the method of cutting sections from a 2D 
section. It is determined whether the newly generated sections are reasonable or conform to the geological 
rules of the current engineering area by referring to the underground geological conditions and general 
geological rules established using relatively sufficient exploration data. Sections that do not conform to 
the current geological rules of engineering areas are manually and interactively modified, existing data 
are encrypted and interpolated, or some data points of conventional interpolation are modified. Based on 
the modified scatter set, the interfaces of complex geological bodies are regenerated, and a modified 3D 
surface model is produced. Based on the modified 3D surface model, a 3D physical model of the 
engineering geology in the engineering area is established using an appropriate 3D modelling method. 

5.4 Vector and Grid Data Analysis of Irregular Triangular Mesh 
To fit the face of continuous distribution, the main data, which are based on the system of a series of 

points on the surface of the fitting, are used (such as drilling a series of cut-off formations) [11]. Irregular 
triangle nets do not have any repetitive data point set (scattered point set) according to certain rules, such 
as the Delaunay rule. With triangular subdivision, a series of irregular triangles that are continuous but do 
not overlap is produced. These triangles are used to establish another network to describe various surfaces 
of 3D objects [12]. From the scatter surface, which is shown in (a), the actual data points related to the 
formation depth of the engineering can be obtained. This is followed by the geological investigation of 
the geological unit boundary surfaces, such as the actual data (used for line analogue or face simulation, 
and the control of data or control points), which are the triangulation network nodes and the actual access 
control points. Thus, through the TIN surface, the DeZhiJie surface precision of the simulation is widely 
used in the field of geology. The TIN surface is also composed of a series of triangular pieces; therefore, 
it is not sufficiently smooth, and the visual effect is not adequately attractive. Clearly, more the number of 
triangles, more the TIN surface is smooth, and the number of triangles is determined by the number of 
nodes, the engineering geologic body on a what can get the control points of the decision. Because of the 
insufficiency of engineering geological data, the surface precision of the TIN is high (strictly through 
control points), and the visual effect is poor. 

The TIN has the advantages of high storage efficiency, simple data structure, and harmony with 
irregular ground features [13]. It can represent fine features or regional overlay boundaries of any shape. 
The disadvantages that there is a large amount of data and it is difficult to standardize its management and 
dynamic display and conduct joint analysis with vector and grid data structures. 

5.5 Analysis on Boundary Reduction of Geological Structure Interface 
The geological structural plane is the main interface form for establishing the topological relation of 

a spatial volume domain set and constructing a b-rep 3D entity model. Because the geological information 
obtained from a geological adit peace is very limited, the analytical slope engineering geological structure 
of the space form should be correct to ensure correctness and accuracy of the 3D geological model used in 
slope engineering. By analysing the geological structure of the slope engineering, the slope engineering 
area geometry, spatial relations of the complex geological structure, and main objects of the geological 
structure, including stratum lithology, can be clearly determined. This can be achieved based on the 
geological profile of the parsed interface control information provided by the geological structure and the 
cutting boundary information [14]. Moreover, the geological structure of the eliminating interface 
function of the NURBS surface can also be obtained [15]. Fig. 8 shows the reduction in the NURBS 
surface modelling results of the main geological structure interface in the mouth area of the Xiangjiawan 
tunnel [16–18]. 
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Figure 6: NURBS modelling diagram of geological structure interface 

5.6 Improving Vector Quantification of Irregular Triangulation Network and Dynamic Refinement of Raster Data 
The surface used to fit the continuous distribution is mainly based on a quasi-expression surface. A 

series of manufacturing points (such as a series of layers obtained from drilling and column stratigraphic 
boundary points), irregular triangular networks with non-repeated numbers. The base set (scattered set) 
follows certain rules, such as the Delaunay rule, and triangulation produces a series of continuous but 
non-overlapping irregular triangular surfaces and pieces. These triangular surface meshes are used to 
describe various tables of three-dimensional objects. Based on these scattered points, the data that can be 
obtained on a certain surface (point) and from the engineering geological survey are related to the depths 
of the strata and other geological parameters. The actual data of the unit interface (used for the wire or 
surface simulation), data production, or control point, i.e., the node of the triangular network and the 
control, are obtained. The precision of the geological interface by surface simulation owing to the strict 
correspondence of the points is higher and is extensively used in geological fields. In addition, because 
the surface is composed of a series. The triangular surface of the column consists of pieces; therefore, the 
TIN surface is not sufficiently smooth to be visually effective, i.e., it is not adequately attractive. The 
more the triangular faces, the smoother the surface and the triangle. The number of nodes determines the 
number of faces, which, in turn, is determined by a certain aspect of the geological engineering body. 
Thus, the number of control points that can be chosen. Owing to the engineering geology and insufficient 
data. Overall, the surface accuracy is high (strict) because of the control points, whereas the visual effect 
is poor. For wind belt, unloading belt. 

For the analysis of a groundwater level vector and grid data, only triangulation lines are needed. To 
ensure the accuracy of a direction, it is necessary to increase the vertical direction of the direction. The 
line of control and then the structure are generated by the network line formed. A curved surface is 
produced to obtain the terrain profile. The topography is determined by the area of study. 

A contour body is employed to improve the dynamic accuracy of irregular triangular networks. The 
advantages are storage, high efficiency, simple data structure, consistency with irregular ground features, 
ability to represent subtle features, and superimposition with regional boundaries of any shape. Because 
of the large amount of data, it is difficult to standardise the management, achieve a dynamic display, and 
communicate with a vector. The quantity and raster data structure are analysed jointly. 
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(a) Axis view 

 

(b)  Vertical view 

Figure 7: Model diagram 

6 Example 
After each geological interface is determined, based on the boundary representation and engineering, 

the geological survey is analysed, and the similarity is measured. The 3D model is established by the 
following methods. 

A rectangular cube that contains the entire project area and is uniformly internal, denoted as the 
initial body [19–20], is built. 

A 3D surface is established, and the initial body of the surface is sheared to the project-related 
geological and geographical elements of the surface onto the surface. 

When the geological interface is established, it is extended in all directions. 
The entire model is cut along the project area boundary, and all the parts outside the project area are 

deleted. 
The original body is cut into a series of geological units, carries on the body of the closed and 

topology analysis and correction of assigned to each geological unit cell in the corresponding unit 
geological attributes or engineering properties, complete the whole process of construction of geological 
3D model. 
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7 Conclusions 
A 3D model describes the spatial information (geometric information) of a complex geological body 

of interest and its topological relation. The characteristic information of each geological unit should meet 
the needs of the expression and analysis of heterogeneous geological bodies. Its advantages are that 
geometrical elements such as dots, lines, and faces can be drawn. Moreover, points, lines, faces, and 
bodies can be drawn for various operations for numerous geological queries. Subsequently, the 3D model 
is used to measure the length, area, volume, surface, and body in the cutting analysis. The drawback of 
this approach is the complex data structure, which utilizes a lot of storage space. For the handling of 
complex geologic bodies, such as that in large-scale shear processing, are employed. Traditional boundary 
representation has certain difficulties. 

Because of the above problem, this study uses artificial interpolation section 2D and 3D interactive 3D-
aided modelling. The methodology section can effectively compensate the drawbacks, and to a certain extent, 
overcome the engineering geology. In 3D modelling, some problems caused by insufficient data improve the 
reasonable inferential degree, and the 3D model conforms to the law and prevents some uncertainty. 
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