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Abstract: The aim of this study is to consider the economic, resource, energy and 
environmental factors in a low-carbon economic efficiency evaluation system and 
to analyze the factors affecting iron and steel enterprises. A combined data 
envelopment analysis and Malmquist index model have been used in this paper. 
We empirically investigate the low-carbon efficiency of the Chinese steel industry 
using observations of 17 listed enterprises from 2009 to 2013. The results show 
that the economic efficiency of China’s iron & steel enterprises is generally low. 
The Malmquist productivity index also shows a decreasing trend. Based on our 
findings, some policies are proposed to improve the low-carbon economic 
efficiency of China’s steel industry. 
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1 Introduction 
Low-carbon economic efficiency plays an important role in society and environmental protection. 

With the remarkable development of the Chinese economy, China’s iron and steel industry, which has been 
the largest iron and steel producer in the world since 2010, is undergoing a transition. Unfortunately, this 
industry is now trapped in a dilemma due to its high energy consumption and low technical efficiency. In 
2011, 44.68% of global crude steel production was provided by China. Nevertheless, the iron and steel 
industry, which is also regarded as one of China’s largest pollution sources, accounts for 15.61% of China’s 
total energy consumption and now faces great challenges. The Chinese government has launched a low-
carbon transition strategy that involves an energy processing conversion that decreased carbon levels from 
1.8 tons per ton of steel to 0.92 tons per ton of steel from 2009 to 2014, but this index still far exceeds the 
world average level based on reports of the World Steel Association, in addition to those of developed 
countries. Hence, feasibility studies have been conducted to study how to simultaneously conserve energy 
and increase economic efficiency. Demura and Johnson focused on the productivity efficiency of iron and 
steel enterprises [1–2]. Jung et al. studied the efficiency of 52 large-scale iron and steel enterprises in more 
than 23 countries [3]. To date, researchers from energy, ecology and economy backgrounds have examined 
the efficiency of Chinese iron and steel enterprises. For instance, Zhang et al. studied with the application 
of energy analysis to the sustainability of Chinese steel production for the period from 1998 to 2004 [4]. 
Han and Liu conducted a superefficient DEA to analyze the energy efficiency, energy savings and low-
carbon potential of the Chinese steel industry [5]. Building on the impulse reaction function, Shi and Chen 
studied the relationship between TFEE and its factors influencing energy efficiency [6]. Liu et al. [5] and 
Zhang et al. [4] constructed and applied a DEA model to determine the ecological efficiency of iron and 
steel firms. They dynamically evaluated energy and socioeconomic development with the model. From 
previous studies, a two-step method was usually used to evaluate efficiencies and change trends. First, data 
environment analysis (DEA) or stochastic frontier analysis (SFA) was introduced to measure firm 
efficiencies. Second, some econometric methods, such as OLS, GLM and Tobit, were actualized to 
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determine the true factors that affect efficiency. During the process, firm scale, production structure, age, 
labor and assets were often used as the inputs, and industry added value was used as the output. Currently, 
Li introduced five factors, namely, energy consumption, environmental pollution and carbon emissions, 
economic efficiency, and low-carbon sustainable development potential, to build a comprehensive 
evaluation system for an enterprise’s a low-carbon economy, then they used a multilevel fuzzy evaluation 
method to calculate the low-carbon economic development index [7]. Chen et al. considered a low-carbon 
economy efficiency index and its influencing factors for the sustainable development of steel industries [8]. 
All of these previous studies shed light on the various practices and ideas employed by other researchers 
and have been shown to be positive and useful explorations. However, the results for the influencing factors 
were not entirely consistent, and there were also a number of shortcomings: (1) Based on an economic 
perspective, the existing research in the context of a low-carbon economy should be reflected in iron and 
steel enterprise efficiency evaluations of the economic, resource, energy and environmental elements of the 
evaluation but current and relevant studies rarely consider these factors. (2) Currently, a static analysis of 
the efficiency level is the focus of the study. Quantitative research on dynamic changes in efficiency and 
their influencing factors is not sufficiently comprehensive. (3) Empirical data used in previous studies are 
generally industry-wide data. There is a lack of sufficient research with enterprise-level data. 

In this paper, we first conduct a comprehensive investigation of the low-carbon economy and 
development trends of China’s iron and steel enterprises from the perspectives of economic, resource, 
energy and environmental evaluation efficiencies. Then, we build a DEA model to analyze the static 
influencing factors. In this model, the energy and low-carbon economy are involved when measuring the 
enterprise’s economic efficiency compared to traditional methods. Malmquist indices are applied to China’s 
iron and steel enterprises with 17 firm-level observations from 2009 to 2013. Then, we analyze the factors 
that can influence low-carbon economic efficiency. The conclusion of this paper provides scientific 
strategies and recommendations for low-carbon development in iron and steel enterprises. 

The goals and main contributions of this paper are summarized as follows: 
(1) Consider economic, resource, energy and environmental factors in the low-carbon economic 

efficiency evaluation system; 
(2) Apply the input-oriented DEA model and Malmquist indices to analyze the dynamic changes and 

influencing factors of efficiency; 
(3) Incorporate some of the unexpected outputs regarded as investment inputs in this evaluation; 
(4) Investigate the low-carbon economic efficiency with Chinese firm-level data instead of the 

macroeconomy level or regional level data. 
The remainder of this paper is summarized as follows. Section 2 presents an overview of related work 

and describes the methodology of the DEA model and Malmquist index. A novel input-oriented DEA model 
that is used in an economic efficiency evaluation system is also introduced. In Section 3, we propose an 
empirical design of iron and steel firms’ low-carbon economic efficiency in China. In Section 4, we design 
a numerical analysis and conduct a model evaluation. Finally, we conclude our work in Section 5. 

2 Methodology 
2.1 DEA Model 

The data envelopment analysis (DEA) model has gained great popularity for efficiency evaluations. 
This model, which does not show a strict relationship between the variables and any argument, is 
particularly suitable for multiple input and output indicators of efficiency evaluations. This DEA model is 
attractive for following accounts in iron and steel enterprise efficiency evaluations [9–10]. First, iron and 
steel enterprises invest in capital, labor, water, coal and other elements of the production process. In addition 
to producing primary products, such as pig iron and steel, they also produce large amounts of waste gas, 
wastewater, and other by-products. Therefore, the enterprises satisfy the typical characteristics of multiple 
input-output elements. Second, in China, most current iron and steel enterprises use mainly blast furnaces 
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and electric furnaces for production. Because of the differences in the technology and standards between 
the two production methods, it is extremely difficult to compare results using the SFA model. 

The CCR model and BCC model are the most widely used techniques within the DEA methodology 
[4]. In general, the CCR model is used to examine overall technical efficiency (TE) and can also be 
decomposed into scale efficiency (SE) and pure technical efficiency (PTE). PTE can be measured through 
the BCC model; therefore, SE is equal to the overall technical efficiency divided by PTE. When SE is equal 
to 1, the DMU is at the level of optimal scale efficiency. However, if SE < 1, the DMUs are in states of 
inefficient scale. In addition, we can determine whether the DMUs are in scale increment, decrement, or 
unchanged states based on the varying scale values. In this paper, these two kinds of models were used to 
evaluate scale efficiency, technical efficiency and pure technical efficiency to comprehensively assess low-
carbon economic efficiency. TE can reflect the overall inputs-outputs, and through PTE, we can determine 
the resource allocation capability and low-carbon economic management. 

2.2 Malmquist Index 
The CCR and BCC models are usually used to statically analyze the efficiency of DMUs. However, 

the low-carbon economic behavior and energy consumption of iron and steel enterprises are uncertain, and 
all of the multiple input and outputs are complex. The Malmquist indices, which are based on the DEA 
approach, are well-suited for productivity measurement in evaluating low-carbon economic efficiency. The 
combined DEA–Malmquist index model is used to measure changes in total factor productivity. The 
Malmquist productivity index is defined as follows: 
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We consider the technical efficiency change index (EC) and technological progress index (TC). Eq. 
(1) can be changed to Eq. (2). 
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into variations in scale efficiency (SEC) and pure technical efficiency (PEC). Then, we can obtain Eq. (3) 
from Eq. (2). 

, 1
,

1 / 2

=

1 1( , ) ( , ) ( , )( , ) ( , )1 1 1 1 1 1         = 1 1 1( , ) ( , ) ( , ) ( , ) ( , )1 1 1 1

t t
v cM EC TC PEC SEC TC

t t tt tD x y D x y D x yD x y D x yv c ct t v t t t t t t c t t
t t t t tD x y D x y D x y D x y D x yv t t c t t v c c t tt t t t

+

   
   
   
   
   

× = × ×

+ +
+ + + + + +× × × ×+ + +

+ + + +

 (3) 

Therefore, by using the Malmquist index method in the evaluations of low-carbon economy efficiency, 
we can dynamically analyze all of the changeable factors in more detail, which can help us deeply 
understand the reasons for low-carbon steel enterprise economic efficiency, as well as the various 
contributions to it. 
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2.3 Model and Variables 
Iron and steel enterprises invest not only capital, labor, and technology but also in natural resources 

such as water and coal for their low-carbon economic activities. Unexpected output and expected output 
are two different types of outputs. Therefore, we can only minimize undesired outputs while increasing the 
expected outputs to achieve a win-win outcome between environmental protection and economic 
development. Because of the input-oriented DEA model used in this paper, we regard waste gas, wastewater, 
waste residue and other undesired outputs as productive investments to process. Our approach is inspired 
by the previous investigations of Jiao et al. [11] and Yang et al. [12], we combine the characteristics of low-
carbon production in China and the acquisition possibility of firm-level data. We select net fixed assets, 
employee numbers, energy consumption, water consumption and emissions of waste gas, wastewater and 
residue as inputs. Unexpected outputs, total industrial waste gas, water and residue are regarded as 
investment inputs and are considered in this efficiency index as well. 

The expected output is defined as the industrial added value, total profit and tax on enterprises. There 
are three points that of specific importance: 1) In general, capital investment usually uses capital stock or 
depreciation. In this paper, we use fixed assets that represent capital stock to avoid the uncertainty of 
depreciation. 2) Because of the lack of statistical data in recent years, labor input is measured by the number 
of employees instead of by employee working hours. 3) Steel technological procedures are complicated 
because of the necessity for both long and short processes for different products. It is possible to ignore the 
intermediate goods output in the long process if the total output value of the enterprise is used instead of 
the added value. In addition, the output indicators of total profits and taxes were chosen instead of profit 
mainly because the different tax policies of local governments affect corporate profits. Nonetheless, profits 
and taxes paid can avoid this side effect. 

3 Empirical Analysis 
The empirical data cover 17 listed iron and steel enterprises with designated annual sales amounts of 

more than 100 million yuan. The financial data used in the survey are taken from announced annual 
enterprise report data during the period from 2009 to 2013 and the China Statistic Yearbook. Energy 
consumption and environmental pollutant data were obtained from the China Environment Statistics 
Yearbook (2009–2013) and the database of the China Ministry of Environmental Protection. In addition, 
we consulted the data reported by China’s Iron and Steel Industrial Association. 

3.1 Static Analysis of the Low-Carbon Economic Efficiency of the Iron and Steel Firms  
The relative scale variables of the 17 listed iron and steel enterprises are defined as dummy values that 

distinguish small, medium and large categories according to labor, sales and total assets. 
We conducted a static analysis of low-carbon economic efficiency for iron and steel enterprises per 

models (1) and (2) by using the DEAP 2.1 software package. Based on an input-oriented model, the 17 
listed enterprises were examined, and their efficiency values were measured from 2009 to 2013. We can 
see from Tab. 2 that the low-carbon economic efficiency of China’s iron and steel enterprises presents the 
following characteristics: 1) The enterprise technical efficiency is generally low. From 2009 to 2013, the 
average low-carbon economic and technological efficiency of China’s iron and steel enterprises was only 
0.578. China’s iron and steel enterprise production still has much room for improvement. 2) The technical 
efficiency difference between individual enterprises is obvious. Kim, Wu and Zhang stated that iron and 
steel enterprises had the property of increasing returns to scale, which means that larger firms had higher 
efficiency [13–15]. Tab. 1 shows that smaller-scale firms have higher efficiency than some larger-scale 
firms. Examples are Xining Special Steel and Xining Ductile Iron Pipes, whose scales are smaller than 
others but whose technical efficiency values are 1. The technical efficiency values of most small enterprises 
are above the average. This is followed by middle-sized enterprises, such as Nanjing Iron and Steel and Jiu 
Steel, whose technical efficiency values are close to 1. Some large enterprises, such as He Steel, Angang 
Steel, Wuhan Iron and Steel, and Baotou Steel Union, have technical efficiency values that are below 
average. Tab. 2 shows that the overall pure technical efficiency is low in China with an average of 0.676. 
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Generally, low pure technical efficiencies imply that the production technology and management level are 
still backward. The scale efficiency average is 0.848, which indicates that enterprise developments are 
relatively more dependent on scale expansion and scale effectively. The evidence shows that most large-
scale enterprises are in a state of scale return decrease, but some smaller firms’ scale returns increase. This 
means that blindly expanding investments is not the best choice for these larger firms in China. For larger-
scale enterprises, it is very important to achieve technological progress and product and process upgrades 
but not solely by increasing inputs and expanding scales. 

Table 1: Firm scale classification 
Classification Standard Unit Small Medium Large 

Total asset 1 Million <500 500–1000 >1000 
Sales 1 Million <200 200–400 >400 
Labor person <1000 1000–3000 >3000 

3.2 Analysis of the Trends of Low-Carbon Economic Efficiency with the Malmquist Index Model 
The results presented above are based on a simple static analysis of the low-carbon economic 

efficiency of Chinese iron and steel enterprises based on the CCR and BBC models. We further investigated 
the change trends of the 17 listed iron and steel enterprises. We applied the Malmquist index model based 
on panel data for 2009–2013. All of these data were the inputs for the DEAP2.1 software for calculations. 
The results are shown in Tab. 3 and Tab. 4. 

Tab. 3 shows the decomposition of total factor productivity for the 17 listed iron and steel enterprises 
from 2009 to 2013. The total factor productivity is less than 1 for the 17 iron and steel enterprises except 
for the 2010–2011 period, which indicates that the average annual total factor productivity of Chinese iron 
and steel enterprises is not ideal. The main reason is that the technical efficiency change index decreased at 
an annual rate of 12.9%. Changes in pure technical efficiency are another cause for this decline. A series of 
policies and regulations forced iron and steel enterprises to pay more attention to their low-carbon economic 
efficiencies. Therefore, we can see that TEC and PTEC increased by more than 10% in this year. 

Tab. 4 shows the decomposition of total factor productivity of the 17 listed iron and steel enterprises. 
The total productivity indices of Beijing Shougang Steel, Hunan Valin Steel, Taigang Stainless, Xining 
Special Steel, Liuzhou Iron & Steel and Xinxing Ductile Iron are greater than 1. Among these six enterprises, 
their technical efficiency change indices remained unchanged or improved, except those for Taigang 
Stainless. The technology index is greater than 1 for the Pangang Group. Among the remaining 11 firms, 
the total factor productivity indices are less than 1. From the technical efficiency change index perspective, 
only Anyang Iron and Steel’s index was greater than 1 and the indices of the remaining 10 firms were less 
than 1. From the technological progress index perspective, only the Baoshan Steel, Angang Steel and 
Wuhan Iron and Steel indices were greater than 1. This indicates that technical weakness and technical 
efficiency declines both affected the decline of a firm’s total factor productivity. 

 
Figure 1: Trends of factor decomposition of the Malmquist index from 2009 to 2013 
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Table 2: DEA evaluation of the 17 listed iron and steel enterprises from 2009 to 2013 

Firm Relative Scale TE PTE SE RS 

Baotou Steel Union Large 0.315 0.338 0.938 Decreasing 

Jiu Steel Group Medium 0.784 0.885 0.887 Increasing 

Nanjing Iron & Steel Small 0.952 1 0.950 Increasing 

Pangang Group Medium 0.244 0.301 0.874 Decreasing 

SGIS Songshan Medium 0.514 0.655 0.829 Decreasing 

Beijing Shougang 
Steel Medium 0.998 1 0.993 Unchanged 

Xining Special Steel Small 1 1 1 Unchanged 

Anyang Iron & Steel Small 0.433 0.481 0.956 Decreasing 

Xinxing Ductile Iron 
Pipes Small 1 1 1 Unchanged 

Liuzhou Iron & Steel Small 0.963 0.847 0.991 Decreasing 

Baoshan Steel Large 0.639 1.000 0.659 Decreasing 

He Steel Large 0.224 0.350 0.705 Decreasing 

Angang Steel Large 0.369 0.571 0.710 Decreasing 

Wuhan Iron&Steel Large 0.434 0.746 0.592 Decreasing 

Hunan Valin Steel Small 0.231 0.241 0.930 Increasing 

MaanShan Steel Medium 0.222 0.246 0.776 Increasing 

Taigang Stainless Small 0.502 0.832 0.619 Increasing 

Mean 0.578 0.676 0.848  

Stand-Dev 0.308 0.297 0.140  

Table 3: Annual Malmquist index change trends of iron and steel enterprises from 2009 to 2013 
Years TEC TP PTEC SEC Malmquist 

 2009–2010 0.788 0.873 0.930 0.877 0.780 

2010–2011 1.117 1.019 1.092 0.891 1.037 

2011–2012 0.784 1.047 0.973 0.992 0.943 

2012–2013 0.742 0.982 0.843 0.888 0.871 

Means 0.858 0.980 0.958 0.912 0.907 

TEC Technology efficiency change, TP Technology progress, PTEC Pure TEC, SEC Scale returns change 
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Table 4: Average Malmquist indices of the 17 listed iron and steel enterprises from 2009 to 2013 
Firms TEC TP PTEC SEC Malmquist indices 

Baotou Steel Union 0.887 0.911 0.889 1.058 0.885 
Jiu Steel Group 0.913 0.880 0.975 0.933 0.833 
Nanjing Iron & Steel 0.863 0.915 0.860 0.941 0.764 
Pangang Group 1.150 0.933 1.204 0.987 1.135 
SGIS Songshan 0.903 0.932 0.991 0.912 0.883 
Beijing Shougang Steel 1.000 1.037 1.010 1.003 1.039 
Xining Special Steel 1.000 1.014 1.000 1.000 1.034 
Anyang Iron & Steel 1.020 0.952 1.031 0.995 0.968 
Xinxing Ductile Iron 
Pipes 1.000 1.033 1.000 1.000 1.028 

Liuzhou Iron & Steel 1.000 1.012 0.997 1.003 1.022 
Baoshan Steel 0.819 1.077 1.010 0.810 0.911 
He Steel 0.818 0.897 0.813 1.006 0.775 
Angang Steel 0.349 1.005 0.672 0.404 0.275 
Wuhan Iron & Steel 0.702 1.018 0.746 0.997 0.782 
Hunan Valin Steel 0.889 0.975 0.856 1.040 0.883 
MaanShan Steel 0.941 0.930 0.917 1.038 0.931 
Taigang Stainless 0.970 1.066 1.084 0.974 1.019 
Means 0.878 0.966 0.943 0.938 0.888 

4 Analysis and Conclusion 
4.1 Variables and Hypothesis 

Based on the previous studies of Sheng et al. [16], Wu et al. [17] and Chen et al. [18], this paper introduces 
technology, energy structure, product structure, environment and government regulation to study their 
effects on the low-carbon economic efficiency of iron and steel enterprises. 

In the transition process of China’s iron and steel industry, technological progress, such as production 
process improvement, product upgrades, and management improvements, contributed substantially to the 
increase in production output and the reduction in energy consumption. 

Hypothesis 1. The higher the technological progress in the production process, the higher the energy 
and low-carbon economic efficiencies of iron and steel enterprises are in China. These factors have a 
positive correlation. 

Hypothesis 2. The higher the rate of coal use in energy consumption, the lower the carbon economic 
efficiency is of the iron and steel firms. These two factors have a negative correlation. 

Hypothesis 3. The lower the rate of crude steel in the product structure (PS), the higher the low-carbon 
economic efficiency is. These two factors have a positive correlation. 

Hypothesis 4. The higher the environmental conservation investment (EC), the higher the low-carbon 
economic efficiency is. These two factors have a positive correlation. 

Hypothesis 5. Government regulation of iron and steel enterprises will improve low-carbon economic 
efficiency. 

Hypothesis 6. An enterprise whose scale is larger has a higher low-carbon economic efficiency. 
Hypothesis 7. An older enterprise has higher low-carbon economic efficiency. 
We denoted the i  enterprise at the time t  period technology progress using itT  and we adopted full 

element productivity (TFP) to describe the technology progress in this paper. 
itES  is the energy structure 

of enterprise i  at the time period t  using the coal consumption proportion of total energy consumption; 
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itPS is the product structure of enterprise i  at time period t  using the crude steel proportion in iron and steel 
production. itEC is the environmental production investment of enterprise i  at time period t . itGR represents 
government regulation at time period t , and we use the sewage charge of the added value of iron and steel 
enterprises. itFS and itFA  represent the enterprise i  scale and age at time period t , respectively. 

4.2 Model and Analysis 
We studied a total of 85 observation points through a panel dataset that contained 17 sections from 2009 

to 2013. These data are derived from the released data in the annual reports of the listed companies, as well as 
the China Iron and Steel Association statistics collation. We can assume that the differences in low-carbon 
economic efficiency of these firms are mainly associated with individuals. We first consider variable intercept 
models. Through determinations by the Hausman test, as are shown in Tab. 5, we should reject the hypothesis 
of random effects and use a fixed effect model. The basic model is described in Eq. (4). 

0 1 2 3 4 5 6 7it it it it it it itTE T ES PS EC GP FS FAβ β β β β β β β ε= + + + + + + + +  (4) 

where 
0

β  is a constant; 
1

β ,
2

β
3

β ,
4β ,

5
β , and 

6
β  are the regression coefficients for the variables; i is the 

enterprise number; 1, 2, ,17i =  ; and t  is the time period, 2009, , 2013t =  . ε  is a residual term. 
We conducted an evaluation of model (4) with Eviews 7.0 software, and the results are listed in Tab. 5. 

Table 5: Correlated random effects–hausman test 

Summary Chi-Sq. Chi-Sq. d.f. Prob. 

Cross-section 14.130439 5 0.0197 

By examining the results from Tab. 5, we find the following: 
(1) Technical progress has a positive influence on low-carbon economic efficiency, but this influence 

is not dramatic. This may be related to R&D investment in China. Currently, most enterprises are in a low-
profit or loss state. Investments in R&D are limited especially because environmental protection R&D 
funding is insufficient. 

(2) The energy structure shows a significant negative correlation with the low-carbon economy of iron 
and steel enterprises. In the energy structure, coal accounts for 71% of the total energy consumption in 
China, which leads to high levels of pollutant emissions, which reduce the low-carbon economic efficiency. 

Table 6: Regression analysis of the factors affecting low-carbon economic efficiency 

Variable Regression Coefficient Standard Deviation T Test P Value 

C 186.1461*** 62.05952 2.830116 0.0046 

T 0.335461 0.194031 1.378034 0.1897 

ES –0.855858*** 0.250934 –3.367950 0.0011 

PS –1.483545** 0.661349 –2.158474 0.0409 

EC 0.942156 3.657950 0.256727 0.8121 

GP 0.032561 0.477268 0.071477 0.9323 

FS –0.601391** 0.194611 –2.073423 0.0023 

FA 0.458361 1.138017 0.124442 0.9411 

Adjusted R-squared 0.808099        Durbin-Watson stat 1.946640         F-statistic 17.63353 

Note:  *, **, *** represent significance at 10%, 5%, and 1% level, respectively. 
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(3) The negative influence of the product structures on low-carbon economic efficiency is obvious. High 
performance and high value-added products, such as some special steels, still need to be imported. This 
unreasonable product structure is an important factor that influences the low-carbon efficiency in China. 

(4) Environmental protection investments have positive influences but are not significant. This 
suggests that environmental protection investments to increase the economic efficiency of iron and steel 
enterprises are not obvious. 

(5) Governmental regulations for iron and steel enterprises have a positive correlation. Theoretically, 
all regulations or policies may significantly improve the efficiency of the low-carbon economy, but the 
empirical results show that is not the case. Based on the economic development differences among different 
regions of China, different regions have their own advantages, which include political advantages, 
economic advantages, and geographical advantages. Each regional iron and steel enterprise may take full 
advantage of these distinctive features to improve development. Some local governments at all levels have 
not thoroughly implemented these policies. 

(6) The GDP of a region and the scale of its enterprises have a positive effect on low-carbon economic 
efficiency. However, the per capita income of the enterprises does not show a significant effect. The 
empirical results indicate that small-enterprise efficiency is highest and is followed by middle-enterprise 
efficiency. In contrast, large enterprises have the lowest efficiency, a finding opposite to the traditional 
hypothesis based on economy of scale. 
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