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Abstract: In network anomaly detection, network traffic data are often imbal-
anced, that is, certain classes of network traffic data have a large sample data
volume while other classes have few, resulting in reduced overall network traffic
anomaly detection on a minority class of samples. For imbalanced data, research-
ers have proposed the use of oversampling techniques to balance data sets; in par-
ticular, an oversampling method called the SMOTE provides a simple and
effective solution for balancing data sets. However, current oversampling methods
suffer from the generation of noisy samples and poor information quality. Hence,
this study proposes an oversampling method for imbalanced network traffic data
that combines the SMOTE algorithm and FINCH clustering algorithm to filter out
minority sample clusters, proposes a scheme to allocate the number of synthetic
samples per cluster according to the clustering sparsity and sample weight, and finally
uses multi-layer sensors for noisy sample cleaning during sampling. We compare the
proposed method with other oversampling methods, verifying that a data set pro-
cessed using this method works better in network traffic anomaly detection.

Keywords: Imbalanced learning; oversampling; SMOTE; network anomaly
detection

1 Introduction

Network anomaly traffic detection can provide a basis for detecting network attacks, network
misconfigurations, network failures, etc., by learning network traffic data. Current researchers have
proposed many network anomaly detection techniques to address a variety of different current application
scenarios. The main methods of representation are logistic regression classification and Bayesian
classification. Regardless of which anomaly detection technique is used, there is the problem of
imbalance in the network data itself. For example, most of the network traffic data are standard traffic
data, and only a small percentage are abnormal traffic data, which is a natural imbalance in the network
data set due to the inherent characteristics of the network. For most classifications that rely on data set
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learning, the imbalance of the data set leads to overfitting of the learning model in the direction of majority
samples. Even if overfitting occurs, the general detector can obtain a reasonable accuracy rate because by
merely judging most samples as usual, the significance of the accuracy rate does not provide reliable
information for network maintenance. For example, if 90% average network traffic data and 10%
abnormal network traffic data exist, then the classifier needs to judge all of them only as regular network
traffic data to be 90% correct. However, in reality, this 90% correct rate is far less meaningful than being
able to correctly identify 10% of the anomalous network traffic data because the main problem with
network anomaly detection is to detect minority samples because the minority class of network
anomalous traffic data information can bring more meaningful information to network maintenance.

Problems such as data imbalance in network traffic anomaly detection have occurred in other areas with
similar problems. The problem of imbalanced data is widespread across research areas. The oversampling
technique is often used to solve the problem of unbalanced data. This technique addresses the imbalanced
nature of the data by generating additional training samples for the minority samples. The most
representative oversampling technique is synthetic minority oversampling (SMOTE). This oversampling
technique targets the data itself, trying to solve the problem of data imbalance at the root; hence, it is
suitable for various application situations.

In the course of research and practice, researchers have also found certain shortcomings in oversampling
technology, mainly in the possible generation of noisy samples and mislabelled samples, and the raw data
information is not processed. The interpolation scheme is prone to centralized overlap. Therefore, to
address the problem of sample imbalance in network traffic anomaly detection, this paper proposes a data
synthesis method for imbalanced samples, based on the SMOTE algorithm, to improve the synthesized
samples to better adapt to network traffic anomaly detection and to enhance the effectiveness of network
traffic anomaly detection as follows:

1. Based on the idea of using the clustering algorithm to avoid the synthesis of noisy samples, the
current clustering SMOTE algorithm has many parameter configurations that are difficult to
adjust, and for the problem of low adaptability to different data sets, the use of the FINCH
clustering algorithm is proposed to reduce the parameters and improve the generalizability.

2. The distribution of the number of synthetic samples after clustering is improved. It avoids the
extreme situation where the cluster has a small number of minority samples but distributes an
excessive number of synthetic samples, giving an initial weight to minority samples considering
their sparsity and safety.

3. The multi-layer perceptron is used to clean the synthetic samples while constantly correcting the
weights of the minority samples and the multi-layer perceptron to learn new minority samples.

2 Related Work

In the 1990s, as increasingly more machine learning and data mining techniques became widespread,
researchers were faced with a significant challenge: how to process data with the desired classification
accuracy in the face of imbalanced distributions. Researchers began to identify research areas for
imbalanced learning in 2000; various approaches to imbalanced learning have gradually been proposed.

Faced with unbalanced network data, one can improve the effect by changing the detection model itself.
Yang et al. [1] proposed a new hierarchical distributed agent model for network risk assessment from the
perspective of modifying the assessment model to avoid the imbalance of network traffic data. Another
way to face the problem of unbalanced data is to use oversampling technology, which improves class
balance by increasing the number of minority samples. The simplest oversampling method to balance a
data set is simple random sampling, which is the random replication of minority samples so that the new
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samples generated do not add more information. In 2002, Chawla et al. [2] proposed the SMOTE (synthetic
minority oversampling technique) algorithm, and since then, the SMOTE algorithm has become the
mainstream algorithm in imbalanced learning data enhancement, has been widely used in various fields,
and has yielded subsequent variants. The SMOTE algorithm differs from the simple replication sample
mechanism of random oversampling by synthesizing new samples between two minority samples by
linear interpolation.

Fig. 1 shows the oversampling process of the SMOTE algorithm. The main process is as follows:

1) Randomly select xi of the minority sample, calculate the distance from it to the other samples in the
minority sample set based on the Euclidean distance and obtain the nearest K near-neighbor minority sample
via the KNN algorithm. Then, set the K samples as xi nearð Þ, near 2 1; . . . ; kf g.

2) A sample bxi is randomly selected from the K samples, a random number w from 0 to 1 is generated,
and a new sample xnew is synthesized by Eq. (1).

xnew ¼ xi þ w xi � bxið Þ (1)

3) Set a sample multiplier N according to the sample imbalance ratio, which is generally set to 1 by
default, i.e., the number of samples generated is:

samples num ¼ N � majority num� minority numð Þ (2)

Repeat Steps 1) and 2) samples num times until the number of minority samples equals the number of
majority samples in the data set.

The classic SMOTE algorithm has certain drawbacks; thus, researchers have proposed many SMOTE-
based variants for different data sets in their continuous research and practice. To avoid the possibility that the
SMOTE algorithm will overlap with the majority samples, Han et al. [3] proposed an oversampling method,
Borderline-SMOTE, for the boundary of the minority samples. The study of Devi et al. [4] revealed that the
presence of redundant borderline instances and outliers in the data space severely catalyzes the effect of class
imbalance. Barua et al. [5,6] proposed an algorithm to generate effective weight values for minority data
samples based on each sample’s proximity information, i.e., the distance from the boundary, which results
in a proper distribution of generated synthetic samples across the minority data set. Perezortiz et al. [7]
explored the notion of an empirical feature space to derive a kernel-based synthetic oversampling
technique based on borderline instances, which are considered crucial for establishing the decision
boundary. Xie et al. [8] proposed a new method called MOT2LD that first maps each training sample into

Figure 1: The SMOTE oversampling process
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a low-dimensional space and then clusters their low-dimensional representations. For data noise problems, Sun
et al. [9] applied the fractional wavelet transform in fault detection analysis to eliminate noise information and
improve the recognition performance of weak fault features. Fernandez et al. [10] summarized the development
of the SMOTE algorithm, which has been successfully used in various applications in many different fields due
to its simplicity in programming and robustness for different types of problems. Georgios et al. [11] combined
the K-means algorithmwith the SMOTE algorithm to avoid noise among samples but also brought the problem
of too many difficult parameters to adjust. In terms of image data enhancement, Liu et al. [12] introduced a new
method to data augmentation and improved the diversity of limited data by changing the texture, contrast, and
color of the image. Sarfraz et al. [13–16] proposed new clustering methods, which are suitable for oversampling
to avoid the generation of wrong samples. Sandhan et al. [17] tried to balance the dataset with a mixed sampling
method. Researchers such as Gao considered the improvement of weight and density in avoid overfitting [18–
20]. Young et al. [21] proposed oversampling method based on voronoi diagrams and Douzas improved
oversampling method based on self-organizing map [22]. Ramentol et al. [23–25] have applied unbalanced
learning methods in machine diagnosis and intrusion detection.

In summary, researchers have explored various SMOTE variants and applications in different scenarios.
However, the SMOTE and its variants still have the following problems:

1. The synthesis of new samples is prone to the generation of noisy samples; for example, the synthesis
of new samples may occur in the majority sample areas.

2. Samples are synthesized without considering the informational importance of the original sample,
e.g., a minority sample of the boundary class would provide more information and therefore
require more attention.

3. Oversampling in combination with clustering algorithms usually requires more parameter
adjustment, and the performance is unstable.

Therefore, we propose FSMOTE oversampling, which combines a stable FINCH clustering method
without parameters and the use of multi-layer perceptron cleaning when synthesizing new samples.

3 FSMOTE: The Proposed Oversampling Method

3.1 Overview

Our proposed FSMOTE method uses a first-neighbor efficient covariant-free class algorithm and a multi-
layer sensor combined with the SMOTE algorithm to rebalance the network traffic data set and ultimately
achieve the goal of improving network anomaly detection. Our algorithm process is roughly as follows:

As shown in Fig. 2, first, calculate the imbalance ratio for the input imbalanced data set, and then use the
FINCH clustering algorithm to cluster the original data set. After clustering, for each cluster, calculate the
imbalance ratio. Note that at this time, there will be zero samples; hence, the number of calculations
needs to be increased by 1 to facilitate the representation and calculation. The clusters in which the
imbalance ratio is smaller than the imbalance ratio of the original data set are selected as filter clusters.
The cluster sparsity is calculated according to the distribution of the minority samples in the filtered
cluster in the overall minority sample, and the number of minority samples included in the cluster itself is
considered. Finally, the number of synthesized samples is assigned to the filtered cluster. In the
oversampling phase, considering the safety and sparsity of minority samples as initial weights, the
minority samples closer to the majority class samples and the sparser samples around them will receive
higher weights and be more homogeneous in the oversampling process. An MLP classifier is trained
using the input data, and after synthesizing the new sample, the MLP is used to determine if it is a
minority sample, to perform data cleaning and to reduce the weight of the minority sample that produces
the noisy sample. The synthesis steps that require the sample size are eventually repeated to achieve a
data balance. Fig. 3 shows the case of FSMOTE oversampling safe areas and clean noisy samples.
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Figure 2: The FSMOTE oversampling process

Figure 3: FSMOTE oversampling safe areas and clean noisy samples
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It can be seen that our work is broadly focused on the following three modules:

1. Data pre-processing based on FINCH clustering.

2. Synthetic sample size allocation based on the cluster sparsity and sample size.

3. Data cleaning based on the multi-layer perceptron.

Therefore, in the following, we present data pre-processing based on FINCH clustering, methods for
assigning a synthetic sample size based on the clustering sparsity and sample proportion, and data
cleaning based on the multi-layer perceptron.

3.2 Data Pre-processing Based on FINCH Clustering

We first use the clustering algorithm to pre-process the incoming data, and effective clustering can form
a safe region of the sample, improving the quality of the synthetic sample. The most representative
oversampling method with clustering is KMeans-SMOTE, which requires three additional parameters to
be set, requiring more time to find the best parameters in practice and having an unstable performance.
Therefore we choose to introduce a simple and efficient clustering algorithm, i.e., FINCH, which requires
no parameters, and use it to pre-process the input data for clustering.

FINCH is a clustering algorithm proposed by Sarfraz et al. [13]. The algorithm proposes a new
clustering method in the form of a single clustering equation that directly discovers groups in the data.
Compared to most existing clustering algorithms, FINCH does not require any hyperparameters, such as
distance thresholds and the number of clusters. FINCH is a hierarchical aggregation method with very
low computational overhead, easy to scale and suitable for large practical problems. Here, a brief
introduction to the FINCH clustering process is given.

A i; jð Þ ¼ 1 if j ¼ k1i or k1j ¼ i or k1i ¼ k1j
0 otherwise

�
(3)

Given an integer index for the first neighbor of each data point, FINCH directly defines the neighbor link
matrix according to Eq. (3). k1i symbolizes the first neighbor of point i. The adjacency matrix links each point
i to its first neighbor via j ¼ k1i , enforces symmetry via k1j ¼ i, and links points (i, j) that have the same
neighbor by using k1i ¼ k1j . Eq. (3) returns a symmetric sparse matrix directly specifying a graph whose
connected components are the clusters. With its amazing simplicity, the clustering equations transfer
clusters in the data without relying on any threshold or further analysis.

By using a directed graph or an undirected graph G = (V, E), one can efficiently obtain the component of
connections from the adjacency matrix, where V is the set of nodes (points to be clustered) and edge E
connects nodes A(i, j) = 1. Intuitively, the condition in Eq. (3) is to combine the 1-nearest neighbor (1-
NN) and shared nearest neighbor (SNN) graphs. After the first partition has been calculated, these
clusters can be merged recursively. For this, Eq. (3) requires the first neighbor of each cluster. Finding
these neighbors requires calculating the distance between clusters. This is also relevant for all linking
methods; for example, the average link in a hierarchical aggregation cluster uses the average of paired
distances between all points in the two clusters. However, following this is computationally very
expensive. Therefore, it cannot be easily scaled to millions of samples, and it needs to maintain a full
distance matrix in memory. With the FINCH method, there is no need to compute a complete paired
distance matrix for large-scale data since FINCH can obtain the first neighbor by a fast approximation of
the nearest neighbor method.
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3.3 Synthetic Sample Size Allocation Based on the Cluster Sparsity and Sample Size

After FINCH clustering, the original sample is transformed into multiple clusters. It is necessary to
further determine which clusters are suitable for the synthesis of minority samples, that is, to filter the
clusters. We generally use the imbalance rate of the original data as a benchmark. The imbalance rate is
greater than the original data set imbalance rate, which means that it is a cluster in the majority sample
set. Even if there are minority samples, this cluster is likely to belong to the noisy sample; thus, it is
filtered. Conversely, clustering with an imbalance rate is less than the imbalance rate of the original data
set means that the clusters in the minority sample set should be oversampled within the cluster.

After cluster filtering, there may be multiple minority clusters that need to be oversampled, and we
allocate the number of synthetic samples for each filtered cluster based on the sparsity of the minority
samples and the number of minority class samples in the cluster. This avoids the extreme case of
considering only clustering sparsity or only the number of samples within the clusters. For example, if
only the sample size is considered, there will be some cases where the sample size is small but sparse and
more samples need to be synthesized, while if only the clustering sparsity is considered, the sample size
can effectively avoid some extreme cases where the clustering sparsity is high but will itself be small.
Fig. 4(a) shows the extreme case where only the number of clustered samples is considered, in which
Cluster B is assigned a small number of synthetic samples due to the small number of minority samples
and cannot achieve an effective equilibrium effect, and Fig. 4(b) shows the extreme case where only the
sparsity of clusters is considered, in which Cluster B is very sparse and therefore assigned a larger
number of synthetic samples, but its number is too small to generate a high sample repeatability.

We therefore carried out an integrated consideration that exploited both the clustering sparsity and the
number of samples in the clusters as a means of jointly determining the number of samples that a cluster
needs to generate. The specific steps for cluster filtering and sample size allocation are as follows:

1) For each filtered cluster fc, calculate the Euclidean distance matrix for the minority samples in it.

2) Calculate the average distance of minority samples per filtered cluster, i.e., add all non-diagonal
elements in the distance matrix and divide by the number of non-diagonal elements.

3) Calculate the sparsity factor for minority samples in a filtered cluster:

Sparsity factor fcð Þ ¼ Average minortity distance fcð Þ2
minority count fcð Þ (4)

4) The sparsity weight for each filtered cluster is the sum of the sparsity factors of the filtered clusters
divided by the sparsity factors of all filtered clusters.

Figure 4: Problems when considering only the cluster sample size or sparsity
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5) The quantitative weight for each filtered cluster is the sum of the number of minority classes in the
filtered cluster divided by the number of minority classes in all filtered clusters.

6) The final sampling weights for each filtered cluster are determined by a combination of the sparsity
and the quantity weights.

7) Multiply the sampling weights by the total number of samples to be synthesized to obtain the number
of samples to be synthesized for each filtered cluster.

3.4 Data Cleaning Based on the Multi-Layer Perceptron

The oversampling process is not effective at avoiding all noisy samples; thus, we use a multi-layer
perceptron to make an initial judgement of the new samples synthesized and delete the synthesized
samples that do not meet the conditions, and based on the judgement, we reduce the weight for the
minority classes of samples that have generated noisy samples and then proceed to the next round of
oversampling until the number of samples synthesized is sufficient. We chose the MLP because it is
simple enough to be widely used and is more suitable for unbalanced network data sets because the
number of samples in unbalanced data sets is usually small. We use the MLP classifier to judge the
synthetic samples and provide feedback to adjust the weight of the minority samples, and the neural
network continuously learns new information from the synthetic samples.

A multi-layer perceptron generally contains an input layer, an output layer, and a hidden layer, where the
hidden layer may have multiple layers, whereas for a simple multi-layer perceptron, there is only one hidden
layer, thus having a simple three-layer structure. The layers of the multi-layer perceptron are fully connected,
meaning that the neurons in the previous layer are connected to all the neurons in the next layer. The neurons
in the input layer provide information from the outside world and do not perform any computation in the
input layer but only transmit information to nodes in the hidden layer. Hidden nodes in the hidden layer
are not directly connected to the outside world; these nodes perform computations and pass information
from the input layer to the output layer. The output layer is also responsible for the calculations that will
output the information.

The approximate process of reassignment and sample cleaning is as follows:

1) Calculation of the sparsity of minority samples: Calculate the Euclidean distance matrix between
all minority samples within each filtered cluster. mintomin_distance is the sum of the distances in each row
divided by the sum of the triangles on the matrix. The sparsity of a minority sample is the proportion of the
mintomin_distance of the sample to the total mintomin_distance.

Sparsityi ¼ mintomin distanceP
mintomin distance

(5)

2) Calculation of the safety of the minority samples: Calculate the Euclidean distance matrix from
each minority sample to each majority sample. mintomaj_distance is the sum of each row of the matrix
divided by the sum of all the numbers in the matrix. Calculate the sample safety for the minority
samples; the closer the sample point is to the majority class, the less safe it will be. nummin represent the
number of minority samples.

Safetyi ¼
1� mintomaj distanceP

mintomin distance

� �
minority num� 1

(6)
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3) Minority sample weight calculation:

minweightsi ¼ @1 � Sparsityi þ @2 � Safetyi (7)

where minweightsi denotes the weight of sample xi, @1 and @2 are the mean density factors, the sum of
which is 1, and the sample density is determined by the sparsity and safety of the two samples together.

4)Assign weights to the minority samples and train anMLP determinator on the original samples.

5) Oversampling and cleaning of the samples: The oversampling and cleaning process is repeated
when the number of synthetic samples is less than the required number to be generated.

a) Oversampling is carried out while retaining the minority sample sequences for each selection.

b) The MLP adjudicator makes judgements on the synthetic samples, deleting synthetic samples judged
to be in the majority and keeping synthetic samples judged to be in the minority as new samples.

c) The weight of the minority samples that generate the majority samples is reduced.

d) The continuous learning characteristics of neural networks are utilized, and new samples are input
into the MLP classifier for training.

3.5 FSMOTE Algorithm

In summary, we have introduced several important modules of this algorithm. The specific algorithm
flow is as follows:

Algorithm 1: FSMOTE Algorithm

Input: Imbalanced data set X.

Imbalanced data set label y, include minority and majority.

Newly synthesized sample ratio N, the default value of which is 1.

Number of nearest neighbor samples K.

Output: Generated samples Newsamples.

1. Calculate the imbalance rate Irt of the data set.

Irt ¼ count majority Xð Þð Þ
count minority Xð Þð Þ

2. Calculate the number of samples to be generated.

samples num ¼ N � count majorityð Þ � count minorityð Þð Þ
3. Generate clusters of the dataset by the FINCH algorithm and filter these clusters.

clusters FINCH Xð Þ
filtered clusters ¼ [

for c2 clusters:

c Irt ¼ count majorityð Þ þ 1

count minorityð Þ þ 1
if c Irt < Irt:

filtered clusters ¼ filtered clusters [ cf g
4. Calculate the number of samples to be generated for each cluster in filtered clusters.

for fc 2 filtered clusters:

Average minortity distance fcð Þ ¼ mean Euclidean distances fð Þð Þ
(Continued)
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Algorithm 1 (continued).

Sparsity factor fcð Þ ¼ Average minortity distance fcð Þ2
minoritycount fcð Þ

Sparsity weight fcð Þ ¼ Sparsity factor fcð Þ
sum Sparsity factor fcð Þð Þ

num weight fcð Þ ¼ count minority fcð Þð Þ
count sum minority Xð Þð Þð Þ

fc weight fcð Þ ¼ @1 � num weight fcð Þ þ @2 � Sparsity weight fcð Þ
fc num fcð Þ ¼ fc weight fcð Þ � samples num

5. Calculate the minority sample weight in filtered_clusters:

for fc 2 filtered clusters :

Calculate the Euclidean distance matrix between all minority samples in each filtered cluster

mintomin distance ¼ sum row of the matrixð Þ
sum the triangle of the matrixð Þ

Sparsity ¼ mintomin distanceP
mintomin distance

Calculate the Euclidean distance matrix from each minority sample to each majority sample

mintomaj distance ¼ sum row of the matrixð Þ
sum matrixð Þ

Safety ¼
1� mintomaj distanceP

mintomin distance

� �
minority num� 1

minweights ¼ Sparsityþ Safety

2

6. Oversampling.

newsamples ¼ [

Train the MLP classifier on X

for fc 2 filtered clusters:

generated samples ¼ [

while num generated samplesð Þ < fc num fcð Þ:
temp samples = SMOTE(fc, fc num fcð Þ � num generated samplesð Þ;K)
mintemp samples;majtemp samples MLP temp samplesð Þ
minweights 0:5 � minweights majtemp samplesð Þ
generated samples ¼ generated samples [ mintemp samplesf g
train the MLP classifier on X[ generated samplesf g

newsamples ¼ newsamples [ generated samplesf g
return newsamples
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4 Performance Evaluation Results

4.1 Comparison Algorithm

To verify the effectiveness of our proposed oversampling method, the unsampled model was selected as
the base model in the simulation, and three mainstream oversampling models, i.e., SMOTE [2], Borderline-
SMOTE [3] and KMeans-SMOTE [11], were selected for comparison.

SMOTE is the most classic oversampling algorithm. The basic idea is to analyze the minority samples
and artificially synthesize new samples based on the minority samples to add to the data set. Despite its flaws,
but due to its simplicity, it has a good performance on some data sets, and this oversampling idea is still
mainstream, derived from many variants of the algorithm; thus, it still plays an important role in
imbalanced learning.

Borderline-SMOTE is an improved SMOTE-based algorithm for boundary samples that uses only
minority samples on the boundary to synthesize new samples, thereby improving the class distribution of
the sample. The Borderline-SMOTE sampling process divides minority samples into three classes: safe,
dangerous, and noisy. Borderline-SMOTE uses only dangerous samples during oversampling.

KMeans-SMOTE is the latest improved SMOTE-based algorithm and has been widely used in recent
years. It uses the simple and popular k-means clustering algorithm combined with SMOTE oversampling
to rebalance the data set. It manages to avoid noise by oversampling only in safe areas. It differs from
related methods not only because of its low complexity but also because it generates samples based on
clustering distributions.

4.2 Data Set

Five imbalanced data sets resampled from KDDCUP99 are used in this paper. The data set comprises
nine weeks of network connectivity data collected from a simulated U.S. Air Force LAN. Two network
anomalies are included in the five imbalanced data sets extracted, and the numbers of both are very
imbalanced and suitable for the evaluation of imbalanced network traffic anomaly detection. We also use
part of the UNSW_NB15 data, a network data set for an intrusion detection system with a lower
imbalance rate but a larger sample size and more complex features. Tab. 1 Shows the information of data sets.

4.3 Performance Measures

Because this paper is oriented towards imbalanced network traffic data, some of the traditional indicators
used to evaluate network traffic anomaly detection are not applicable. This paper selects indicators that are
more suitable for evaluating the classification effect of imbalanced data sets. The positive samples in this
article are minority samples, and the negative samples are majority samples.

Table 1: Data sets used in the experiment

Datasets Instances Features IR

kddcup-buffer_overflow_vs_back 2233 41 73.43

kddcup-guess_passwd_vs_satan 1642 41 29.98

kddcup-land_vs_portsweep-names 1061 41 49.52

kddcup-land_vs_satan-names 1610 41 75.67

kddcup-rootkit-imap_vs_back-names 2225 41 100.14

UNSW_NB15 175341 44 2.13
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The evaluation indicators in this paper are first based on the four basic indicators TP, FN, FP and TN of
the confusion matrix. The recall rate represents how many of the samples judged to be positive are true
positive, the specificity rate represents how many of the samples judged to be negative are true negative,
and the accuracy rate indicates how many positive samples are judged correctly. This article focuses more
on the accuracy rates and recall rates.

Precision ¼ TP

TP þ FP
(8)

Recall ¼ TP

TP þ FN
(9)

Specificity ¼ TN

TN þ FP
(10)

On this basis, two three-level indicators, i.e., the F1-score and G-mean, commonly used in imbalanced
data sets, are introduced.

F1Score ¼ 2 � Precision � Recall
Precisionþ Recall

(11)

Gmean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Recall � Specificity

p
(12)

The F1-score integrates the results of the precision and recall. The values range from 0 to 1, with
1 representing the best model output and 0 representing the worst model output. The G-mean indicator
integrates the results of the output of the recall and specificity. The larger the G-mean value is, the better
the sample evaluation effect of the two categories.

The PR curve is a curve with two variables, i.e., precision and recall, where recall is the horizontal
coordinate and precision is the vertical coordinate. The model can be evaluated according to the size of
the area under the curve (AUC). The area is represented by the area under the precision-recall curve
(AUPRC), and the larger the AUPRC is, the better the model effect.

4.4 Results

To verify the effectiveness of the proposed algorithm in network traffic anomaly detection, two
classifiers commonly used in network traffic anomaly detection, i.e., the logistic regression (LR) and
simple Bayesian (BNB) classifiers, were selected, and both were implemented based on sklearn. These
two classifiers are widely used in classification applications and are easy to implement. The logistic
regression classifier assumes that the data obey the Bernoulli distribution. After maximizing the
likelihood estimation method, the gradient descent method is used to solve the parameters to achieve the
purpose of classifying the data. Bayesian classifiers are the classifiers with the smallest classification error
probability or the lowest average risk with a given cost. Its design method is a basic statistical
classification method. The classification principle is to calculate the posterior probability by using the
Bayesian formula through the prior probability of an object, that is, the probability that the object belongs
to a certain class, and to select the class with the largest posterior probability as the class to which the
object belongs.

Fig. 5 is a comparison of the AUPRC, F1-score and G-mean under the detection of the LR classifier for
different oversampling models. First, it is clear that the FSMOTE proposed in this paper achieves first place
on three of the five data sets, which shows that the proposed algorithm is more stable and better than the other
oversampling methods. Using the F1-score metric as an example, on the kddcup_BvsB data set, the
FSMOTE was better by 5%, 2%, and 3% over the original model, SMOTE, and Borderline-SMOTE,
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respectively, and tied with KMeans-SMOTE. On the kddcup_GPvsS data set, the FSMOTE was 4%, 2%,
2%, and 5% better than the original model, SMOTE, Borderline-SMOTE, and KMeans-SMOTE. On the
kddcup_LvsS data set, the FSMOTE was 5%, 2%, 2%, and 2% better than the original model, SMOTE,
Borderline-SMOTE, and KMeans-SMOTE. On the kddcup_LvsP data set, the SMOTE was 2% better
than the original model, SMOTE, KMeans-SMOTE, and Borderline-SMOTE in parallel. The other two
indicators show a similar pattern. Although KMeans-SMOTE and Borderline-SMOTE were able to
achieve similar performance to the FSMOTE on some data sets, neither of them performed as
consistently as the FSMOTE, presenting different results on the five data sets. In particular, this is
because KMeans-SMOTE itself requires more parameter tuning, which results in it being less stable than
the other models. The FSMOTE also adopts the FINCH clustering algorithm without parameter
adjustment and optimizes the oversampled sample size distribution after clustering, which improves the
stability from the results. However, it is also noted that on the kddcup_LvsP data set, all models achieved
the same results, suggesting that under partially extreme conditions, despite the imbalance of the data set,
there is essentially no need for further equilibrium adjustment and optimization because the classification
boundaries themselves are more obvious. Since the oversampling algorithm is specific to the data itself, it
is normal to have different outcomes for different data sets.

Figure 5: Comparison of the AUPRC, G-mean, and F1-score according to the LR classifier
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Fig. 6 shows the result of using the Bayesian classifier to verify the boosting effect of oversampling. As
shown, the FSMOTE algorithm proposed in this paper still achieves first place on three of the first four data
sets and is only slightly behind KMeans-SMOTE on the last data set. Because the three metrics present
similar rankings, we analyze them as F1-scores. On the kddcup_BvsB data set, a large gap emerged when
the Bayesian classifier was used for classification, with only Borderline-SMOTE and FSMOTE
maintaining similar detection effects to those achieved when the LR classifier was used. On the
kddcup_GPvsS data set, the other oversampling failed to achieve an effect boost, and only the FSMOTE
synthesized a valid sample, resulting in a 1% effective boost upon final classification. On the
kddcup_LvsP data set, the original model, Borderline-SMOTE and KMeans-SMOTE all achieved poor
detection and showed no improvements, while the FSMOTE was better than the SMOTE by 7%. On the
final kdcup_RlvsB data set, the FSMOTE and Borderline-SMOTE were compared side-by-side, being 4%
and 2% better than the original model and SMOTE, respectively, but slightly lower than KMeans-
SMOTE. Compared to the LR classifier in Fig. 2, the Bayesian classifier is more inclined towards the
majority class on the imbalanced data set and performs more erratically on different data sets; thus, in the
next simulation experiment, we chose the LR classifier and the UBSW_NB15 data set for further verification.

Figure 6: Comparison of the AUPRC, G-mean and F1-score according to the BNB classifier
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Fig. 7 shows a comparison of the indicators using the LR classifier and the UBSW_NB15 data set. The
FSMOTE still leads on all three metrics, suggesting that its synthesis quality is better than that of the other
samplers for the minority samples. Regarding the F1-score, network traffic anomaly detection via the
FSMOTE is 30% better than direct anomaly detection on the original data set, 10% better than
the SMOTE, and 1% better than Borderline-SMOTE and KMeans-SMOTE. Regarding the AUPRC,
the FSMOTE with the LR classifier was better by 2.4%, 2.3%, 0.7% and 0.1% over the original model,
SMOTE, Borderline-SMOTE, and KMeans-SMOTE, respectively, and ranked the same on the G-mean as
for the previous two metrics. The experiment further illustrates that the FSMOTE has a more stable
performance than that of the other models for network traffic anomaly detection data sets. Overall, the
oversampling methods have a certain enhancement effect on the imbalanced data set, but it is easier to
depend on the quality of the data set and the classifier model. The FSMOTE in this paper is more stable
and performs better under different data sets and classifiers. The reason for the improved performance of
the FSMOTE is that it avoids synthetic noisy data more effectively through clustering and data cleaning.
At the same time, because it refers to the minority sample position to give weight to it, it makes the
samples at the boundary easier to synthesize, that is, the minority and majority samples are clearer. Thus,
the effect on the logistic regression classifier is improved.

Figure 7: Comparison of the AUPRC, F1-score, and G-mean according to the LR classifier on UNSW_NB15
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In summary, the FSMOTE oversampling method proposed in this paper has better stability on an
imbalanced network traffic data set than do other comparison methods, avoids a certain degree of noisy
sample generation, ultimately improves the data set balance, adapts to common Bayesian and logistic
regression classifiers, and improves the logistic regression classifier even more.

5 Conclusions

Network anomaly detection plays a vital role in network operation and maintenance, but there is
inevitably an imbalance in the network traffic data. Specifically, the standard network data samples tend
to be more than abnormal, but the abnormal network data need to be identified. Therefore, to address the
problem of imbalanced network traffic data, we adopt the oversampling method to adjust, explore and
summarize the data according to the current oversampling method and propose a new oversampling
method, i.e., FSMOTE. The FSMOTE method first uses a parameter-free hierarchical clustering algorithm
based on the first nearest neighbor to cluster the samples and filter the clusters that need to be sampled.
Then, the FSMOTE assigns initial weights to the minority samples according to their sparsity and
security and continuously adjusts the weights and learns the synthetic sample information while cleaning
the synthetic samples with multi-layer sensors during oversampling. The method finally completes the
oversampling of the data set and improves the data balance. We verify that the data set processed by the
oversampling algorithm proposed in this paper can improve the classification effect of classifiers
commonly used for network anomaly detection, especially on minority samples.
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