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Abstract: The combustion of pulverized coal inevitably produces dust and other
harmful substances. For these reasons, the optimization of de-dusting procedure
and equipments is an aspect of crucial importance towards the final goal of mak-
ing this source of energy more sustainable. In the present work, the behaviour of a
“bag filter” is simulated using Computational Fluid Dynamics (CFD). More spe-
cifically, three possible approaches are used, differing with respect to the level of
fidelity and the partial utilization of empirical data. The outcome of these simula-
tions is mutually compared and finally discussed critically in the light of available
experimental results.
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1 Introduction

With the continuous development of the economy, the lives of people are changing with each passing
day and the demand for electricity is increasing [1]. Because of mature technology development, 200 MW
units will remain important thermal power plant units in the future. Furthermore, 200 MW units will remain
the main power source of many self-contained power plants [2]. However, the combustion of pulverised coal
inevitably produces dust and other harmful substances; in particular, 200-MW units produce a considerable
amount of dust during operation. Therefore, the dedusting equipment of the 200 MW units must be
investigated to reduce the harm to human health.

The common supporting dedusting equipment of the 200 MW units includes a cyclone deduster, an
electrostatic precipitator and a bag filter [3,4]. However, with the continuous improvement of the
emission standards, the cyclone deduster and electrostatic precipitator do not often meet the emission
requirements of particulate matter. The bag filter has attracted considerable research attention because of
its high efficiency for dedusting ultra-fine particles, large capacity for flue gas treatment and simple
installation and maintenance. However, during operation, the bag filter often affects the safe and
economic operation of the unit due to its high resistance. Therefore, it is important to rapidly, directly and
accurately analyse the overall resistance characteristics of the bag filters with the 200 MW units.

Many scholars have investigated the resistance generation mechanisms and control methods associated
with bag filters. Ma [5] analysed the damage and failure of the filter bags and determined the high
temperature of the flue gas, high NOx content of the flue gas and high injection pressure to be the main
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reasons for the increase in resistance. Kim et al. [6] determined that the effective filtration area of the pleated
filter bag is approximately 50%–60% compared with that of the circular filter bag. Rachid et al. [7]
investigated the influence of air humidity on the filtration performance of the bag filter and determined
that the increase in bag resistance of the filter can be mainly attributed to the capillary condensation of
water. Lu et al. [8] used two-phase flow to simulate the inside of the annular bag filter and determined
that the filter bag and the outer dust layer were the main sources of resistance; thus, the usage of the
annular bag had a positive effect on drag reduction. Park et al. [9] investigated the length of the bag filter
and concluded that the non-uniformity of the flue gas velocity in the bag along the axial direction will
increase rapidly when the length of the bag filter becomes greater than 10 m. Thus, the length of the bag
filter should be less than 10 m. In their research on dust removal using a bag filter, Andersen et al. [10]
proposed that reducing the throat diameter of the venturi jet pipe can reduce the reflux, improve the pulse
pressure, improve the jet into the filter bag and reduce the resistance that can be attributed to the dust
layer in the pulse jet dust bag filter. Nie [11] fabricated a ‘high-efficiency and low-resistance’ filter bag
with an ultra-fine glass fibre high-density surface layer, thereby reducing the overall resistance of the bag
filter to a certain extent. Geng et al. [12] designed the internal circulating electric heating system of the
bag filter similar to that of the waste incineration power plant, alleviating the condensation and acid
corrosion of the waste incinerator to a certain extent. Yin et al. [13] reported that the strength and
strength distribution of ash removal with respect to the same row of filter bags are affected by the
distribution of air momentum flux at the outlet of each nozzle and designed a spray pipe with improved
ash removal effect, reducing the thickness of the dust layer on the outside of the filter bag to a certain
extent and improving the overall drag reduction effect of the filter bag.

The internal velocity and pressure-field characteristics of the filter bag must be analysed because only some
studies have investigated simple numerical simulation methods with respect to the resistance characteristics of
the bag filter matched with the 200 MW unit. Based on the existing studies on the resistance generation
mechanisms and control methods, the usage of SolidWorks and computational fluid dynamics (CFD) has
been proposed to conduct numerical analysis and explore the global simulation method, local simulation
method and local simulation plus the refined empirical number method to predict the overall resistance of
the bag filter. Further, the methods that can be used to determine the overall resistance of the bag filter
of the 200 MW units rapidly and accurately are provided. These methods can be used as reference to
calculate the resistance of the bag filters matched with other capacity units.

2 Bag Filter and its Theoretical Introduction

2.1 Bag Filter
In the 1950s, the world was dominated by electrostatic precipitators. However, in the 1970s, with the

increasingly strict requirements of some developed countries for environmental protection, the bag filter
was widely utilised by all the countries in the world because of its high dust removal rate in case of ultra-
fine particles.

The overall pressure loss (overall resistance) of the bag filter is an important index based on which its
performance can be evaluated [14,15]. The greater the overall pressure loss, the greater will be the energy
consumption of the induced draft fan. Thus, the overall pressure loss is also an index that can be used to
measure the energy consumption and operating cost of the dedusting equipment [16].

The analysis of the overall resistance of the bag filter is commonly divided into calculation, simulation
and testing. During calculation, the number of filter bags, permeability coefficient, specific operating time,
flue gas concentration, fibre layer thickness of the filter bags and other data must be determined and
substituted into the empirical formula to obtain results. However, the economics of this method is poor.
When simulating the numerical values, the overall model of the filter, internal filter bags and other fine
structures must be established. The simplified method involves division into a large number of grids, with

1192 FDMP, 2020, vol.16, no.6



small fault tolerance and low efficiency. During the test, considerable manpower and material resources have
to be invested during the field survey because the test bag filters are often located far from each other. Thus, it
is difficult to ensure timeliness and feasibility. To determine the overall resistance of the bag filter of the
200 MW units and save calculation resources, two methods have been proposed to analyse the resistance
of the bag filter, including the simulation of a single filter bag and its shell and that of a single filter bag
along with the experience value, which can save time and calculation resources.

2.2 Porous Media Model
In real life, the problem of porous media is often encountered, which is characterised by several

geometric gaps. It is difficult to establish a real-life geometric model. This type of problem is usually
simplified in CFD. The porous area is always simplified as a fluid area with increased resistance source,
and the control equation is simplified as the momentum sink related to velocity [17,18]. The control
equation can be expressed as follows:

Si ¼ �
X3
j¼1

Qijlvj þ
X3
j¼1

Cij
1

2
q vj jvj

 !
(1)

where Si is the source term of the momentum equation in the I (x, y, z) direction, μ is the dynamic viscosity
(Pa·s), |v| is the velocity (m/s) and Qij and Cij are the specified matrices. The first and second terms on the
right side of the formula are the viscosity loss term and the inertia loss term, respectively.

In case of uniform media, the equation expressed in Formula (1) can be rewritten as follows:
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a
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where α is the permeability (D), C2 is the inertial resistance coefficient and the matrixQ in Formula (1) is 1/α.

The momentum sink acts on the fluid to produce a pressure gradient DP ¼ �SiDn where Δn is the
thickness of the porous medium.

3 Simulation Schemes of the Bag Filter

3.1 Scheme 1: Global Simulation Method
The bag filter matching unit #1 in a self-owned power plant is considered as an example. The filter bag in

the equipment is blocked, hardened, corroded and damaged owing to air leakage and poor coal quality, which
reduces the dedusting efficiency and increases the pressure loss, affecting the operational safety of the unit.

The structure and size of the matched bag filter are presented in Tab. 1. A complete model is built via
SolidWorks by considering a 1:1 ratio. The actual appearance and model structures are shown in Fig. 1. A
rectangular ‘bell mouth’ is installed at the inlet of the bag filter, and the pressure-measuring point A is located
at the intersection of the diagonal (the red dotted line in Fig. 1) of the rectangular section. The flue gas flows
through the Z-shaped air inlet pipe to enter the shell of the bag filter. The shell of the bag filter is divided into
four chambers, numbered from the inlet as the first to fourth dedusting chambers. The dedusting chamber
contains a rectangular tubesheet. The pressure-measuring point B is located at the intersection of the
diagonal (blue dotted line in Fig. 1) of the tubesheet, and the pressure-measuring point C is located at
the intersection of the diagonal (yellow dotted line in Fig. 1) of the rectangular section of the outlet. The
static pressure difference between points A and C is approximately the difference between the static
pressures of the inlet and outlet.
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A high-performance computer with the Opteron 6174 central processing unit (CPU) is used to divide the
grid based on the mesh module in Workbench 16.0. The data shown in Tab. 1 are used to verify the
independence of the grids. In Tab. 1, when the number of grids is greater than 9.804 × 106, the resistance
values of the inlet and outlet remain almost unchanged at the BMCR point. Thus, the number of grids
used is approximately 9.8 million.

Then, the model is imported into Fluent, and the gravitational acceleration is set as 9.81 m/s2. The
laminar model is selected when the resistance loss along the way is ignored.

The value of U of the unit is between 0.8 and 0.9 m/min under half-load conditions at the BMCR point.
After calculating the hydraulic diameter based on the data of the rectangular section of the bag filter with the
approximate rectangular channel shown in Tab. 2, the hydraulic diameter is substituted into the Reynolds
number (Re) expressed in Formula (3). When the Re of the bag filter is between 1,925.3 and 2,166.04, a
laminar flow can be observed. The governing equations of the laminar model include the mass
conservation equation (Formula (4)) and the energy conservation equations (Formulas (5–7)) [19,20].

Regardless of the influence of ash cleaning, the overall resistance of the filter bag and the dust layer after
stable operation is converted into the internal porous zone. According to Formulas (1) and (2), the viscous
and inertial resistance coefficients are D ¼ 4:84� 106 and C2 ¼ 5:57, respectively. Finally, based on the
commonly used numerical simulation methods [21,22], the standard wall is selected, the velocity inlet,
pressure outlet and standard initialisation are set and the convergence is iteratively calculated to be
approximately 40 h.

Table 1: Grid independence test of the bag filter

Grid density 7.456 × 106 8.504 × 106 9.439 × 106 9.804 × 106 10.106 × 106 10.374 × 106

Resistance of the inlet
and outlet (Pa)

2785.43 2919.42 3257.33 3385.4 3385.4 3385.3

Figure 1: Appearance and model of the bag filter

Table 2: Bag filter structure and size

Bell
mouth/
mm

Total length of
the Z-type
pipeline/mm

Front length of
the Z-type
pipe/mm

Back length of
the Z-type
pipe/mm

Z-type
entrance
angle/°

Single chamber
of the bag filter/
mm

Bottom length
of the ash
hopper/mm

Ash
bucket
angle/°

Number of
filter rooms/
each

Entrance/
mm

4700 ×
3500

6600 3170 970 120 5040 × 4695 ×
8300

1970 69 4 4700 ×
3500413 3500
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where U is the flue gas filtration speed, m/s; L is the equivalent diameterm; V is the kinematic viscosity, m2/s;
ρ is the density, kg/m3; u, v and w are the components of filtration speed in the x, y and z directions, m/s and P
is the pressure on the fluid microelement, Pa.

The simulation results of the static pressure difference between point AB, inlet and outlet under the three
aforementioned conditions are shown in Fig. 2.

3.2 Scheme 2: Local Simulation Method
The global simulation must be fully modelled, and a large number of grids must be divided. At the same

time, the calculation associated with the global simulation is time-consuming and laborious. The local
simulation method is adopted to simplify the simulation process and save time, i.e., only a single filter
bag and its shell are modelled based on the real object. The total resistance can be obtained by adding the
simulated pressure difference of a single filter bag and its shell under the corresponding working
condition. The total resistance can be expressed as follows:

Figure 2: Statistics of the global simulation of the static pressure difference
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P ¼ npB þ pS (8)

where n is the number of filter bags, pcs; pB is the differential pressure of a single filter bag, Pa and pS is the
differential pressure of the shell, Pa.

The frictional drag is small, only (approximately 5.52 × 10−4 to 4.36 × 10−4 Pa). When the bag filter is
running, Re is 1,925.3–2,166.04, the flue gas is in laminar flow and the friction resistance and differential
pressure resistance on the leeward side of the filter bag can be ignored. The resistance from the inside of
the filter bag to the outlet is less than that from the leeward side, and the bottom section is small. Thus,
the following simplified assumptions can be obtained.

1) The filter bag used in the bag filter will not deform during operation.

2) The resistance loss along the way is ignored.

3) During operation, the flue gas is in laminar flow and the flow resistance is ignored.

4) The normal velocity of flue gas at the bottom and leeward side of the filter bag approaches 0, i.e.,
@v

@u
! 0.

5) After the stable operation of the unit, the thickness of the dust layer on the outside of the filter bag
remains unchanged.

The simplified hypothetical process of the flue gas flowing through the filter bag is shown in Fig. 3A.
The internal part of the filter bag is considered to be the porous media area. After the grid independence test
(Tab. 3), approximately 1.5 × 104 grids are selected for the simulation; the remaining settings remain
unchanged. The velocity plot of the axial section of the simulated filter bag is shown in Fig. 3B, and the
static pressure plot is shown in Fig. 3C. The pressure differences between the inlet and outlet of a single
filter bag are 0.646, 2.215 and 2.592 Pa under the half-load, full-load and BMCR conditions, respectively.
Because there are 944 filter bags in the bag filter, the total resistance between the inlet and outlet of the
bag filter is calculated using Formula (8) and determined to be 609.82, 2090.96 and 2446.85 Pa under
half-load, full-load and BMCR conditions, respectively.

Further, the shell of the bag filter is modelled. Approximately 3 million grids are selected after the grid
independence test (Tab. 4). Then, the laminar model is used again to calculate the pressure difference
between point AB, inlet and outlet under the BMCR, full-load and half-load conditions. The plots of
velocity and static pressure at the BMCR point are shown in Fig. 4.

The flue gas mainly affects the second dust collection chamber at the lower part of the shell. The
resistance of the second and third chambers of the bag filter is large, which is the same as that observed
with respect to the flow characteristics of the simulation using Method 1. The total resistance of the bag
filter can be obtained using Formula (8) (Tab. 5).

The statistics show that the total simulation time of this method is only approximately 10 h and that the
occupancy rate of the CPU is 30%–50%.

3.3 Scheme 3: Local Simulation Plus Refined Empirical Number Method
To satisfy the requirements of practical engineering prediction, a local simulation method is used to

simulate the pressure difference of a single filter bag, which is multiplied by the total number of filter
bags and added to the empirical number of the resistance of the shell of the bag filter matched with the
200-MW units. Thus, the total resistance can be approximately obtained.

Under normal conditions, the resistance of the shell of the bag filter is approximately considered to be its
structural resistance. This generally includes the local resistance of the inlet and outlet, the frictional drag and
the local resistance of the guide and baffle plates in the ash hopper. Generally, the resistance is between
200 and 500 Pa [23,24].
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Figure 3: Schematic of the filter bag and its simulation

Table 3: Grid independence test of the filter bag

Grid density 10.23 × 104 13.37 × 106 15.24 × 106 17.01 × 106 18.074 × 106

Resistance of the inlet and outlet (Pa) 2.431 2.590 2.592 2.592 2.592

Table 4: Grid independence test of the shell

Grid density 2.48 × 106 2.88 × 106 3.07 × 106 3.24 × 106 3.51 × 106

Resistance of the inlet and outlet (Pa) 518.89 527.11 558.94 558.94 558.94

Figure 4: Plots of the shell velocity and static pressure at the BMCR point
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Eight representative bag filters of thermal power plants are selected as the test samples to further refine
the empirical values of the shell resistance of the supporting bag filter of the 200-MW unit, and the units of
these eight power plants are 200 MW.

The resistance (static pressure difference) of the shell was measured at the half-load, full-load and
BMCR point according to GB 5468-1991 and GB/T 13931-2017 after the filter bag was removed using
the TH880W microcomputer smoke (flue gas) parallel sampling instrument.

Then, the scatter plot is developed using the experimental data (Fig. 5). As shown in Fig. 5, only some
data points can be observed outside the two dashed lines. In contrast, the data points are dense inside the two
dashed lines. Therefore, after eliminating the data points outside the dashed lines, the shell resistance of the
bag filter of the 200 MW unit is generally between 368 and 588 Pa. Thus, the refined range is reduced by
26.7% when compared with the original empirical values.

According to Formula (8), the value range of pS is replaced by 368–588 Pa, the numerical simulation and
calculation can be completed in 1 h and the CPU utilisation rate is not more than 18%. The value range of the
total resistance P between the inlet and outlet under half-load, full-load and BMCR conditions can be
obtained via simulation and calculation. The ranges of the total resistance under half-load, full-load and
BMCR conditions are 977.82–1197.82, 2458.96–2678.96 and 2814.85–3034.85 Pa, respectively.

4 Comparative Verification Analysis

4.1 Method 1 and Actual Measurement
The resistance test value of the bag filter under half-load, full-load and BMCR conditions is compared

with the global simulation value to verify the feasibility of the overall model (Fig. 6). According to the data

Table 5: Local simulation of the total resistance of the bag filter

Conditions Half-load condition Rated-load condition BMCR condition

Resistance of the point AB (Pa) 877.86 2519.52 2907.75

Resistance of the inlet and outlet (Pa) 891.52 2600.25 3005.79

Figure 5: Distribution of the resistance of the shell of the bag filter
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analysis presented in the figure, the deviation between the simulation result and the actual measured value is
less than 9.1%, verifying the feasibility of the construction of the overall model [25–27].

4.2 Comparison of Different Methods
Fig. 7A presents the comparison of the value obtained using the local simulation method (Method 2) and

the actual measured value. Fig. 7B shows the comparison of the value obtained using the local simulation
plus refined empirical number method (Method 3) and the actual measured value. Fig. 7A shows that the
simulated value obtained using Method 2 is slightly smaller than the actual measured value under the three
working conditions regardless of point AB or the resistance between the inlet and outlet and because the
overall resistance loss along the way and the disturbance resistance between the filter bags are ignored, and
the maximum error is only 10.2%. Therefore, the correction coefficient ε is defined as the error caused by
neglecting the secondary resistance when simulating a single filter bag and its shell. The value range of ε is
from 5.7% to 10.2%. Thus, Formula (8) can be optimised and rewritten as Formula (9), and more accurate
overall resistance values can be obtained using Formula (9) after simulation.

Figure 6: Statistics of the global simulation of the resistance of the bag filter and the measured value

Figure 7: Statistics of the local simulation of the resistance of the bag filter and the measured value
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P ¼ 1þ eð Þ � npB þ pSð Þ (9)

When using Method 3, only the pressure between the inlet and outlet can be obtained because the refined
empirical values correspond to the shell of the bag filter. As shown in Fig. 7B, Method 3 can only be used to
estimate the overall resistance of the bag filter in a wide range. However, because the empirical value is
refined, the error range with respect to the resistance range and the actual measured value is kept below
17%, which satisfies the requirements of practical engineering prediction [28,29].

The comparison of the three methods demonstrates that the results of Method 1 are the most accurate;
however, its complexity and consumption of time and calculation resources are the highest. Method 3 saves
the most time and calculation resources by adding the refined experience value and the local simulation
value; however, a large error is associated with its results. Thus, Method 3 is only applicable to practical
engineering estimation. In Method 2, the maximum error is greater by only 1.1% when compared with
that in Method 1; furthermore, its required time and calculation resources are relatively small. Thus,
Method 2 is the optimal approach.

4.3 Analysis of the Internal Flow Field of Different Filter Bag Sizes
The ratio of the length of the filter bag to the radius is defined as the length–diameter ratio to reduce the

resistance of the filter bag and the overall resistance of the bag filter. Using the original filter bag (65 ×
8065 mm), only a single filter bag with different length–diameter ratios is simulated using Method 2.
Because of the limitation of the overall size of the actual bag filter, the maximum filter bag radius can be
increased by four times and the length–diameter ratio can be decreased by 2.25, 46.25, 912.25 and
14 times when maintaining the filtering area constant. The simulation is conducted under the most
representative BMCR condition. Fig. 8 shows the plots of the static pressure and velocity of the shaft
centre of the filter bag. In the figure, the upper part is the outlet, the lower part is the bottom of the filter
bag, the right side is the windward side (inlet) and the left side is the leeward side. The static pressure
plot shows that the pressure difference decreases with the decreasing length–diameter ratio. When the
length–diameter ratio is decreased by nine times, the variation of the static pressure difference can no
longer be distinguished at the same scale. Thus, the variation of the static pressure difference becomes
small after the scale is reduced again. The velocity plot shows that with the decreasing length–diameter
ratio, the rate of velocity change decreases and the tip of the velocity centre tends to become negligible.

Figure 8: Plots of the static pressure and velocity of the filter bag
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Therefore, the service life of the filter bag must be improved and the blowing damage and deformation
associated with the cage must be prevented to reduce the resistance that can be attributed to the filter bag of
the bag filter. The smaller the length–diameter ratio of the filter bag, the more will be the internal flow field,
the lower will be the resistance, the fewer will be the velocity centres and the longer will be the service life of
the filter bag.

5 Conclusion

A single bag is simulated via CFD to simplify the numerical simulation of the overall resistance of the
bag filter and analyse the characteristics associated with the velocity and pressure fields of the filter bag. The
local simulation method and the local simulation plus refined empirical number method are proposed, and the
following conclusions are obtained.

1. In Method 1, the error associated with the simulation of the bag filter is less than 9.1%. However, it is
a time-consuming and laborious method.

2. In Method 2, a single filter bag is simulated locally and the resistance value of the shell is also
considered. The obtained result is less than the real value, and the error is less than 10.2%.

3. The modified coefficient ε is 5.7%–10.2%; therefore, the results of the local simulation method
(Method 2) are more accurate than those of the remaining methods.

4. The refined empirical values associated with the shell of the bag filter matched with the 200-MW
units are generally between 368 and 588 Pa. The value range is decreased by 26.7% when
compared with the common empirical value.

5. When a single filter bag is simulated locally and the refined empirical value is added, the overall
resistance error becomes less than 17%, which can satisfy the requirements of practical
engineering prediction.

6. Under identical conditions, the smaller the length–diameter ratio of the filter bag, the more even will
be the internal flow field, the lower will be the resistance and the longer will be the service life of the
filter bag.
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