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ABSTRACT

Horizontal axis wind turbines are some of the most widely used clean energy generators in the world. Horizontal
axis wind turbine blades need to be designed for optimization in order to maximize efficiency and simultaneously
minimize the cost of energy. This work presents the optimization of new MEXICO blades for a horizontal axis
wind turbine at the wind speed of 10 m/s. The optimization problem is posed to maximize the power coefficient
while the design variables are twist angles on the blade radius and rotating axis positions on a chord length of the
airfoils. Computational fluid dynamics was used for the aerodynamic simulation. Surrogate-assisted optimization
was applied to reduce computational time. A surrogate model called a Kriging model, using a Gaussian correlation
function along with various regression models, was applied while a genetic algorithm was used as an optimizer.
The results obtained in this study are discussed and compared with those obtained from the original model. It was
found that the Kriging model with linear regression gives better results than the Kriging model with second-order
polynomial regression. The optimum blade obtained in this study showed better performance than the original
blade at a low wind speed of 10 m/s.
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Nomenclature

C Chord length
Cm Torque coefficient
Cp Power coefficient
Fax Axial force
R Rotor radius
U∞ Wind velocity
f Objective function (Obj. func.)
r Radius position on blade
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x Rotating axis point on a chord length
τ Torque
ω Rotation speed
θ Twist angle
λ Tip speed ratio

1 Introduction

Wind power is a clean and renewable energy resource which affects the environment less than
fossil fuels, biomass, gas, etc. Wind power is obtained from the air flow by driving wind turbine
blades connected to an electric generator. In wind turbine operation, complex loads on the blade
sections vary the magnitude and direction of the aerodynamic forces. The structural blade design
is cumbersome and intricate, which affects cost and experimental time. In recent years, for the
wind turbine blade or other propeller sections, the design process, cost and time were reduced
due to technological advancement. A computational fluid dynamics (CFD) code was rapidly
developed to study the blade extensively. In addition, an optimization method with surrogate
models was applied to improve the increase for design efficiency of runner blades. Surrogate
models, the Kriging (KG), polynomial response surface (PR) and artificial neural network (ANN)
are popularly used to evaluate the objective function of given design variables such as blade
performance, etc.

Thus, this work applies CFD simulation by coupling an optimization method with a KG
model. A genetic algorithm (GA) was employed to search the optimal design of a wind turbine
blade. New design parameters that have never been studied in previous work are the main focus
of this work. A MEXICO blade is modified to have twist angles along the propeller radius and
rotating axis positions on a chord length of the airfoils to maximize the power coefficient.

2 Literature Review

CFD is a popular computational technique applied for studying the fluid flow on blade
structures of a wind turbine due to the results obtained from the CFD being comparable with
real experiment in the wind tunnel. The blade performance of wind turbines has been investigated
by means of CFD simulations to find torque, power, aerodynamic load, thrust coefficient, power
coefficient, and efficiencies. Castelli et al. presented a 2-D CFD analysis of a three-bladed Darrieus
rotor that used the DU91-W2-250 airfoil. CFD simulations with Realizable k-ε model using a
finite volume method was applied to calculate rotor torque and power curves of the blade [1].
Aerodynamic load on a two-bladed rotor using 2-D CFD simulation has been investigated.
Turbulence models, the standard k-ε, the RNG k-ε, the Realizable k-ε and the Shear Stress
Transport (SST) k-ω were used to solve while the results obtained from the experiment and CFD
are compared. It is shown that good agreement of both [2] computational and experimental
results is obtained. Kutty et al. [3] studied a small-scale propeller to find the thrust coeffi-
cient, power coefficient, and efficiencies using 3-D CFD with a standard k-ω turbulence model.
A three-bladed pivoted vertical axis Savonius wind turbine has been simulate using the SST k-ω
turbulence model to study the effects of adding end plates and the rotor aspect ratio on the
turbine torque and power coefficients. The result led to a rotor with an aspect ratio of 2.0 while
adding end plates results in a 31% increase in the maximum power coefficient of the turbine [4].
In studying the impact of thickness to chord ratio on the aerodynamic performance of a three
bladed asymmetrical blade vertical axis wind turbine, 2-D unsteady CFD simulation was used.
The results show that the aerodynamic performance dropped at a high thickness to chord ratio [5].
The UO-17-LDA airfoil was simulated at different angles of attack to increase the performance of
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a vertical-axis wind turbine using CFD analysis [6]. The work of Tabatabaei et al. studied CFD
simulation using standard k-ε, Shear Stress Transport (SST) model and a sophisticated model
Scale-Adaptive Simulation (SAS)-SST to investigate the capability of turbulence models at design
and off-design conditions. The wind turbine was simulated to analyze the loads coefficients and the
wake behind the rotor. The result was illustrated which gave both design and off-design speeds [7].
Investigation of the optimal wind utilization efficiencies of eight-blade for Savonius vertical axis
wind turbine show that it is a function of blade width, blade installation, and rotor speed under
various inlet wind speeds. CFD simulation with k-ω SST turbulence model was employed in the
processing. Simulation results presented the optimal wind energy utilization efficiency and rotor
speed, which increase almost linearly with the inlet wind speed. Moreover, the eight-blade Savonius
rotor was modified with the diameter of 4 m in the range of wind speed from 6 to 10 m/s [8].
In addition, CFD simulation was applied to study the effects of wind direction, solidity, airfoil,
and building configurations to assessment of an aerodynamic performance of building augmented
straight-bladed vertical axis wind turbine [9].

Optimum design of the wind turbine blade based on CFD analysis and surrogate models has
also been carried out. For example, Zahle et al. [10] proposed an optimization design of a wind
turbine using CFD analysis and a response surface model. The optimization problem is posed
to minimize the annual energy production ratio whereas the design variables include tip region
with respect to chord, twist, and blade length extension. Acar [11] also presents optimization of
Risoe wind turbine blades using CFD analysis and a second-order response surface model. The
optimization problem in this work attempts to minimize the mass of the wind turbine blade while
the design variables are the chord and twist distributions. Other wind turbine design based on
CFD and surrogate models are demonstrated in [12,13], while some of the other surrogate models
used for wind turbine blade optimization in the literature include the KG model [12] and artificial
neural networks (ANN) [13].

In the literature, optimization of wind turbine blades using CFD and surrogate models has
been reported by researchers worldwide. Several surrogate models have been applied to several
optimization design problems related to wind turbines, such as those found in [10–13]. However,
for a particular wind turbine that has never been studied by means of optimization, it is inter-
esting to apply such an engineering tool to redesign it. Therefore, in this work, optimization of
a MEXICO horizontal axis wind turbine (HAWT) blade for low speed wind is carried out based
on using CFD and a surrogate model. The optimization problem is posed to maximize the power
coefficient while the design variables are the twist angles on the propeller radius and rotating axis
positions on a chord length of airfoil. CFD is used for aerodynamic calculation. Surrogate-assisted
optimization is applied to reduce computational time. The surrogate model called the Kriging
model along with its various Gaussian correlation models, is applied while a genetic algorithm is
used as an optimizer. The performance of various Gaussian correlations of the Kriging model is
investigated and optimum results are obtained in this study.

3 Formulation of the Optimization Problem

3.1 Optimization Problem
An optimum design problem related to a HAWT blade is posed. Twist angles on the propeller

radius and the rotating axis point on a chord length of airfoil sections were determined in order to
maximize the power coefficient of the turbine blade. The optimization problem can be expressed
as follows:

Max: f (x)=Cp (1)
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Subjected to

0≤ θ1 ≤ 30

0≤ θ2 ≤ 8.3

0≤ θ3 ≤ 5.5

0≤ x≤ 30%C

where x= {θ1, θ2, θ3,x} is a set of design variables while f is the objective function of the power
coefficient Cp. The variables θ1, θ2 and θ3 are the twist angles on the r/R ratios at 0.12, 0.4, and
0.56, respectively. x is the rotating axis position of all airfoil sections. The power coefficient is
solved from the following equation:

Cp (θ1, θ2, θ3,x)= λCm(θ1, θ2, θ3,x) (2)

where Cm(θ1, θ2, θ3,x) is the torque coefficient which can be obtained from aerodynamic analysis
using CFD. λ is the tip speed ratio (TSR), as shown in the relationship

λ=ωR/U∞ (3)

where ω is the rotation speed of the wind turbine, R is the rotor radius, and U∞ is the
wind velocity.

3.2 Computational Fluid Dynamics Analysis of HAWT Blade
The HAWT of the MEXICO project consisted of three blades with 4.5 m diameter, a pitch

angle of −2.31◦, and a rotation speed of 424.5 rpm. The MEXICO blade included three airfoil
sections, i.e., DU91-W2-250, RISØ-A1-21, and NACA 64-418. The blade profile is presented on
the experiment database of the HAWT [14–17]. Thus, this work studies the optimal twist angles
and rotating axis positions of the MEXICO HAWT blades by increasing the power coefficient.
The twist blade angles are a new design with the DU91-W2-250 airfoil at r1 and r2 positions. At
the r3 position, the RISØ-A1-21 airfoil is used. The positions, namely r1, r2 and r3, are defined
on the r/R ratios at 0.12, 0.4, and 0.56 respectively. For the NACA 64-418 airfoil, the twist blade
angle is still in its original form. The rotating axis position is designed for all airfoil sections. The
design variables are presented as shown in Fig. 1.

r1
r3

r2

c

x/c

Y

Xθ

Rotating axis
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(b)

Figure 1: Design variable positions
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The selected turbulence model is the k-ε (RNG) model to predict the air flow on and around
the HAWT rotor. According to Bouhelal et al. [18], this was revealed to be the best model for
simulation of the HAWT at low wind speeds and high wind speeds. Based on this assumption, in
order to solve the air flow on and around the HAWT rotor in this work, simulation using steady-
state incompressible flow was used, considering the conservation rules of mass and momentum
rather than the rules of energy conservation. The fluid properties of the air used are a density of
1.225 kg/m3 and a viscosity of 1.7894× 10−5 kg/m-s.

The boundary conditions are defined on the inlet wall as a velocity of 10 m/s and static
pressure at the outlet wall. The runner blade is assigned to the moving wall and the others to the
stationary wall. Air flow domains are consistent in the two domains. The first domain is defined
as stationary while the second domain is defined as the moving reference frame with a domain
radius of 3 m at a rotating speed of 424.5 rpm. The interface function is applied both between
the first and second domains. Thus, the CFD simulation wind tunnel is sufficiently extended to
decrease the effect of fluid flow in the region of the runner blade by calculating the actual force.
The wind tunnel is defined as 15 D from upwind to downwind with a width and height of
10 D, as shown in Fig. 2, in which D is the diameter of the runner blade. The solution uses the
SIMPLE algorithm to analyze velocity–pressure coupling. Momentum, turbulent kinetic energy,
and turbulent dissipation rates are computed using the second-order upwind scheme. The residual
values are defined as 10−5.

Figure 2: Wind tunnel of CFD simulation

Figure 3: Meshing 3D around a HAWT blade
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Fig. 3 shows that the mesh used is an unconstructed tetrahedron in a fluid domain around a
HAWT blade. This is due to the model unconstructed tetrahedrons being simple for meshing the
blade surface that is complex and twisted. The first layer of thickness of meshing on the runner
blade surface was a height of 10−5 m for five of the maximum layers. The mesh varies the density
in the range of 6.7–12.2 million elements to validate the accuracy of the numerical results with the
torque, as shown in Fig. 4. The torque values had an uncertainty of ±0.3% with a mesh density
in the range of between 9.7 and 12.2 million elements. Thus, in order to reduce the uncertainty
of the numerical results and to reduce CFD running time, the mesh quality was selected to be
optimal at 9.7 million elements.
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Figure 4: Mesh validation on torque results

Moreover, the numerical results of the CFD simulation were compared with experimental
results of the MEXICO project, as shown in Fig. 5. The MEXICO project experimented on a
three-blade rotor wind turbine of 4.5 m diameter which was tested in a 9.5×9.5 m2 open section
of the German Dutch wind tunnels. The experiment results presented a great variety of operating
conditions in the pattern of blade pressure distributions, loads, and flow fields. Works on the axial
force and torque of wind turbines and relevant databases [14–17] on operating at wind speeds
of 10, 15, and 24 m/s were used to investigate the CFD results. The overall results of our CFD
simulation were shown to be consistent and in the same direction as the experiment. The CFD
results were compared with the experiment and both had an error value revealed by averaging the
torques of 0.8% and 0.58% to obtain the axial force. Thus, the CFD simulation using k-ε (RNG)
turbulence model was applied to simulate a wind turbine for this work operating at a wind speed
of 10 m/s which gives the result with low error compared to the experiment.
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Figure 5: CFD validation results



CMES, 2021, vol.126, no.1 267

4 Surrogate-Assisted Optimization

In this work, surrogate-assisted optimization was used for optimization of a HAWT blade
because aerodynamic analysis based on CFD is time-consuming and the optimization required
numerous objective function calculations. Surrogate-assisted optimization can be done such that
sampling points are initially generated throughout a design domain by using a design of exper-
iment method. Then, the objective and constraint function values of all sampling points were
calculated based on the numerical simulation or actual function evaluations. In this work, the
actual function evaluations were calculated based on the CFD. Thereafter, the models for esti-
mating objective and constraint functions were constructed and the optimization was performed
based on the constructed surrogate model. Finally, the actual objective function of the optimal
result obtained from optimizing a surrogate model was calculated.

Algorithm 1: Surrogate-assisted GA optimization
Input: Ns, Number of iteration (G), Population size (Np)
Output: Optimum values; fbest and xbest
Surrogate model construction
1. Perform OLHS for generating a set of sampling points S= {x1, . . . ,xN}
2. Evaluate real objective function value for each sampling point f = {f1, . . . , fN} based on CFD
3. Construct surrogate model using the Kriging model.

Optimization by GA
4. Initialized a set of solutions and evaluate objective function value based on the constructed

Kriging model
5. For iter= 1 to G
6. For i= 1 to Np
7. Select parent solutions based on roulette wheel
8. Perform GA crossover
9. Perform GA mutation

10. End
11. Find the best solution
12. End
13. Evaluate real objective function value of the best solution based on CFD.

In this work, an optimum Latin hypercube sampling (OLHS) developed by [19] was used.
The number of sampling points was set to be 16. The Kriging model was used as a surrogate
model. Two Kriging models were constructed using a Gaussian correlation function with a linear
and second-order polynomial regression models, denoted as, Kriging-linear and Kriging-Second
order [20]. In addition, a genetic algorithm (GA) was used as an optimizer. The GA is used to
solve the problem based on the two constructed Kriging models for 10 optimization runs while
the population size (Np) and number of iterations (G) are set to be 50 and 400, respectively. The
overall surrogate assisted optimization procedure used in this study is given in Algorithm 1.

Tab. 1 shows the 16 sampling points generated by OLHS. The design variables include the
twist angles and rotating axis positions on a MEXICO HAWT blade, as explained in Section 3.1.
The lower and upper bounds of twist angle (θ1, θ2, θ3) are defined based on studies by Plaza
et al. [14], and Boorsma et al. [17] which were set to be about ±30% of θ1, ±14% of θ2, and ±10%
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for θ3 from the original form while the lower and upper bounds of the rotating axis position were
defined in the range of 0–30% of chord length (C).

Table 1: Sampling of four design variables

Sampling design Design variables

Sampling points Twist angles [degree] %C

r1 r2 r3

1 17.38 6.28 4.27 29.6
2 12.13 6.45 4.74 11.6
3 10.94 7.23 4.57 6.5
4 19.77 7.73 4.88 10.5
5 12.63 6.85 4.71 27.8
6 14.19 7.35 4.34 15.7
7 10.22 7.44 4.36 23.9
8 13.29 6.10 4.99 3.4
9 15.75 6.93 4.49 8.4
10 14.88 7.97 4.44 0.4
11 15.13 6.73 4.18 21.6
12 11.54 6.56 4.96 19.2
13 19.06 7.08 4.63 4.2
14 18.53 6.15 4.11 14.0
15 17.63 7.85 4.80 18.4
16 16.38 7.60 5.08 25.7

5 Results and Discussion

After performing CFD analyses of all the sampling points, as shown in Tab. 1, the torque
(τ) and torque coefficient (Cm) obtained are shown in Fig. 6. The figure shows variations of the
torques and torque coefficients obtained from the sampling points which mean that the sampling
points are well distributed. After that, the power and power coefficients were calculated as shown
in Fig. 7. After constructing two Kriging models (with a linear and second-order polynomial
regression models) based on the power coefficients obtained from all the sampling solutions,
optimization is performed using GA for 10 optimization runs while the results are shown in
Tabs. 2 and 3. Tabs. 2 and 3 show optimum results obtained from GA based on using Kriging-
linear model and Kriging-second order model respectively. From the tables, the optimum results
from both Kriging-linear and Kriging-second order models are consistent meaning that GA can
reach the same or close to the same optimum solution for all runs. The approximated power
coefficients at the optimum points obtained from using the Kriging model with a linear and
second-order polynomial regression models are 0.00590 and 0.0123, respectively.

Since there is no variation between the optimum results obtained from 10 runs, an optimum
set of design variables from both the Kriging-linear model and the Kriging-second order model
are used for real objective function evaluations (CFD simulations) and compared with the original
design as reported in the Tab. 4. After performing real objective function calculation based on
CFD, the real values of the power coefficient at the optimum points obtained using the Kriging
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models with a linear regression and second-order polynomial regression are found to be 0.00594
and 0.00559 while the errors between the approximate values and real values are 0.67 and
54.55, respectively. This implied that the Kriging model using the linear regression gives a better
estimation error than the Kriging model which uses the second-order polynomial regression.

(a)

62.00

64.00

66.00

68.00

70.00

72.00

74.00

0 2 4 6 8 10 12 14 16 18

τ
 [

N
m

]

Sampling points

0.00050

0.00052

0.00054

0.00056

0.00058

0.00060

0 2 4 6 8 10 12 14 16 18

C
m

Sampling points

(b)

Figure 6: (a) Torque. (b) Torque coefficient
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In addition, when comparing the results with the original model and the best model obtained
from the sampling points, it was found that the optimum result obtained from the Kriging model
with linear regression is the best. The optimum result obtained from the Kriging model with
linear regression gave the best result for everything, including torque, torque coefficient, power,
and power coefficient.

Overall, it can be concluded that using surrogate-assisted optimization based on OLHS, the
Kriging model, and GA for optimization of a MEXICO blade is successful. The Kriging model
with linear regression gave the best results based on this study.

Fig. 8b shows the geometry of the optimum MEXICO blade obtained from this study. The
new blade shape was improved to increase the power coefficient of a wind turbine to 0.00594
with the torque of 73.70 Nm. Fig. 8a shows the original blade before improving with the power
coefficient of 0.00567 and the torque of 70.32 Nm. For both models by comparing between the
new and original blades, the power coefficient of the new blade was increased about 4.76%. In
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addition, the aerodynamic pressure load on the blade was presented, which affects to the change
of torque of the blade structure. It is shown that the pressure profiles for both sides of the new
and original blades look similar. This somewhat implies that the structural safety requirements are
still met for the new optimum blade. The pressure and suction sides of the new blade presented a
pressure characteristic which changed from the original blade. Specifically, the suction side of new
blade at the leading edge and trailing edge position showed a pressure distribution and decreased
fluctuation which were clearly better than the original blade.

Table 2: Optimum results obtained from 10 optimization run from using KG+GA linear

Run no. Design variables Objective function values

r1 r2 r3 %C Cp

1 29.99 6.14 5.49 29.97 0.0059
2 29.99 6.13 5.49 29.87 0.0059
3 30.00 6.13 5.49 29.99 0.0059
4 30.00 6.13 5.49 29.83 0.0059
5 29.99 6.13 5.49 29.97 0.0059
6 30.00 6.13 5.49 29.99 0.0059
7 30.00 6.13 5.49 29.98 0.0059
8 30.00 6.14 5.49 29.99 0.0059
9 30.00 6.13 5.49 30.00 0.0059
10 30.00 6.13 5.49 29.99 0.0059
Mean 30.00 6.13 5.49 29.96 0.0059
STD 0.005 0.004 0.000 0.059 0.000

Table 3: Optimum results obtained from 10 optimization run from using KG+GA second order

Run no. Design variables Objective function values

r1 r2 r3 %C Cp

1 8.23 8.30 5.49 0.00 0.0123
2 8.23 8.30 5.49 0.00 0.0123
3 8.23 8.30 5.49 0.00 0.0123
4 8.23 8.30 5.49 0.00 0.0123
5 8.23 8.30 5.49 0.00 0.0123
6 8.23 8.30 5.49 0.00 0.0123
7 8.23 8.30 5.49 0.00 0.0123
8 8.23 8.30 5.49 0.00 0.0123
9 8.23 8.30 5.49 0.00 0.0123
10 8.23 8.30 5.49 0.00 0.0123
Mean 8.23 8.30 5.49 0.00 0.0123
STD 0.00 0.00 0.00 0.00 0.00
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Table 4: Comparison of optimum results and original design based on CFD

Output Original model Maximum
value
of sampling

New design

KG+GA

Linear Second order

τ_CFD (Nm) 70.32 71.54 73.70 69.43
Cm_CFD 0.000567 0.000577 0.000594 0.000559
Power (kW)_CFD 3.13 3.18 3.28 3.09
Cp_CFD 0.00567 0.00577 0.00594 0.00559
Cp_optimise – – 0.00590 0.0123
Error % (Obj. func.) – – 0.67 54.55

(a)

Suction sidePressure side

(b)

Suction sidePressure side

Figure 8: (a) Original blade. (b) Optimization blade

6 Conclusions

In this work, an optimization study of a MEXICO blade to increase the HAWT power for
electrical generation at a low wind speed of 10 m/s was successfully conducted based on using
surrogate-assisted optimization. OLHS and GA were used to design and optimize the experiment,
while a Kriging model with linear regression and second-order polynomial regression were used.
After performing optimization based on the two Kriging models, it was found that the optimum
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results obtained from the Kriging model with the linear regression were the best. The optimum
blade obtained in this study showed a better performance than the original design.
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