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ABSTRACT

A lemniscate is a curve defined by two foci, F1 and F2. If the distance between the focal points of F1 − F2 is 2a
(a: constant), then any point P on the lemniscate curve satisfy the equation PF1 ·PF2 = a2. Jacob Bernoulli first
described the lemniscate in 1694. The Fagnano discovered the double angle formula of the lemniscate (1718). The
Euler extended the Fagnano’s formula to a more general addition theorem (1751). The lemniscate function was
subsequently proposed by Gauss around the year 1800. These insights were summarized by Jacobi as the theory of
elliptic functions. A leaf function is an extended lemniscate function. Some formulas of leaf functions have been
presented in previous papers; these included the addition theorem of this function and its application to nonlinear
equations. In this paper, the geometrical properties of leaf functions at n= 2 and the geometric relation between
the angle θ and lemniscate arc length l are presented using the lemniscate curve. The relationship between the
leaf functions sleaf2 (l) and cleaf2 (l) is derived using the geometrical properties of the lemniscate, similarity of
triangles, and the Pythagorean theorem. In the literature, the relation equation for sleaf2 (l) and cleaf2 (l) (or the
lemniscate functions, sl (l) and cl (l)) has been derived analytically; however, it is not derived geometrically.
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1 Introduction

1.1 Motivation
An ordinary differential equation (ODE) comprises a function raised to the 2n−1 power and

the second derivative of this function. Further, the initial conditions of the ODE are defined.

d2r(l)
dl2

=−nr(l)2n−1 (1)

r(0)= 1 (2)

dr(0)
dl

= 0 (3)
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Another ODE and its initial conditions are given below:

d2r(l)

dl
2 =−nr(l)2n−1 (4)

r(0)= 0 (5)

dr(0)

dl
= 1 (6)

The ODE comprises a function r(l)(or r(l)) of one independent variable l(or l) and the
derivatives of this function. The variable n represents a natural number (n= 1, 2, 3, . . .). The above
equation and the initial conditions constitute a very simple ODE. However, when this differential
equation is numerically analyzed, mysterious waves are generated for all natural numbers. These
mysterious waves are regular waves with some periodicity and amplitude. If these waves can be
explained, they have the potential to solve various problems of nonlinear ODEs.

1.2 Theory of Leaf Functions
No elementary functions satisfy Eqs. (1)–(3). Therefore, in this paper, the function that sat-

isfies Eqs. (1)–(3) is defined as cleafn(l). Function r(l) is abbreviated as r. By multiplying the
derivative dr/dl with respect to Eq. (1), the following equation is obtained.

d2r
dl2

dr
dl

=−nr2n−1 dr
dl

(7)

The following equation is obtained by integrating both sides of Eq. (7).

1
2

(
dr
dl

)2

=−1
2
r2n+C (8)

Using the initial conditions in Eqs. (2) and (3), the constant C = 1
2

is determined. The

following equation is obtained by solving the derivative dr/dl in Eq. (8).

dr
dl

=±
√
1− r2n (9)

We can create a graph with the horizontal axis as the variable l and the vertical axis as the
function r. Because function r is a wave with a period, the gradient dr/dl has positive and negative

values, and it depends on domain l. In the domain, 0� l� 1
2
πn (See Appendix A for the constant

πn), the above gradient dr/dl becomes negative.

dl=− dr√
1− r2n

(10)

The following equation is obtained by integrating the above equation from 1 to r.

l=−
∫ r

1

dt√
1− t2n

=
∫ 1

r

dt√
1− t2n

= arccleafn(r)
(
=
∫ r

1
dl = [l]r1 = l(r)− l(1)= l(r)

)
(11)
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For integrating the left side of the above equation, the initial condition (Eq. (2), (l, r)= (0, 1))
is applied. The above equation represents the inverse function of the leaf function: cleafn(t) [1].
Therefore, the above equation is described as

r= cleafn(l) (12)

Similarly, the function that satisfies Eqs. (4)–(6) is defined as sleafn(l). In the domain, 0� l�
1
2
πn (See Appendix A for constant πn), the gradient dr/dl becomes positive.

dl = dr√
1− r2n

(13)

The following equation is obtained by integrating the above equation from 0 to r.

l=
∫ r

0

dt√
1− t2n

= arcsleafn(r)

(
=
∫ r

0
dl = [l]r0 = l(r)− l(0)= l(r)

)
(14)

For integrating the left side of the above equation, the initial condition (Eq. (5), (l, r)= (0, 0))
is applied. The above equation represents the inverse function of the leaf function: sleafn(l) [2].
Therefore, the above equation is described as

r= sleafn(l) (15)

1.3 Literature Comparison
Inverse leaf functions based on the basis n= 1 represent inverse trigonometric functions.

arcsin(r)=
∫ r

0

dt√
1− t2

= arcsleaf1(r)= l (16)

arccos(r)=
∫ 1

r

dt√
1− t2

= arccleaf1(r)= l (17)

In 1796, Carl Friedrich Gauss presented the lemniscate function [3]. The inverse leaf functions
based on the basis n= 2 represents inverse functions of the sin and cos lemniscates [4].

arcsl(r)=
∫ r

0

dt√
1− t4

= arcsleaf2(r)= l (18)

arccl(r)=
∫ 1

r

dt√
1− t4

= arccleaf2(r)= l (19)

In 1827, Jacobi [5] presented the Jacobi elliptic functions. Compared to Eq. (18), the term t2

is added to the root of the integrand denominator.

arcsn(r,k)=
∫ r

0

dt√
1− (1+ k2)t2+ k2t4

(20)
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Eq. (20) represents the inverse Jacobi elliptic function sn, where k is a constant; there are
12 Jacobi elliptic functions, including cn and dn, etc. In Eq. (20), variable t is raised to the
fourth power in the denominator. Jacobi did not discuss variable t raised to higher powers as
indicated below.∫ r

0

dt√
1− t6

,
∫ r

0

dt√
1− t8

,
∫ r

0

dt√
1− t10

. . . (21)

Thus, historically, the inverse functions have not been discussed in the case of n = 3 or
higher [6–14].

1.4 Originality and Purpose
A lemniscate is a curve defined by two foci F1 and F2. If the distance between the focal

points of F1 − F2 is 2a (a: constant), then any point P on the lemniscate curve satisfies the
equation PF1 · PF2 = a2. Jacob Bernoulli first described the lemniscate in 1694 [15,16]. Based
on the lemniscate curve, its arc length can be bisected and trisected using a classical ruler and
compass [17]. Based on this lemniscate, a lemniscate function was proposed by Gauss around
the year 1800 [3,18]. Nishimura proposed a relationship between the product formula for the
lemniscate function and Carson’s algorithm; it is known as the variant of the arithmetic–geometric
mean of Gauss [19,20]. The Wilker and Huygens-type inequalities have been obtained for Gauss
lemniscate functions [21]. Deng et al. [22] established some Shafer–Fink type inequalities for the
Gauss lemniscate function. The geometrical characteristics of the lemniscate have been described
[23,24]. Mendiratta et al. [25] investigated the geometric properties of functions. Levin [26] devel-
oped analogs of sine and cosine for the curve to prove the formula. Langer et al. [27] presented
the lemniscate octahedral groups of projective symmetries. As a kinematic control problem, a five
body choreography on an algebraic lemniscate was shown as the potential problem for two values
of elliptic moduli [28]. The trajectory generation algorithm was applied by using the shape of the
Bernoulli lemmiscate [29].

Leaf functions are extended lemniscate functions. Various formulas for leaf functions such as
the addition theorem of the leaf functions and its application to nonlinear equations have been
presented [30–32].

In this paper, the geometrical properties of leaf functions for n = 2, and the geometric
relationship between the angle θ and lemniscate arc length l are presented using the lemniscate
curve. The relations between leaf functions sleaf2(l) and cleaf2(l) are derived using the geometrical
properties of the lemniscate curve, similarity of triangles, and the Pythagorean theorem. In the
literature, the relationship equation of sleaf2(l) and cleaf2(l) is analytically derived; however,
it is yet to be derived geometrically [33]. The relation between sleaf2(l) and cleaf2(l) can be
expressed as

(sleaf2(l))2+ (cleaf2(l))2+ (sleaf2(l))2(cleaf2(l))2 = 1. (22)

The Eq. (22) was analytically derived. However, it cannot be geometrically derived using
the lemniscate curve because it is not possible to show the geometric relationship of the
lemniscate functions sl(l) and cl(l) on a single lemniscate curve. In contrast, phase l of the
lemniscate function and angle θ can be visualized geometrically on a single lemniscate curve.
Therefore, in the literature, Eq. (22) is derived using an analytical method without requiring the
geometric relationship.
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In this paper, the angle θ , phase l, and leaf functions sleaf2(l) and cleaf2(l)(or lemniscate
functions sl(l) and cl(l)) are visualized geometrically on a single lemniscate curve. Eq. (22) is
derived based on the geometrical interpretation, similarity of triangles, and Pythagorean theorem.

2 Geometric Relationship with the Leaf Function cleaf2(l)

Fig. 1 shows the geometric relationship between the lemniscate curve and cleaf2(l). The y and
x axes represent the vertical and horizontal axes, respectively. The equation of the curve is

(x2 + y2)2 = x2 − y2 (23)

If P is an arbitrary point on the lemniscate curve, then the following geometric relation exists.

OP= cleaf2(l) (24)

Arc
�

AP= l (See Appendix B). (25)

∠AOP= θ (26)

When point P is circled along the contour of one leaf, the contour length corresponds to the
half cycle π2 (See Appendix A for the definition of the constant π2). As shown in Fig. 1, with
respect to an arbitrary phase l, angle θ must satisfy the following inequality.

π

4
(4k− 1) � θ � π

4
(4k+ 1) (27)

Here, k is an integer.
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Figure 1: Geometric relationship between angle θ and phase l of the leaf function cleafn(l)

3 Geometric Relationship between the Trigonometric Function and Leaf Function cleaf2(l)

Fig. 2 shows the foci F and F′ of the lemniscate curve. The length of a straight line con-
necting an arbitrary point P and one focal point F is denoted by PF. Similarly, PF′ denotes the
length of the line connecting an arbitrary point P and a second focal point F′. On the curve, the
product of PF and PF′ is constant. The relationship equation is described as [34]

PF ·PF′ =
(

1√
2

)2

(28)

The coordinates of point P are

P(cleaf2(l)cos(θ), cleaf2(l)sin(θ))= P(rcos(θ), rsin(θ)) (29)



280 CMES, 2021, vol.126, no.1

PF and PF′ are given by

PF=
√(

cleaf2(l)cos(θ)− 1√
2

)2

+ (cleaf2(l)sin(θ))2

=
√
1
2
+ (cleaf2(l))2−

√
2cos(θ)cleaf2(l) (30)

and

PF′ =
√(

cleaf2(l)cos(θ)+ 1√
2

)2

+ (cleaf2(l)sin(θ))2

=
√
1
2
+ (cleaf2(l))2+

√
2cos(θ)cleaf2(l), (31)

respectively.

Figure 2: Lemniscate focus

By substituting Eqs. (30) and (31) into Eq. (28), the relationship equation between the leaf
function cleaf2(l) and trigonometric function cos(θ) can be derived as

(cleaf2(l))2 = 2(cos(θ))2 − 1= cos(2θ) (32)

After differentiating Eq. (32) with respect to l,

−2cleaf2(l)
√
1− (cleaf2(l))4 =−2sin(2θ) · dθ

dl
(33)

The following equation is obtained by combining Eqs. (32) and (33).

dθ

dl
= cleaf2(l)

√
1− (cleaf2(l))4

sin(2θ)
= cleaf2(l)

√
1− (cleaf2(l))4√

1− (cos(2θ))2

= cleaf2(l)
√
1− (cleaf2(l))4√

1− (cleaf2(l))4
= cleaf2(l) (34)
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The differential equation can be integrated using variable l. Parameter t in the integrand is
introduced to distinguish it from l. The integration of Eq. (34) in the region 0 � t� l yields the
following equation (See Appendix C for details).

θ =
∫ l

0
cleaf2(t)dt= arctan(sleaf2(l)) (35)

Therefore, the following equation holds.

tan(θ)= sleaf2(l) (36)

Eq. (32) can only be described by variable l as

(cleaf2(l))
2 = cos

(
2
∫ l

0
cleaf2(t)dt

)
= cos(2arctan(sleaf2(l))) (37)

The phase
∫ l
0 cleaf2(t)dt of the cos function is plotted in Fig. 3 through numerical analysis.

The horizontal and vertical axes represent variables l and θ , respectively. As shown in Fig. 3, angle
θ satisfies the inequality

−π

4
� θ =

∫ l

0
cleaf2(t)dt�

π

4
(38)

Eq. (38) satisfies the inequality of Eq. (27) under the condition k= 0.

Figure 3: Curves of leaf functions (sleaf2(l) and cleaf2(l)) and the integrated leaf functions
(
∫ l
0 sleaf2(t)dt and

∫ l
0 cleaf2(t)dt)

Fig. 4 shows the geometric relationship between functions sleaf2(l) and cleaf2(l). The geomet-
ric relation in Eq. (36) is illustrated in Fig. 4.

Draw a perpendicular line from the point P on the lemniscate to the x-axis. This perpendicular
is parallel to the y-axis. Let C be the intersection of this perpendicular and the x-axis. Therefore,
the angle ∠OCP is 90◦. Next, draw a line perpendicular to the x-axis from the intersection A(1,0)
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of the lemniscate and the x-axis. Let B be the intersection of this perpendicular and the extension
of the straight line OP. Here, x=OC and y=CP. Substituting these into Eq. (23) gives

(OC2+CP2)2 =OC2−CP2, (39)

∠OCP= 90◦, (40)

and

∠OAB= 90◦. (41)

P and B are moving points, and point A is fixed. When angle θ is zero, both P and B are
at A. The geometric relationship is then expressed as cleaf2(l) = 1 =OA and sleaf2(l) = 0 =AB.
As θ increases, P moves away from A, and it moves along the lemniscate curve. Here, phase l

of cleaf2(l) and sleaf2(l) corresponds to the length of the arc
�

AP. The length of the straight
line OP is equal to the value of cleaf2(l). Point B is the intersection point of the straight lines
OP and x= 1. In other words, P is the intersection point of the straight line OB and lemniscate
curve. As θ increases, B moves away from A and onto the straight line x= 1. That is, it moves in
the direction perpendicular to the x axis. The length of straight line AB is equal to the value of

sleaf2(l). When θ reaches 45◦, P moves to origin O and AB= 1. The length of arc
�

AP (or phase
l) is π2/2. Moreover, cleaf2(l)= 0=OP and sleaf2(l)= 1=AB.

P

B

l

Figure 4: Geometric relationship between leaf functions sleaf2(l) and cleaf2(l)

The relationship OC : OA=CP : AB is derived by the similarity of triangles �OAB∼�OCP,
as shown in Fig. 4. Thus, the following equation holds.

OC= OA ·CP
AB

= cleaf2(l)sin(θ)

sleaf2(l)
= cleaf2(l)

√
1− (cos(θ))2

sleaf2(l)

=
cleaf2(l)

√
1− 1+(cleaf2(l))2

2

sleaf2(l)
= cleaf2(l)

√
1− (cleaf2(l))2√

2sleaf2(l)
(42)

Eq. (32) is applied in the transformation process. Similarly, the relationship OP:PC=OB:BA
is derived by the similarity of triangles �OAB∼�OCP, as shown in Fig. 4. Therefore, the
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following equation holds.

PC= OP ·BA
OB

= cleaf2(l)sleaf2(l)√
1+ (sleaf2(l))2

(43)

By substituting Eqs. (42) and (43) into Eq. (39), the following equation is obtained.⎧⎨
⎩
(
cleaf2(l)

√
1− (cleaf2(l))2√

2sleaf2(l)

)2

+
(
cleaf2(l)sleaf2(l)√
1+ (sleaf2(l))2

)2
⎫⎬
⎭

2

=
(
cleaf2(l)

√
1− (cleaf2(l))2√

2sleaf2(l)

)2

−
(
cleaf2(l)sleaf2(l)√
1+ (sleaf2(l))2

)2

(44)

By rearranging Eq. (44), the following equation is obtained.

(cleaf2(l))2{−1+ (sleaf2(l))2+ (cleaf2(l))2+ (sleaf2(l))2(cleaf2(l))2}{· · · }
4(sleaf2(l))2{1+ (sleaf2(l))2}2

= 0 (45)

{· · · } = 2(sleaf2(l))2+ 6(sleaf2(l))4+ 4(sleaf2(l))6

− (cleaf2(l))
2{1+ 3sleaf2(l))

2+ 4sleaf2(l))
4}+ (cleaf2(l))

4{1+ sleaf2(l))
2} (46)

For arbitrary l, cleaf2(l) �= 0 and {· · · } �= 0. The relationship between sleaf2(l) and cleaf2(l)
can then be obtained as Eq. (22).

4 Geometric Relationship of the Leaf Function sleaf2(l)

Fig. 5 shows the geometric relationship between length sleaf2(l) and lemniscate curve inclined
at 45◦. In Fig. 5, the y and x axes represent the vertical and horizontal axes, respectively. The
equation of this curve is given as

(x2 + y2)2 = 2xy (47)

If P is an arbitrary point on the lemniscate curve, the following geometric relation exists.

OP= sleaf2(l) (48)

Arc OP= l (See Appendix D) (49)

∠DOP= θ (50)

In Fig. 5, for an arbitrary variable l, the range of angle θ is given by

kπ � θ � π

2
(2k+ 1). (51)

Here, k is an integer.
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Figure 5: Geometric relationship between angle θ and phase l of leaf function sleaf2(l)

5 Geometric Relationship between Trigonometric Function and Leaf Function sleaf2(l)

Fig. 6 shows foci F and F′ of the lemniscate curve inclined at an angle of 45◦. This curve
has the same relation equation as shown in Fig. 2.

PF ·PF′ =
(

1√
2

)2

(52)

The coordinates of point P on the lemniscate curve inclined at an angle of 45◦ are given as

P(sleaf2(l)cos(θ), sleaf2(l)sin(θ))= P(rcos(θ), rsin(θ)) (53)

Lengths PF and PF′ are expressed by

PF=
√(

sleaf2(l)cos(θ)− 1
2

)2

+
(
sleaf2(l)sin(θ)− 1

2

)2

=
√
1
2
+ (sleaf2(l))2− (sin(θ)+ cos(θ))sleaf2(l) (54)

and

PF′ =
√(

sleaf2(l)cos(θ)+ 1
2

)2

+
(
sleaf2(l)cos(θ)+ 1

2

)2

=
√
1
2
+ (sleaf2(l))2+ (sin(θ)+ cos(θ))sleaf2(l). (55)
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Figure 6: Lemniscate curve inclined at 45◦

By substituting Eqs. (54) and (55) into Eq. (52), the relationship equation between the leaf
function sleaf2(l) and the trigonometric function sin(θ) can be derived as

(sleaf2(l))
2 = 2sin(θ)cos(θ)= sin(2θ) (56)

The following equation is obtained by differentiating Eq. (56) with respect to the variable l.

2sleaf2(l)
√
1− (sleaf2(l))4 = 2cos(2θ) · dθ

dl
(57)

After applying Eq. (56), the equation is transformed as

dθ

dl
=

sleaf2(l)
√
1− (sleaf2(l))4

cos(2θ)
=

sleaf2(l)
√
1− (sleaf2(l))4√

1− (sin(2θ))2

=
sleaf2(l)

√
1− (sleaf2(l))4√

1− (sleaf2(l))4
= sleaf2(l) (58)

The differential equation is integrated by variable l. Parameter t is introduced to distinguish
the parameter from variable l in the integration region. The integration of Eq. (58) in region
0� t� l (See Appendix C) yields

θ =
∫ l

0
sleaf2(t)dt=−arctan(cleaf2(l))+ π

4
, (59)

and the following equation holds.

tan
(π

4
− θ

)
= cleaf2(l). (60)
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Using Eq. (59), Eq. (56) can be described by variable l as

(sleaf2(l))
2 = sin

(
2
∫ l

0
sleaf2(t)dt

)
= sin

(
2
(π

4
− arctan(cleaf2(l))

))
= cos

(
2arctan(cleaf2(l))

)

(61)

The curve of phase θ = ∫ l
0 sleaf2(t)dt is plotted in Fig. 3 through numerical analysis. The

horizontal and vertical axes represent variables l and θ , respectively. As shown in Fig. 3, angle θ

satisfies the following range.

0� θ =
∫ l

0
sleaf2(t)dt�

π

2
(62)

Eq. (62) satisfies the range of Eq. (51) under the condition k= 0. Fig. 7 shows the lemniscate
curve inclined at 45◦. The geometric relation of Eq. (60) is added to Fig. 7.

∠OCP= 90◦ (63)

∠OAB= 90◦ (64)

Let C(t, t) be the coordinates on line OA, as shown in Fig. 7. Points P and B are moving
points, and point A is fixed. When angle θ is zero, P is at origin O, and B is on the x-axis at
(x,y)= (

√
2, 0). The geometric relationship is described as cleaf2(l)= 1=AB and sleaf2(l)= 0. As

θ increases, P moves away from origin O and along the lemniscate curve. The phase l of both

cleaf2(l) and sleaf2(l) corresponds to the length of arc
�

OP. The length of the straight line OP
is equal to the value of sleaf2(l)(= r). Point B is the intersection point of straight lines OP and
y=−x+√

2. In other words, P is the intersection point of the straight line OB and the lemniscate
curve. As θ increases, B moves away from point (x,y) = (

√
2,0) on a straight line y=−x+√

2.
Here, the length of the straight line AB is equal to the value of cleaf2(l). When θ reaches 45◦, P

moves to point A. The length of arc
�

OA (or phase l) becomes π2/2. Furthermore, cleaf2(l) = 0
and sleaf2(l)= 1=OA. The linear equation CP is given by

y=−x+ 2t. (65)

By substituting Eq. (65) into Eq. (47) and solving for variable x, four solutions can be
obtained as

x= 1
2

{
2t−

√
−1− 4t2 −

√
1+ 16t2

}
(66)

x= 1
2

{
2t+

√
−1− 4t2 −

√
1+ 16t2

}
(67)

x= 1
2

{
2t−

√
−1− 4t2 +

√
1+ 16t2

}
(68)
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x= 1
2

{
2t+

√
−1− 4t2 +

√
1+ 16t2

}
(69)

Figure 7: Geometric relationship based on the lemniscate curve inclined at 45◦

As Eqs. (66) and (67) include imaginary numbers, the solutions for x using both Eqs. (68)
and (69) are determined by the intersection points of line CP and the lemniscate curve, as shown
in Fig. 7. The larger x value is given by Eq. (69). That is, the coordinates of point P can be
expressed as

P
(
t+ 1

2

√
−1− 4t2 +

√
1+ 16t2, t− 1

2

√
−1− 4t2 +

√
1+ 16t2

)
(70)

Therefore, the length CP is expressed as

CP= 1√
2

√
−1− 4t2 +

√
1+ 16t2. (71)

The following equation is obtained from the Pythagorean theorem of the triangle �OPC.

OP
2 =CP

2+OC
2

(72)

Substitution of Eqs. (48) and (71) into Eq. (72) yields

(sleaf2(t))
2 = 1

2
(−1− 4t2+

√
1+ 16t2)+ 2t2. (73)

The length ratio is OC : OA=CP : AB owing to the similarity of triangles �OAB∼�OCP.

√
2t : 1= 1√

2

√
−1− 4t2+

√
1+ 16t2 : cleaf2(t) (74)

The elimination of variable t from Eqs. (73) and (74) yields the relation equation, Eq. (22).
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Table 1: Numerical data of arc length l, angle θ , and leaf functions sleaf2(l) and cleaf2(l)
for Fig. 4

l θ(radian)(
= ∫ l0 cleaf2(t)dt)

θ (degree) sleaf2(l) (= tan θ) cleaf2(l)(= r)

0.0 0.00000· · · 0.00000· · · 0.00000· · · 1.00000· · ·
0.1 0.09966· · · 5.7105· · · 0.09999· · · 0.99004· · ·
0.2 0.19736· · · 11.3081· · · 0.19996· · · 0.96078· · ·
0.3 0.29123· · · 16.6864· · · 0.29975· · · 0.91384· · ·
0.4 0.37962· · · 21.7509· · · 0.39897· · · 0.85167· · ·
0.5 0.46115· · · 26.4223· · · 0.49689· · · 0.77715· · ·
0.6 0.53474· · · 30.6385· · · 0.59230· · · 0.69323· · ·
0.7 0.59958· · · 34.3534· · · 0.68352· · · 0.60260· · ·
0.8 0.65511· · · 37.5355· · · 0.76831· · · 0.50756· · ·
0.9 0.70100· · · 40.1646· · · 0.84400· · · 0.40985· · ·
1.0 0.73704· · · 42.2294· · · 0.90768· · · 0.31073· · ·
1.1 0.76313· · · 43.7243· · · 0.95643· · · 0.21098· · ·
1.2 0.77923· · · 44.6468· · · 0.98774· · · 0.11102· · ·
1.3 0.78533· · · 44.9965· · · 0.99987· · · 0.01102· · ·

Table 2: Numerical data of arc length l, angle θ , and leaf functions sleaf2(l) and cleaf2(l)
for Fig. 7

l θ (radian)(
= ∫ l0 sleaf2(t)dt)

θ(degree) sleaf2(l) (= r) cleaf2(l) (=tan θ)

0.0 0.00000· · · 0.0000· · · 0.00000· · · 1.00000· · ·
0.1 0.00499· · · 0.2864· · · 0.09999· · · 0.99004· · ·
0.2 0.01999· · · 1.1458· · · 0.19996· · · 0.96078· · ·
0.3 0.04498· · · 2.5776· · · 0.29975· · · 0.91384· · ·
0.4 0.07993· · · 4.5797· · · 0.39897· · · 0.85167· · ·
0.5 0.12474· · · 7.1470· · · 0.49689· · · 0.77715· · ·
0.6 0.17922· · · 10.2689· · · 0.59230· · · 0.69323· · ·
0.7 0.24306· · · 13.9264· · · 0.68352· · · 0.60260· · ·
0.8 0.31571· · · 18.0893· · · 0.76831· · · 0.50756· · ·
0.9 0.39642· · · 22.7133· · · 0.84400· · · 0.40985· · ·
1.0 0.48411· · · 27.7379· · · 0.90768· · · 0.31073· · ·
1.1 0.57746· · · 33.0860· · · 0.95643· · · 0.21098· · ·
1.2 0.67482· · · 38.6645· · · 0.98774· · · 0.11102· · ·
1.3 0.77436· · · 44.3681· · · 0.99987· · · 0.01102· · ·

6 Numerical Results

Tab. 1 lists the numerical values for Fig. 4. The angle θ and values of the leaf function
(sleaf2(l) and cleaf2(l)) are calculated along the arc length l. The values of leaf functions cleaf2(l)
are calculated by Eqs. (1)–(3). The values of leaf functions sleaf2(l) are calculated by Eqs. (4)–(6).
Based on these data, the numerical data of functions sleaf2(l) and cleaf2(l) can be confirmed
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using Eq. (22). The function cleaf2(l)(= r) can also be confirmed by using Eq. (82). Angle θ can
be calculated by using Eq. (35).

Tab. 2 shows the numerical values for Fig. 7. The angle θ and the values of leaf function
(sleaf2(l) and cleaf2(l)) are calculated along the arc length l. Based on these data, the function
sleaf2(l)(= r) can also be confirmed using Eq. (90). The angle θ can be calculated using Eq. (59).

7 Conclusion

Based on the geometric properties of the lemniscate curve, the geometric relationship among
angle θ , lemniscate length l, and leaf functions sleaf2(l) and cleaf2(l) were shown on the lem-
niscate curve. Using the similarity of triangles and the Pythagorean theorem, the relationship
equation of leaf functions sleaf2(l) and cleaf2(l) was derived.
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Appendix A

The symbols πn are a constant given by

πn= 2
∫ 1

0

dt√
1− t2n

(n= 1, 2, 3 · · ·). (75)
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The numerical data of the symbol πn are summarized in the Tab. 3.

Table 3: Values of constants πn

n πn

1 3.1415· · ·
2 2.6220· · ·
3 2.4286· · ·
· · · · · ·

Appendix B

The Eq. (23) of Cartesian coordinate system is transformed to the following equation of polar
coordinates [1,3].

r2 = cos(2θ) (76)

The variable r and θ represents OP and ∠AOP in Fig. 1. The arc length in the cartesian and
polar coordinates is given by√
dx2+ dy2 =

√
dr2+ r2dθ2 (77)

The arc length l of the lemniscate with polar coordinates is given by

l=
∫ 1

r

√
1+ r2

(
dθ

dr

)2

dr (78)

By differentiating Eq. (76) with respect to variable θ ,

2r
dr
dθ

=−2sin(2θ) (79)

Then, by applying Eq. (79),

1+ r2
(
dθ

dr

)2

= 1+ r2
(
− r
sin(2θ)

)2

= 1+ r4

1− r4
= 1

1− r4
(80)

The following equation is applied to Eq. (80).

(sin(2θ))2 = 1− (cos(2θ))2 = 1− r4 (81)

Hence, the arc length l becomes

l=
∫ 1

r

1√
1− t4

dt (82)
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Appendix C

The following function is differentiated.

d
dl
arctan(cleaf2(l))=−

√
1− (cleaf2(l))4

1+ (cleaf2(l))2
=−

√
1− (cleaf2(l))2

1+ (cleaf2(l))2
=−sleaf2(l) (83)

Integration of the above mentioned equation with respect to l yields∫ l

0
sleaf2(l)dt= [−arctan(cleaf2(l))]

l
0 =−arctan(cleaf2(l))+ arctan(cleaf2(0))

=−arctan(cleaf2(l))+ arctan(1)=−arctan(cleaf2(l))+
π

4
. (84)

Similarly, the following function is differentiated with respect to variable l.

d
dl
arctan(sleaf2(l))=

√
1− (sleaf2(l))4

1+ (sleaf2(l))2
=
√
1− (sleaf2(l))2

1+ (sleaf2(l))2
= cleaf2(l) (85)

The following equation is obtained by integrating Eq. (85) with respect to l.∫ l

0
cleaf2(l)dt= [arctan(sleaf2(l))]

l
0 = arctan(sleaf2(l))− arctan(sleaf2(0))

= arctan(sleaf2(l))− arctan(0)= arctan(sleaf2(l)) (86)

Appendix D

Eq. (47) of the Cartesian coordinate system is transformed to the following equation in the
polar coordinates [2,35].

r2 = sin(2θ) (87)

By differentiating Eq. (87) with respect to the variable θ ,

2r
dr

dθ
= 2cos(2θ) (88)

Then, applying Eq. (88),

1+ r2
(
dθ

dr

)2

= 1+ r2
(

r

cos(2θ)

)2

= 1+ r4

1− r4
= 1

1− r4
(89)

Hence, the arc length l becomes

l=
∫ r

0

1√
1− t4

dt (90)


