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ABSTRACT

The hydrothermal behavior of air inside a solar channel heat exchanger equipped with various shaped ribs is
analyzed numerically. The bottom wall of the exchanger is kept adiabatic, while a constant value of the temperature
is set at the upper wall. The duct is equipped with a flat rectangular fin on the upper wall and an upstream
V-shaped baffle on the lower wall. Furthermore, five hot wall-attached rib shapes are considered: trapezoidal,
square, triangular pointing upstream (type I), triangular pointing downstream (type II), and equilateral-triangular
(type III) cross sections. Effects of the flow rates are also inspected for various Reynolds numbers in the turbulent
regime (1.2× 104–3.2× 104). The highest performance (η) value is given for the II-triangular rib case in all Re
values, while the square-shaped ribs show a significant decrease in the η along the achieved Re range. The η value
at Remax is 2.567 for the II-triangular roughness case. Compared with the other simulated cases, this performance
is decreased by about 3.768% in the case of I-triangular ribs, 15.249% in the case of III-triangular ribs, 20.802% in
the case of trapezoidal ribs, while 27.541% in the case of square ribs, at the same Remax. Also, a comparison is made
with air-heat exchangers that have non-rough walls and contain cross-shaped VGs presented previously, in order
to highlight the effectiveness of the rough surface presence in the baffled and finned channels. The obtained results
indicated that the triangular-shaped rib (type II) has the most significant hydrothermal behavior than the other
cases. This indicates the necessity of roughness heat transfer surfaces for finned and baffled channels to improve
significantly the performance of the air-heat exchangers they contain.
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Nomenclature

C1ε Constant in k-ε model
C2ε Constant in k-ε model
Cp Specific heat, J kg−1 K−1

Dh Hydraulic diameter of the exchanger, m
f Average coefficient of friction
f0 Factor of friction for smooth exchanger
H Height of exchanger, m
h Height of attached VG, m
h′ Height of attached rib, m
k Kinetic energy of turbulence, m2 s−2

L Length of exchanger, m
Lin Inlet—1st VG space, m
Lout 2nd VG—exit space, m
Nu Average Nusselt number of the ribbed and baffled exchanger
Nu0 Average Nusselt number for the smooth exchanger
P Pressure, Pa
Patm Dynamic pressure, Pa
Pr Number of Prandtl
Re Number of Reynolds
S Space between VGs, m
T Temperature, K
Tin Inlet fluid temperature, K
Tw Wall temperature, K
u X-velocity, m s−1

Uin Intake velocity, m s−1

um Average velocity, m s−1

v Y-velocity, m s−1

W Width of exchanger, m
w Thickness of the fixation base of the rib, m
w′ Thickness of the upper face of the rib, m

Greeks Symbols

α Attack angle, degree
η Thermal enhancement factor
λ Thermal-conductivity, W m−1 K−1

μ Dynamic viscosity, kg m−1 s−1

μt Turbulent viscosity, kg m−1 s−1

ρ Density, kg m−3

σk Constant in k-equation
σε Constant in ε-equation
τw Wall-shear-stress, Pa
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Subscript

atm Atmosphere
f Fluid
in Intake
out Outlet
t Turbulent
w Wall
x Local

1 Introduction

The insertion of roughness elements in channel heat exchangers is well-known as an excellent
technique to enhance the overall performances (Chen et al. [1], Tien et al. [2], El-Askary et al. [3],
Sharma et al. [4] and Guan et al. [5]). This technique is largely applied in the design of solar
heat exchangers (Menasria et al. [6], Tan et al. [7], Ghritlahre et al. [8], Shirvan et al. [9] and
Baissi et al. [10]). The insertion of ribs yields variations in the flow streamlines, modification in the
thermal transfer rates, and an augmentation in the turbulence levels, which generates in enhanced
thermal exchange (Tarasevich et al. [11], Omari et al. [12], Gorelov [13], Joseph et al. [14] and
Kumar et al. [15]).

Various research studies have been achieved on this subject, among other works, Patankar
et al. [16] conducted the first numerical investigation on the fully developed hydrothermal behavior
of laminar-type flows through a duct. The simulated fluid field was characterized by large vortex
areas, with a strong blockage effect within the conduit, resulting in improved Nusselt number
values compared to those in conventional-type laminar flows. Kelkar et al. [17] characterized
numerically the laminar flow details inside a channel having staggered baffles. They observed an
increase in the thermal performance with increased baffle height and reduced baffle spacing. By
using numerical simulations, Webb et al. [18] determined the hydrothermal details in a smooth
duct with staggered vortex generators. Their study indicated that the case of high numbers of
Prandtl, such as those contained in fluorocarbons or water, can enhance heat transfer and better
in the presence of heat transfer by conduction. Under a laminar flow regime and for a channel
with a blockage ratio of 0.5, Lopez et al. [19] reported that the 3D impact on the friction
increases with the rise of Reynolds number. Cheng et al. [20] inspected numerically the laminar
forced-convection within channels equipped with two series of vortex generators. The results
demonstrated that the flow field was affected by the relative station given by the fin arrays.
While, the in-line type arrangement of considered fins proved ineffective, due to the presence of
recirculation cells distributed along the channel surfaces. Guo et al. [21] inserted a single vortex
generator (VG) at the entrance of a duct to enhance the laminar forced-convection behavior, with
a special attention to the influence of the VG height. According to the analysis of their study,
there is a three-dimensional effect on both the fields of flow and temperature. In the content of
the fin dynamically, while on the entire course of the channel thermally, as the separation and
recirculation lengths improve with the improvement of the flow and blockage rates, before and
after the VG, respectively. The numerical study achieved by Bazdidi-Tehrani et al. [22] on the
laminar hydrothermal behavior in a horizontal channel with in-lined VGs revealed that that the
baffle-type obstacles are inefficient for large blockage ratio values. Hwang et al. [23] reported in
their numerical paper on the turbulent flow around baffles that the zone of recycling flow decreases
with the rise of the baffle length. Yuan et al. [24] inspected numerically the laminar hydrothermal
characteristics inside a baffled channel. Compared with the unbaffled duct, the Nusselt number has
been increased up to four times, but with much greater pressure losses. Tsay et al. [25] obtained
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an improvement in the Nusselt number by 190% through the installation of a VG in a backward-
facing step. On the other hand, by just a slight change in the VG positioning, the characteristics
of heat transfer change strongly. Also, the average value of Nusselt number increased by about 3%
when the VG thickness increased from 0.2 to 0.5. Pirouz et al. [26] used the Lattice–Boltzmann
method to examine the hydrothermal details of a baffled channel and they confirmed that this
method is suitable for the study of such problems. Chien et al. [27] experimentally conducted a
convective boiling test inside micro-channels containing fins with a dielectric working fluid of the
FC-72 type. As expected, the fluid passes both the high temperature and boiling phases as the
pressure-drop increases across the channel, while its surface temperature-difference decreases sig-
nificantly. In another study, Chien et al. [28] experimentally enhanced heat transfer in the surface
of a micro-gap through the use of fins that were finely structured and staggered in alignment.
Regardless of the flow type, the convective coefficient of heat transport improves as the mass flux
increases. Moreover, the heat flux proved to be ineffective on pressure-drop in the single-phase flow
presence, while strongly affecting the same variable in the two-phase flow case, where the pressure-
drop increased with the increase in the mass flux. Nasiruddin et al. [29] compared the performance
of three different baffle orientations within a channel heat exchanger. The inclination of the baffle
towards the downstream side has yielded the highest thermal improvement with the minimum
pressure loss. Mousavi et al. [30] used the CFD method to determine the hydrothermal behavior
within a duct provided with solid baffles and fins. For Re between 3×103 and 2×104, Tandiroglu
et al. [31] inspected the forced-convection in a baffled circular pipe. Demartini et al. [32] used the
hot wire anemometry and the FLUENT software to study the airflow behavior within a baffled
duct. Also, Acharya et al. [33] studied numerically and by experiments the turbulent heat transfer
past a surfaced-mounted obstacle.

Other similar studies can be found in literature as Ghanbari et al. [34], Karami et al. [35],
Wu et al. [36], Chamoli [37], Mana et al. [38], Chang et al. [39], Salem et al. [40], Ghanbari
et al. [41], Jeong et al. [42] and Gautam et al. [43] interested in the perforated VG. Dutta
et al. [44–46] compared the efficiency of perforated and solid baffles within rectangular channels.
More recently, Salhi et al. [47] inspected numerically the three-dimensional effect of the transverse
separation length between the deflector perforations on the performance of a rectangular-channel
heat-exchanger thermal-device.

Other investigations examined the installation of porous baffles in ducts. Abbasi et al. [48],
Tian et al. [49], Mohammadi et al. [50], Li et al. [51], Wang et al. [52], Pourrahmani et al. [53],
Kiwan et al. [54], Esfe et al. [55], Gupta et al. [56], Zhao et al. [57], Toghraie et al. [58], Wang
et al. [59], Siavashi et al. [60], Shamsabadi et al. [61], Mesgarpour et al. [62], Kiwan [63], Nabati
et al. [64], Sowmya et al. [65], Ghalambaz et al. [66] and Ho et al. [67] inspected the influence
of several aspect ratio ducts and various configurations of porous VGs. Their results suggested a
powerful relationship between of the thermal exchange and the assigned parameters.

Furthermore, many studied have been conducted suggesting various newly designed baf-
fles, such as the Flat and trapezoidal [68], Flat and triangular [68], Flat and arc [69],
V-upstream [70–72], Flat and V-upstream [68,70,73–75], V-downstream [70], Flat and
V-downstream [68,70,76], W [77], Diamond [78], drop [79], delta [80], angled [81], helical [82],
continuous [83] and Z-shaped [84].

The engineering analysis of previous studies can classify the heat transfer enhancement
methodology into two different techniques. Several studies have used heat exchangers with smooth
channels containing transverse/longitudinal VGs (baffles and/or fins) in various shapes. On the
other hand, other used rough walls (ribbed surface) rather than extended surfaces (VGs). Both
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cases demonstrated significant improvement in heat transfer. This study is a combination of these
heat transfer reinforcement techniques, in order to achieve a wider hydrothermal performance
inside the heat exchanger. This is the motivation of the current work, in which a detailed analysis
of the flow structure and its effect on the efficiency of a solar ribbed, finned and baffled channel
air-heat exchanger is highlighted. This work aims to enhance the hydrothermal behavior of air
within channel heat exchangers. An attempt is made to highlight the influence of flow rates,
as well as the design of ribs. Several shapes of ribs are considered, including the trapezoidal,
square, triangular pointing upstream (type I), triangular pointing downstream (type II), and the
equilateral-triangular (type III) shape. The study is concerned with the following:

• The current filed lines are shown in various models of ribs subject to a turbulent
Newtonian flow.

• The effect of duct blockage on the mean velocity and its two components (axial and
transverse) is shown at various stations.

• Hydrodynamic analysis of direct and reverse flows and their relationship to
dynamic pressure.

• The simultaneous effect of VGs and ribs on the exchanger performance.
• In order to highlight the effectiveness of the proposed model, a comparison with
referenced baffled and finned heat exchangers without ribs [68–70] is presented.

2 Model Description

2.1 Computational Domain
The hydrothermal characteristics of air flowing through a solar finned and baffled channel

heat exchanger [85] (Fig. 1) are investigated by the CFD method. Its channel is equipped with two
VGs (upper fin and lower baffle) in a staggered arrangement. Two shapes of VGs are considered,
namely: the straight and α = 45◦-attack V-upstream VGs inserted on the top and lower exchanger
surfaces, respectively. A constant value of the temperature is set at the top wall (Tw = 375 K),
while the bottom one was thermally insulated. Furthermore, five shapes of upper wall-attached
ribs are considered: square (Fig. 1a), trapezoidal (Fig. 1b), triangular pointing upstream (or tri-
angular type I, Fig. 1c), triangular pointing downstream (or triangular type II, Fig. 1d), and the
equilateral-triangular (or triangular type III, Fig. 1e) -shaped ribs. The geometrical dimensions
of the computational domain, i.e., length (L), height (H), and hydraulic diameter (Dh) of the
channel, height (h), thickness (e), and spacing of the VGs (S), as well as the inlet (Lin) and outlet
(Lout) distances, are 0.554, 0.146, and 0.167 m, 0.08 m, 0.01 m, 0.142 m, 0.218 m, and 0.174 m,
respectively [32].

Our simulation is based on real experimental studies, this is why the physical and geometrical
parameters are the same as those of Demartini et al. [32]. Then, and after achieving the verifi-
cation of our predicted data against the experimental data [32], we tried to contribute with new
geometrical suggestions to enhance the overall performances of the exchanger.

2.2 Physical Model
For turbulent flow conditions, and the hydrothermal behavior is two-dimensional. The fluid

nature is Newtonian as well as incompressible with a constant value of the velocity profile at the
inlet [32]. The condition ‘no-slip boundary’ is used for the surfaces of the exchanger [32]. The
atmospheric pressure (P= Patm) is presented at the duct exit [32]. The constant values Tin = 300
and Tw = 375 K are set at the inlet and the upper wall of the exchanger, respectively [29]. However,
the bottom wall is considered as adiabatic [45].
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Figure 1: Finned and baffled type channel heat exchanger with (a) square, (b) trapezoidal,
(c) I-type triangular, (d) II-type triangular, (e) III-type triangular ribs on its hot wall [85]

3 Modelling and Simulations

3.1 Governing Equations
The governing equations of the problem under investigation are written as [29]:

The continuity:

∇
→
V = 0 (1)
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The momentum:

ρ(
→
V · ∇

→
V )=−∇P+μf∇2

→
V (2)

The energy:

ρCp(
→
V · ∇T)= kf∇2T (3)

The model of standard type k-ε [86] is considered to calculate the turbulence aspects. Its
kinetic-energy (k) and rate of dissipation (ε) are given respectively as:

∂

∂xj

(
ρkuj

)= ∂

∂xj

[(
μ+ μt

σk

)
∂k
∂xj

]
+Gk+ρε (4)

∂

∂xj

(
ρεuj

) = ∂

∂xj

[(
μ+ μt

σε

)
∂ε

∂xj

]
+C1ε

ε

k
−C2ερ

ε2

k
(5)

3.2 Boundary Conditions
Intake boundary (x= 0,−H/2≤ y≤H/2)

u=Uin (6)

ν = 0 (7)

T =Tin= 300 K (8)

Kin = 0.005U2
in (9)

εin = 0.1k2in (10)

Wall boundary

For the top wall of the exchanger (0≤ x≤L, y=H/2):

u= v= 0 (11)

k= ε= 0 (12)

T =Tw = 375 K (13)

For the bottom wall of the exchanger (0≤ x≤L, y=−H/2):
u= v= 0 (14)

k= ε= 0 (15)

T =Tw = 375 K (16)

Outlet boundary (x=L,−H/2≤ y≤H/2):

P=Patm (17)

∂ϕ

∂y
= 0 (18)
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3.3 Governing Parameters
Reynolds number (Re)

Re= ρumDh/μ (19)

where Dh is the hydraulic diameter (= 0.167 m) calculated as:

Dh = 2HW/(H +W) (20)

The thermal enhancement factor (η)

TEF = (Nu/Nu0)/(f /f0)1/3 (21)

where, Nu is the average Nusselt number for the ribbed and baffled channel computed as:

Nu= 1
L

∫ L

0
Nux∂x (22)

with the local Nusselt number (Nux) defined as:

Nux = hxDh/λ (23)

Nu0 is the Nusselt number for the smooth channel (Dittus and Boelter correlation [87]) defined as:

Nu0 = 0.023Re0.8Pr0.4 for Re≥ 104 (24)

f is the friction factor for the ribbed and baffled channel computed as:

f = (ΔP/L)Dh
1
2ρŪ

2
(25)

And, f0 is the friction factor for the smooth channel (Petukhov correlation [88]) defined as:

f0 = (0.79 ln Re− 1.64)−2 for 3× 103 ≤Re≤ 5× 106 (26)

3.4 Numerical Model
The computational approach of finite volume [89] is considered to achieve the calculations

with the software ANSYS Fluent 12.0. The P–V coupling is done with SIMPLE-type algo-
rithm [89]. The SOU-type scheme [89] is applied to discretize the P terms, while the QUICK-type
scheme [90] is used for the convective terms. The under-relaxation factor was changed between
0.3 and 1.0 to check the update of the calculated parameters in all iterations, as recommended by
Nasiruddin et al. [29]. Furthermore, the residual target was δ = 10−9 for the momentum variables
and δ= 10−12 for the temperature.

4 Results and Discussion

4.1 Grid Independence and Solution Validation
The grid dependency tests were conducted by considering various mesh cases, where the nodes’

number of grids varied from 35 points to 145 points along with the depth of the exchanger and
95 nodes to 370 nodes along with the length, as determined in the referenced papers [68,70,71,73–
76]. The predicted results of P and V are tested vs. the mesh density (95× 35; 120× 45; 145×
55; 170× 65; 195× 75; 220× 85; 245× 95; and 370× 145). At Re = 0.873× 105, the mesh case
with the number of nodes 245× 95 (in the axial and vertical directions, respectively) has given a
deviation by about 0.7% and 0.5% for P and V , respectively, compared with the grid of (370×145)
cells. Therefore, the mesh case of (245 × 95) nodes is selected to achieve the next calculations.
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The predicted results of the pressure coefficient (Cp) are validated against the experiments of
Demartini et al. [32] for Re= 0.873×105 and the location x= 0.375 m. The comparison indicates
a qualitative agreement between both findings, as the error rate does not exceed 3% (Fig. 2).

Figure 2: Distribution of the coefficient of pressure along the station (x = 0.375 m,
−H/2+ h≤ y≤H/2)

The originality of the present work is the implementation of incompressible Newtonian fluid
with the ribbing and baffling techniques to enhance the overall performance of the heat exchanger.
Therefore, we compared our work against an experimental data of a simple baffled channel
without ribs [32]. The working fluid, which is used in the validation plot, is air. After checking the
validity of our predicted results, the same numerical approach was used for the new computational
configuration.

4.2 Streamlines

The streamlines inside the channel heat exchanger at Re = 1.2× 104 and for various shaped
ribs are presented in Fig. 3. The flow is uniform from the channel inlet and until the upstream
of the first obstacle, where a dead volume is formed. The flow is detached from the wall of the
baffle, resulting thus in a depression in the downstream area of this VG. The first VG orients the
flow towards the lower wall, while the 2nd baffle directs it towards the upper wall.

Furthermore, the second V-baffle yields a smooth airflow along with the main flow direc-
tion, which increases the axial velocity and significantly reduces the reattachment length. In
general, and for the five types of baffles, a recirculation zone is formed in each region where
the roughness is located. The size of these recirculation zones is very significant for the case of
triangular-shaped baffles.
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Figure 3: Streamlines (ψ in kg/s) for various situations of the hot exchanger surface: (a) square-
type ribbed surface, (b) trapezoidal-type ribbed surface, (c) triangular I-type ribbed surface,
(d) triangular II-type ribbed surface, and (e) triangular III-type ribbed surface, Re= 1.2× 104

4.3 Mean Velocity
The effects of the shape of VGs on the turbulent airflow behavior are highlighted in Fig. 4.

The mean velocity fields are plotted at Re = 1.2 × 104. The figure indicates the existence of
four principle areas. At 1st rib, separated flows with low velocities are remarked for the five
configurations studied. In the 2nd area and just upstream of the baffle-type VGs, the axial velocity
of the fluid is high. However, the streamlines are deflected when approaching the baffles. In the
3rd area, which concerns the space between the tip of each obstacle and the duct walls, the flow
velocity is intensified again due to the reduced passage. In the 4th area, which concerns the
downstream of VGs, the streamlines are induced by the influence of the flow expansion. The
extension of the recirculating flow that is formed in this area is proportional to the flow intensity.
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Figure 4: Mean velocity (V in m/s) for various hot exchanger surface-placed rib-type VGs:
(a) square-type ribbed surface, (b) trapezoidal-type ribbed surface, (c) triangular I-type ribbed
surface, (d) triangular II-type ribbed surface, and (e) triangular III-type ribbed surface, Re =
1.2× 104

Finally, these obstacles augment the length of the flow patterns and intensify the vortex
magnitude due to the changes in the streamline’s orientation.

4.4 Axial Velocity
The fields of the axial velocity (u) for various designed baffles are illustrated in Fig. 5.

The velocities are almost negligible near the two VGs. However, the streamlines become parallel
elsewhere, resulting thus in a progressive development of the flow. Furthermore, high amounts
of the axial velocity are remarked in the area between the tip of each VG and the duct wall.
Especially, the highest velocities are reached in the vicinity of the baffle tips.

After the second baffle, the flow is accelerated again to reach the values of about 419.66%–
426.91% over the inlet velocity. We note that these maximum values depend on the geometrical
shape of the baffle. The maximum axial velocity is reached with the triangular case in type II,
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while the square baffle yielded the lowest axial velocity. At the same Re and compared with
the II-model triangular baffle, the decrease in the axial velocity was about 1.61%, 0.41%, 0.63%,
and 1.69% for the square, triangular in I-model, trapezoidal, and the triangular-shaped ribs in
III-model, respectively.

Figure 5: X-velocity (u in m/s) for various roughness geometries: (a) square-type roughness,
(b) trapezoidal-type roughness, (c) triangular I-type roughness, (d) triangular II-type roughness,
and (e) triangular III-type roughness, Re= 1.2× 104

4.5 Vertical Velocity
For the vertical velocity (v), and for all geometries considered, negative velocity gradients are

remarked at the tip of 1st baffle, while positive values are formed at the tip of the 2nd baffle
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(Fig. 6). Moreover, the use of triangular baffles (type II) has given higher values of v than those
with the I-type triangular, III-triangular, square, and trapezoidal configurations by about 4.81%,
7.56%, 8.24%, 7.21%, respectively, at Re = 1.2 × 104.

(a)

(b)

(c)

(d)

(e)

Figure 6: Y-velocity (v in m/s) for various roughness geometries: (a) square-type roughness,
(b) trapezoidal-type roughness, (c) triangular I-type roughness, (d) triangular II-type roughness,
and (e) triangular III-type roughness, Re= 1.2× 104

4.6 Dynamic Pressure
The variation of the dynamic pressure is illustrated in Fig. 7 for the different geometrical

configurations under investigation. The flow is detached from the baffle tip, which results in a
depression downstream of this baffle. Low pressure values are observed behind the baffles due
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to the existence of recirculation cells. However, the pressure augments in the space between the
baffle tip and the duct wall. The dynamic pressure coefficients are the highest near the heated
surface of the duct in the region close to the exit due to the high amounts of velocity in these
zones. Importantly, the triangular-shaped baffle (type II) suggests more dynamic pressure than that
with the triangular (type I), square, trapezoidal, and triangular (type III) baffles by about 9.69%,
7.86%, 6.26%, and 9.24%, respectively.

Figure 7: Dynamic-pressure (Pd in Pa) for various hot exchanger surface-placed rib-type VGs:
(a) square-type ribbed surface, (b) trapezoidal-type ribbed surface, (c) triangular I-type ribbed
surface, (d) triangular II-type ribbed surface, and (e) triangular III-type ribbed surface,
Re= 1.2× 104

4.7 Kinetic Energy of Turbulence
The turbulent kinetic energy (k) for different shaped baffles is also computed (Fig. 8). The

trends of k variation are identical for all geometries studied. The highest value is observed in front
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of the first obstacle, while the lowest amount is obtained in the area where the second obstacle
is located. Furthermore, the most significant value of k is reached with the triangular-type ribs,
while the lowest k is given with the two first geometrical models. More precisely, the square-shaped
ribs allowed the lowest amount of k compared with the other cases.

Figure 8: Turbulent kinetic energy (k in m2/s2) for various hot exchanger surface-placed rib-type
VGs: (a) square-type ribbed surface, (b) trapezoidal-type ribbed surface, (c) triangular I-type
ribbed surface, (d) triangular II-type ribbed surface, and (e) triangular III-type ribbed surface,
Re= 1.2× 104

4.8 Dissipation Rate of Turbulence
Fig. 9 illustrates the variation of the turbulent dissipation rate (ε) in the whole computational

domain. Many regions in the exchanger are characterized by high amounts of dissipation rates.
Beginning from the duct inlet and next to the tip of the first rib; Second, at the flat rectangular
baffle next to its upper surface; Third, next to the top left face of the V-shaped VG pointing
upstream and also next to its upper face; and Finally, above the V-obstacle and close to the upped
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side of the exchanger. This is due to the high flow velocities and the effective collision of air
particles with the walls in these regions. The comparison between the different cases suggests that
the highest dissipations rates are yielded by the triangular type roughness geometries.

Figure 9: Turbulent dissipation rates (ε in m2/s3) for various roughness geometries: (a) square-type
roughness, (b) trapezoidal-type roughness, (c) triangular I-type roughness, (d) triangular II-type
roughness, and (e) triangular III-type roughness, Re= 1.2× 104

4.9 Isotherms

The distribution of the temperature fields is also provided at Re = 1.2× 104 for all of the
shaped roughness geometries under treatment (Fig. 10). For all cases studied, a considerable
variation in the temperature is remarked along with the hot wall of the exchanger, more precisely
in the baffled region. This means that the main recirculation loops have great impact on the
temperature distribution, since they generate good agitation of fluid particles between the hot wall
and the core areas. The low thermal exchange areas are located behind the vortex generators.
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Figure 10: Isotherms (T in K) for various roughness geometries: (a) square-type roughness,
(b) trapezoidal-type roughness, (c) triangular I-type roughness, (d) triangular II-type roughness,
and (e) triangular III-type roughness, Re= 1.2× 104

4.10 Vortices
The axial velocity profiles (u) just after the 1st and 2nd baffles (i.e., at x= 0.3 and 0.525 m

from the inlet) are given in Figs. 11 and 12, respectively. A clear relationship between the velocity
profiles, Re, and the various types of roughness surfaces is remarked. Recirculation loops with
low velocities are remarked at the two locations of baffles, which is resulted from the flow
separation. The velocity magnitude behind the rectangular-shaped VG (at x= 0.3 m, see Fig. 11)
is considerably higher than that behind the V-shaped VG (at x= 0.525 m, see Fig. 12), resulting
thus in a difference in the reattachment length and vortex size for the two geometrical models.

The obtained results reveal that the rectangular baffle yields the higher recirculation lengths
than those with the V-obstacle, regardless of Re and the baffle design. In addition, the hot obstacle
creates an abrupt variation in the velocity, while the insulated V-baffle yields a progressive change
in the velocity, which participates in the considerable reduction of the reattachment lengths. The
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comparison of the recirculation length for the different geometrical configurations of ribs reveals
that the triangular obstacle (type II) yields the longest recirculation cell for all Re studied here.
Also, the results suggest that the flow rates impact significantly on the vortex size behind the
baffles, where the augmentation of Re produced an increased length in the recirculation areas.

After the flat rectangular fin, at x = 0.3 m
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Figure 11: Effects of various roughness situations and different fluid rates on the vortex dynamic-
structure, right after the 1st VG, at axial station x= 0.3 m
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After the V-shaped baffle, near the channel outlet, at x = 0.525 m
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Figure 12: Effects of various roughness situations and different fluid rates on the vortex dynamic-
structure, right after the 2nd VG, at axial station x= 0.525 m

4.11 Hydrothermal Performance
The performance (η) of the proposed heat exchanger with VGs and roughness is given

in Fig. 13. Five hot rough surfaces subject to turbulent airflow for different Reynolds number
values ranging from 1.2 × 104 to 3.2 × 104 are under analysis. The results gave an increase
in the performance values, all of which exceeded the unity, which indicates an improvement
compared to the case of the smooth channel without VGs and roughness. The presence of rough
surfaces with triangular ribs proved their effectiveness compared to those reinforced with square
or trapezoidal ribs. The highest performance value is given for the II-triangular rib case in all
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Re values, while the square-shaped ribs show a significant decrease in the η along the achieved
Re range. The η value at Remax = 3.2 × 104 is 2.567 for the II-triangular roughness case [85].
Compared with the other simulated cases, this performance is decreased by about 3.768% in the
case of I-triangular ribs [85], 15.249% in the case of III-triangular ribs [85], 20.802% in the
case of trapezoidal ribs, while 27.541% in the case of square ribs, at the same Remax value.
Also, in this study, a comparison is made with heat exchangers that have non-rough walls and
contain cross-shaped VGs presented previously [68–77], in order to highlight the effectiveness of
the rough surface presence in the baffled and finned channels. The comparison is made at the
largest value of the flow rate and as expected, the proposed exchanger with its five different
models shows a significant improvement in η values compared to all cases of using the rib-free
baffled and finned air-heat exchangers. The analysis of the η values and compared to the best η
obtained, i.e., 2.567 for the II-triangular roughness case, the performance decreases greatly in the
absence of ribbed surfaces and the presence of VGs (fin and baffle) of the shape of Flat and
trapezoidal [68], Flat and triangular [68], Flat and arc [69], V-upstream and V-upstream (VUs) [70–
72], Flat and V-upstream (FVU) [68,70,73–75], V-downstream and V-downstream (VDs) [70], Flat
and V-downstream (FVD) [68,70,76], and W and W (Ws) [77], as this reduction is estimated
to be about 46.201%, 42.539%, 41.527%, 37.982%, 28.593%, 39.033%, 38.722% and 35.9563%,
respectively. This indicates the necessity of roughness heat transfer surfaces for finned and baffled
channels to improve significantly the performance of the air-heat exchangers they contain.
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Figure 13: Thermal enhancement factor (η) for various heat exchangers
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5 Conclusion

The hydrothermal characteristics of air inside a solar duct provided with various designed
baffles, i.e., flat and V, under a staggered arrangement have been inspected numerically. Five
various roughness situations were considered: trapezoidal, square, triangular pointing upstream
(type I), triangular pointing downstream (type II), and equilateral-triangular (type III).

From the several computations, low pressure values were observed behind the baffles due to
the existence of recirculation cells. However, the pressure increased in the space between the baffle
tip and the duct wall.

The velocity magnitude behind the rectangular-shaped VG is considerably higher than that
behind the V-shaped VG, resulting thus in a difference in the reattachment length and vortex size
for the two geometrical models. The obtained results reveal that the rectangular baffle yields the
higher recirculation lengths than those with the V-obstacle, regardless of Re and the rib design. In
addition, the hot obstacle creates an abrupt variation in the velocity, while the insulated V-baffle
yields a progressive change in the velocity, which participates in the considerable reduction of the
reattachment lengths.

The comparison of the recirculation length for the different geometrical configurations of ribs
reveals that the triangular obstacle (type II) yields the longest recirculation cell for all Re studied
here. Also, the results suggest that the flow rates impact significantly on the vortex size behind the
baffles, where the augmentation of Re produced an increased length in the recirculation areas.

The comparison between the various roughness situations revealed that the triangular baffles
(type II) are able to provide the most significant amounts of axial and vertical velocities. At
Re= 1.2×104 and compared with the II-model triangular baffle, the decrease in the axial velocity
was about 1.61%, 0.41%, 0.63%, and 1.69% for the square, triangular in I-model, trapezoidal,
and the triangular-shaped ribs in III-model, respectively. At the same Re, the maximum values
of v yielded by the triangular shaped baffle (type II) was higher than those with the I-type
triangular, III-triangular, square, and trapezoidal configurations by about 4.81%, 7.56%, 8.24%,
7.21%, respectively.

The most significant value of kinetic-energy of turbulence is reached with the triangular-
type ribs, while the lowest kinetic-energy is given with the two first geometrical models. More
precisely, the square-shaped ribs allowed the lowest amount of k compared with the other cases.
The comparison between the different cases in terms of rates of turbulence dissipation suggested
that the highest dissipations rates are yielded by the triangular type roughness geometries.

The higher temperature gradients were located in the baffled regions, while the lower ones
were found behind the VGs. This means that the main recirculation loops have great impact on
the temperature distribution, since they generate good agitation of fluid particles between the hot
wall and the core areas. The low thermal exchange areas are located behind the vortex generators.

The performance evaluation gave an enhancement in the η values, all of which exceeded the
unity, which indicates an improvement compared to the case of the smooth channel without VGs
and roughness.

The rough surface presence with triangular-type ribs proved their effectiveness compared to
those reinforced with square or trapezoidal ribs.

The highest performance value was given for the II-triangular rib case in all Re values, while
the square-shaped ribs showed a significant decrease in the η along the achieved Re range.
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The η value at Remax = 3.2× 104 was 2.567 for the II-triangular roughness case. Compared
with the other simulated cases, this performance was decreased by about 3.768% in the case of
I-triangular ribs, 15.249% in the case of III-triangular ribs, 20.802% in the case of trapezoidal
ribs, while 27.541% in the case of square ribs, at the same Remax value.

Also, a comparison was made with heat exchangers that have non-rough walls and contain
cross-shaped VGs presented previously, in order to highlight the effectiveness of the rough surface
presence in the baffled and finned channels. The comparison was made at the largest value of
the flow rate and as expected, the proposed exchanger with its five different models showed a
significant improvement in η values compared to all cases of using the rib-free baffled and finned
air-heat exchangers.

This highlights the necessity of roughness heat transfer surfaces for finned and baffled
channels to improve significantly the performance of the air-heat exchangers they contain.
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