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ABSTRACT

Fuzzy clustering theory is widely used in data mining of full-face tunnel boring machine. However, the traditional
fuzzy clustering algorithm based on objective function is di�cult to e�ectively cluster functional data. We propose
a new Fuzzy clustering algorithm, namely FCM–ANN algorithm. The algorithm replaces the clustering prototype
of the FCM algorithm with the predicted value of the arti�cial neural network. This makes the algorithm not only
satisfy the clustering based on the traditional similarity criterion, but also can e�ectively cluster the functional data.
In this paper, we �rst use the t-test as an evaluation index and apply the FCM–ANN algorithm to the synthetic
datasets for validity testing. Then the algorithm is applied to TBM operation data and combined with the cross-
validation method to predict the tunneling speed. The predicted results are evaluated by RMSE and R2. According
to the experimental results on the synthetic datasets, we obtain the relationship among the membership threshold,
the number of samples, the number of attributes and the noise. Accordingly, the datasets can be e�ectively adjusted.
Applying the FCM–ANN algorithm to the TBM operation data can accurately predict the tunneling speed. The
FCM–ANN algorithm has improved the traditional fuzzy clustering algorithm, which can be used not only for the
prediction of tunneling speed of TBM but also for clustering or prediction of other functional data.
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1 Introduction

Cluster analysis belongs to unsupervised pattern recognition and is a multivariate statistical
analysis method. It divides an initial sample set into several subsets according to a certain
criterion, so as to achieve clustering of sample sets and analyze clustering results. Because in
the actual engineering application, the research objects without clear classi�cation boundaries
occupy the main position, the fuzzy clustering is mainly used to cluster such objects, that is,
the objects can belong to two or more categories at the same time [1,2]. In practical applica-
tions, the more general method is the fuzzy clustering method based on the objective function.
This method transforms the cluster into a nonlinear programming problem with constraints,
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and then obtains the fuzzy partitioning and the clustering of the datasets through optimization.
In the clustering algorithm based on objective function, Fuzzy c-Means (FCM) algorithm has
the most complete theory and the most widely used. The algorithm was originally proposed
and developed by Bezdek and Hathaway [3–5]. It introduces the concept of membership degree
based on the hard c-means (HCM) algorithm and implements fuzzy clustering by means of
alternating optimization.

There have been many researches on FCM algorithms. Yu et al. [6] proposed the generalized
fuzzy clustering regularization (GFCR) model based on various fuzzy clustering algorithms such
as FCM algorithm, and veri�ed the validity of the model. Zhang et al. [7] applied an improved
weighted fuzzy c-means (WFCM) model and introduced an interval number, making it easier to
obtain appropriate weights. Askari et al. [8] proposed a Generalized Entropy based Possibilistic
Fuzzy C-Means (GEPFCM) algorithm for noise data clustering, which is more accurate than
the Possibilistic Fuzzy C-Means (PFCM) algorithm. Li et al. [9] improved the FCM algorithm
for the clustering problem of data with missing attribute values, and realized the clustering of
incomplete datasets.

In the research of FCM type clustering algorithm, the research of clustering prototype has
always been an important direction. The initial clustering prototype is a “point” in space, which
is only suitable for the detection of hypersphere clustering structures. In order to detect the non-
hypersphere clustering structure, Bzedek et al. [10] proposed a new clustering prototype, which is a
multi-dimensional linear cluster over a certain point. In addition, according to different clustering
structures, the researchers also developed a variety of clustering prototypes, such as the spherical
shell [11,12] and the ellipsoid shell [13,14] two clustering prototypes. With the deepening of
research and the expansion of application requirements, clustering prototypes have been extended
to more forms. For example, Suh et al. [15] proposed a fuzzy clustering algorithm based on
the polyhedral shell as a clustering prototype. Although these clustering prototypes can detect
the detection of one or more clustering structures, they need to use prior knowledge to select
prototypes before clustering. This does not enable ef�cient clustering when encountering functional
data with high complexity and inconspicuous clustering structure.

Functional data refers to data obeying a function, and can also be regarded as ran-
dom observation data of a function in an interval. With the development of data acquisition
and storage capabilities, data can be collected in many �elds with functional features. Func-
tional data has been applied to many �elds such as economics, medicine, meteorology and
neuroscience [16–19]. Functional data clustering analysis is a research hotspot in recent years.
Researchers have proposed a variety of clustering methods for different objects. From the data
itself, Zambom et al. [20] proposed a new method based on functional data clustering combining
parallel hypothesis testing and mean testing. Delaigle et al. [21] �rst project data onto a �nite-
dimensional space, and then use the K-means algorithm to achieve clustering. Bruckers et al. [22]
used data interpolation with multiple imputations for functional data with missing values, and
then clustered the imputed datasets.

Although the above method can achieve clustering of some functional data, it lacks univer-
sality in application. Because some of these methods require high accuracy of data, they cannot
be implemented with high data noise. Others will ignore certain parameter information, resulting
in low classi�cation accuracy.

In the recent period, machine learning methods represented by deep learning have been
applied to many �elds, such as computer vision, natural language processing, and data mining.
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Since deep learning has good feature learning capabilities, it is also used as an alternative method
for engineering problems. Samaniego et al. [23] combined DNN in the con�guration method and
the deep energy method to provide a novel idea for solving partial differential equations. Guo
et al. [24] applied a deep learning method to the thin plate bending problem, which is suitable
for the bending analysis of Kirchhoff plates with various geometric shapes. Vien et al. [25] pro-
posed a deep energy method for processing nonlinear large deformation hyperelasticity based on
DNN, which can quickly and ef�ciently obtain numerical solutions. Anitescu et al. [26] proposed
an adaptive con�guration strategy using arti�cial neural networks to solve partial differential
equations, and obtained the desired results in solving boundary value problems.

In the �eld of fuzzy clustering, there are also many studies that combine neural network
methods. ANN simulates a biological neural network and builds a training model from multiple
nodes to achieve regression and approximation of complex functions. Xu et al. [27] proposed a
WLAN hybrid indoor positioning method based on FCM and ANN, which reduces the posi-
tioning error while ensuring ef�ciency. Karlik et al. [28] proposed a new fuzzy clustering neural
network (FCNN) algorithm as a pattern classi�er for real-time odor recognition systems. The
FCNN algorithm uses FCM clustering to reduce the number of data points before inputting
to the neural network system, thereby shortening the training cycle of the neural network. In
addition, Mohd-Safar et al. [29] and Moradi et al. [30] also combined FCM and ANN, proposed
different models, and applied them to engineering problems. However, in these methods, FCM and
ANN are independent of each other, which will not only increase the computational burden but
also fail to achieve effective clustering on complex problems such as the clustering of functional
data. In addition, in these studies, FCM is used more as a data preprocessing method and serves
ANN. The algorithm we proposed takes FCM as the overall framework and ANN as a way to
describe the functional relationship. The structure achieves the integration of the two, and at the
same time carries out end-to-end training, which can realize the effective clustering of complex
functional data.

For the clustering problem of functional data, this paper proposes the FCM–ANN algorithm.
It obtains an approximate functional model through the ANN training dataset. Then the function
model is used as a new clustering prototype to replace the clustering prototype of the tradi-
tional FCM algorithm, and participates in the algorithm’s alternating optimization. Finally, the
algorithm will obtain the clustering result of the dataset and the corresponding functional data
ANN model.

The rest of this paper is organized as follows. In Section 2, we �rst introduce the FCM algo-
rithm and the arti�cial neural network algorithm, and then propose the FCM–ANN algorithm.
Section 3 introduces the clustering results of applying the algorithm to synthetic dataset experi-
ments and compares it with the traditional FCM algorithm. Section 4 introduces the experimental
results of applying the FCM–ANN algorithm to the operation data of the tunnel boring machine
(TBM) and compares it with the method of not performing classi�cation modeling. In Section 5
we make some conclusions on this paper.

2 Proposed Algorithm (FCM–ANN)

2.1 Fuzzy c-Means Algorithm
The FCM algorithm is a fuzzy clustering algorithm based on objective function. For a given

dataset X = {x1, x2, x3, . . . , xn} ⊂ Rs, the FCM algorithm divides X into c(2 ≤ c ≤ n) clusters by
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minimizing the clustering objective function. The clustering objective function is as follows:

J (U , P)=
c∑

i=1

n∑
k=1

µm
ik

∥∥xk− pi

∥∥ (1)

where xk = [x1k, x2k, x3k, . . .xsk]T is the target data, xjk is the j-th attribute value of the data;
pi (i= 1, 2, . . . , c) represents the clustering prototype vector of the i-th cluster, and the clustering
prototype matrix is represented as P =

[
p1, p2, p3, . . . , pc

]
∈ Rs×c; µik is the membership degree,

which indicates the degree to which the data xk belongs to the i-th cluster. For ∀i, k, there is
µik ∈ [0, 1], and it satis�es the following relationship:

c∑
i=1

µik = 1 for k= 1, 2, . . . , n (2)

The partition matrix is expressed as U = [µik] ∈Rc×n; m is a weighting parameter, also called
a smoothing parameter, m ∈ (1,∞) ;‖ · ‖ is the Euclidean distance in the s-dimensional space.

Combined with the constraint Eq. (2), the Lagrange multiplier method can be used to mini-
mize the objective function. The �nal formula for the partition matrix and clustering prototype is
as follows:

µik =

 c∑
l=1

(∥∥xk− pi

∥∥
‖xk− p‖

) 2
m−1
−1

for i= 1, 2, . . . , c and k= 1, 2, . . . , n (3)

pi =
1∑n

k=1µ
m
ik

n∑
k=1

µm
ikxk for i= 1, 2, . . . , c (4)

The speci�c steps of the FCM algorithm are as follows:

Step (i) Set the number of subclusters of fuzzy clustering c, for 2 ≤ c ≤ n, n is the number
of data of the target dataset; set the iteration stop threshold ε; initialize the cluster
prototype P(0); set the iteration counter b= 0.

Step (ii) Calculate (or update) the partition matrix U(b) using Eq. (3) and P(b).
Step (iii) Update clustering prototypes P(b+1) using Eq. (4) and U(b)

Step (iv) Calculate the discriminant Eq. (5):∥∥∥P(b+1)
−P(b)

∥∥∥< ε (5)

If the Eq. (5) is established, the algorithm stops and outputs the partition matrix U and and
the cluster prototype matrix P; otherwise set b= b+ 1 and re-execute Step (ii). In Eq. (5), ‖ · ‖ is
a suitable matrix norm.

The algorithm can also start by initializing the fuzzy partition matrix U , then calculate
(update) the clustering prototype matrix with the Eq. (4), and then update the fuzzy partition
matrix with the Eq. (3), until the stopping criterion is met.
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2.2 Arti�cial Neural Network (ANN)
As a hotspot in recent years, arti�cial neural network is a multi-disciplinary subject area with

a wide range and depth. A neural network is a broad and interconnected network of adaptive
simple units whose organization mimics the interactions of the biological nervous system with
the real world. The most basic building block in a neural network is a neuron. Each neuron is
connected to other neurons, and each neuron transmits information through signals.

In this paper, we use the BP (error BackPropagation) algorithm to construct a neural network,
which is the most common neural network learning algorithm by far. For a given training dataset
D = {(x1, y1), (x2, y2), . . . , (xn, yn)} for xi ∈ Rd and yi ∈ Rl, that is, the input data contains d
attribute values, and the output data contains l attribute values. We abstract the algorithm model
into a feedforward neural network structure as shown in Fig. 1.

Figure 1: Feedforward neural networks with one hidden layer

The structure has d input neurons and l output neurons. The hidden layer neurons can be
assumed to be m. The threshold of the j-th neuron in the output layer is represented by θj, and
the threshold of the h-th neuron in the hidden layer is represented by γh. The connection weight
between the h-th neuron in the hidden layer and the j-th neuron in the output layer is ωhj, and the
connection weight between the i-th neuron in the input layer and the h-th neuron in the hidden
layer is υih.

For a d-dimensional input x = [x1, x2, x3, . . . , xd ]T ∈ Rd , the output value y = [y1, y2,
y3, . . . , yl]T ∈Rl can be obtained according to the neural network structure. The �nal calculation
result of yj is as follows:

yj = σ

(
m∑

h=1

ωhj · bh− θj

)
= σ

 m∑
h=1

ωhj · σ

 d∑
i=1

υih · xi− γh

− θj

 (6)
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where σ is a sigmoid function, its equation is:

σ (x)=
1

1+ e−x (7)

2.3 FCM–ANN Algorithm
In view of the fact that the traditional FCM algorithm can not effectively solve the fuzzy

clustering problem of functional data, we propose the FCM–ANN algorithm. In the FCM–ANN
algorithm, we replace the clustering prototype in the traditional FCM algorithm with the neural
network prediction value. This makes the clustering prototype change to conform to a certain data
partitioning function, thus achieving accurate clustering of data.

For functional data, the iterative process of the FCM–ANN algorithm can be expressed as
follows:

Step (i) Set the number of subclusters of fuzzy clustering c, for 2≤ c≤ n, n is the number of
data of the target data set; set the iteration stop threshold ε; initialize the partition
matrix U(0); Set the membership threshold �; set the iteration counter b= 0.

Step (ii) The clustering result can be obtained according to the partition matrix U(b). We use
the clustering results as training data set to input arti�cial neural networks for train-

ing, and then we can obtain different neural network prediction models ANN(b)
i , i ∈

{1, 2, . . . c}.
Step (iii) The prediction model is used for the independent variables X = {x1, x2, x3, . . . , xn} ⊂Rs

in the dataset to obtain the corresponding predicted output ŷ(b)ik .
Step (iv) Use the predicted output as a clustering prototype, the corresponding Euclidean

distance d(b)ik can be obtained according to the distance function:

d(b)ik =

∣∣∣yk− ŷ(b)ik

∣∣∣ (8)

Step (v) Update the partition matrix U(b+1) by the Eq. (9).

µ
(b+1)
ik =


c∑

j=1


d(b)ik

d(b)jk

 2
m−1


−1

(9)

Step (vi) Calculate the discriminant:∥∥∥U(b+1)
−U(b)

∥∥∥< ε (10)

If the Eq. (10) is established, stop the algorithm and output the partition matrix U
and neural network prediction models ANNi, i ∈ {1, 2, . . . c}; otherwise set b = b + 1 and
repeat Step (ii).

The FCM–ANN algorithm combines the advantages of both FCM and ANN. FCM makes
the iteration always go in the direction of gradient descent. ANN provides accurate prediction
results and can approximate any nonlinear function. In theory, the algorithm can achieve fuzzy
clustering of arbitrary functional data.
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Algorithm 1: FCM–ANN Algorithm
Require: X = {x1, x2, x3, . . . , xn} ⊂Rs, c, ε,�
Ensure: U(0), b= 0

1: for k= 1→ n do
2: x′k←

[
x1k, x2k, . . . , x(s−1)k

]T
3: yk← xsk
4: end for
5: if

∥∥∥U(b+1)
−U(b)

∥∥∥> ε then
6: for i= 1→ c do
7: for k= 1→ n do
8: if µ(b)ik >� then
9: traini.append

(
x′

k, yk
)

10: end if
11: end for
12: end for
13: for i= 1→ c do
14: ANNi←ANN train data sets traini
15: end for
16: for i= 1→ c do
17: ŷ(b)ik ←ANNi

(
x′k
)

18: end for
19: for i= 1→ c do
20: for k= 1→ n do
21: d(b)ik ←

∣∣∣yk− ŷ(b)ik

∣∣∣
22: end for
23: end for
24: for i= 1→ c do
25: for k= 1→ n do

26: µ
(b+1)
ik =

{
c∑

j=1

[(
d(b)ik

d(b)jk

) 2
m−1
]}−1

27: end for
28: end for
29: b= b+ 1
30: end if
31: return U , ANN1, . . . , ANNi, . . . , ANNc

3 Experiments on Synthetic Datasets

3.1 Synthetic Datasets
In this section, we construct some synthetic datasets to study the validity of FCM–ANN

algorithms and their effect on predictions with the different number of samples, number of
attributes, and noise.
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The synthetic datasets are created as follows. In each cluster of each dataset, the objects of
i-th cluster except xobj are �rst randomly sampled. The xobj of each object is calculated according
to the setted FRA. After that, the data of different cluster are combined as the obtained dataset.
Each dataset is given a denomination by the number of object data, attributes, clusters and
functional relationships among attributes. For instance, N400A2C2F1 denotes that the dataset
contains 400 object data and can be divided evenly into two clusters, A2 denotes the dataset
has two attributes. The clustering performance of the proposed clustering algorithm is compared
with FCM.

Number of samples The synthetic datasets that discuss the effect of the number of samples size
are divided into four groups. Each group of dataset consists of two clusters, each of which has
50, 100, 150, and 200 object data. And each cluster has two attributes, which is a functional
relationship of x2 = f (x1). The speci�c function relationship corresponding to the two types of
data is as shown in Eqs. (11.1) and (11.2). At the same time, the noise is set to satisfy 3% of the
standard functional relationship data and is subject to a Gaussian distribution.

Number of attributes The synthetic datasets that discuss the effect of the number of attributes
are divided into �ve groups. Each dataset consists of two clusters, and the number of attributes
of each cluster is 2–6, separately. They respectively satisfy the relationship as shown in Tab. 1.
Each dataset have 200 samples. The noise is also set to 3%, as well as the Gaussian distribution
is satis�ed.

Table 1: Functional equation corresponding to the number of attributes

Number of attributes Cluster Equation

2 1 x2 = sin2 (0.5x1− 6) · (x1/4)2+ 10 (11.1)

2 x′2 = sin2 (0.5x1− 6) · (x1/5)2 (11.2)
3 1 x3 = (4+ x1 sin x1)

[
4+ exp

(
−x2

2

)]
(12.1)

2 x′3 = (6+ x1 sin x1)
[
4+ exp

(
−x2

2

)]
(12.2)

4 1 x4 = sin (x2− x1)+ (x3− x2)
2 (13.1)

2 x′4 = cos (x2− x1)+ (x3− x2)
2 (13.2)

5 1 x5 = 1+ 2 exp
{
−2

[
(x1− 1)2

]
+ x2

2− 0.5
(
x2

3+ x2
4

)}
(14.1)

2 x′5 = 1+ exp
{
−2

[
(x1− 1)2

]
+ x2

2− 0.5
(
x2

3+ x2
4

)}
(14.2)

6 1 x′6 =
∑4

i=1

[
(xi+1− xi)

2
+ (xi− 1)2

]
(15.1)

2 x′6 =
∑4

i=1

[
(xi+1− xi)

2
+ (xi− 1)2

]
+ 3 (15.2)

Noise The synthetic datasets that discuss the effect of noise are divided into �ve groups. Each
dataset consists of two clusters, each of which has 3–7% noise of the standard data. And the noise
subject to Gaussian distribution. They have 200 samples per cluster and 6 attributes. The speci�c
function relationships corresponding to the two clusters of dataset are shown in Eqs. (15.1) and
(15.2).
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3.2 Experimental Results
In order to test the clustering performance, we carried out a comparison experiment between

the proposed algorithm and the FCM algorithm.

The clustering performance is evaluated in terms of misclassi�cation (MS), which is calculated
as follows:

MS=
Nerror

Ntotal
× 100% (16)

where Nerror is the number of misclassi�ed object data; Ntotal is the total number of
object data.

We set the fuzzi�cation parameter m= 2, convergence threshold c= 10−4. The misclassi�cation
is discussed in each experiment by controlling the membership threshold. Tabs. 2–4 present the
average results over 30 experiments, with the optimal results being indicated in bold.

Table 2: Effect of the number of samples on algorithm prediction

Number of
samples

Misclassi�cation (MS)/%

U > 0.5 U > 0.6 U > 0.7 U > 0.8 U > 0.9 FCM

x̄ 100 31.80 29.87 26.07 23.1 26.77 42.00
Std. 9.92 10.87 10.22 10.36 11.82 0
x̄ 200 29.33 25.63 23.93 20.85 18.23 35.50
Std. 11.10 8.41 12.38 12.22 12.91 0
x̄ 300 28.10 25.03 22.89 18.40 17.70 39.33
Std. 9.94 9.39 11.59 13.13 13.41 0
x̄ 400 27.91 23.69 22.31 16.80 16.58 38.50
Std. 10.52 7.45 6.80 7.66 8.06 0

Table 3: Effect of the number of attributes on the algorithm prediction

Number of
attributes

Misclassi�cation (MS)/%

U > 0.5 U > 0.6 U > 0.7 U > 0.8 U > 0.9 FCM

x̄ 2 31.33 27.63 23.93 20.85 18.23 34.50
Std. 11.10 8.41 12.38 12.22 9.91 0
x̄ 3 31.78 28.17 26.38 22.42 20.65 46.00
Std. 13.40 12.08 11.15 12.75 12.23 0
x̄ 4 21.13 18.63 15.60 12.63 13.20 47.00
Std. 15.06 16.94 16.46 11.45 11.65 0
x̄ 5 21.78 17.12 16.15 15.28 13.68 40.00
Std. 12.76 13.43 12.17 13.48 11.85 0
x̄ 6 30.17 28.42 25.25 23.93 22.35 36.00
Std. 10.42 9.62 12.00 13.50 14.94 0
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Table 4: Effect of the noise on the algorithm prediction

Misclassi�cation (MS)/%
Noise U > 0.5 U > 0.6 U > 0.7 U > 0.8 U > 0.9 FCM

x̄ 3% 28.47 27.26 26.59 22.50 21.81 34.25
Std. 11.88 13.07 12.70 13.41 14.38 0
x̄ 4% 29.98 27.47 28.65 23.09 22.22 36.25
Std. 10.73 10.27 11.37 11.06 13.87 0
x̄ 5% 30.12 28.53 26.00 24.25 23.38 30.50
Std. 10.24 11.23 13.01 12.21 13.78 0
x̄ 6% 30.94 28.08 26.34 25.48 23.37 33.50
Std. 11.55 13.17 12.82 12.82 13.65 0
x̄ 7% 31.53 28.65 28.28 27.07 24.93 33.00
Std. 11.95 12.32 12.69 16.23 15.21 0

We use the t-test as the measure to analyze the convergence of the experimental results.
The t-test is mainly used for a normal distribution with a small sample size and an unknown
population standard deviation σ . The t-test uses the t-distribution theory to infer the probability
of occurrence of the difference, thereby comparing whether the difference between the two means
is signi�cant. The t-test can be divided into the one-sample t-test, the two-sample t-test and the
paired t-test. The paper uses the one-sample t-test method to test the results of clustering.

The one-sample t-test is used to test whether the difference between the average of a sample
set and the known population mean is signi�cant. When the distribution of the population shows
a normal distribution, the sample size is small and the standard deviation of the population is
unknown, the dispersion statistics of the sample mean and the population mean are t-distributed.

The statistic for the one-sample t-test is:

t=
X̄ −µ

S/
√

N
(17)

where N is the total number of samples, X̄ is the mean number of samples, µ is the mean of the
population, and S is the sample standard deviation. The t statistic obeys the t-distribution with a
degree of freedom of (n− 1) when µ=µ0.

The t-test was performed using the data in Tabs. 2–4. The hypothesis is as follows:

H0 :µ≤ 25, H1 :µ> 25

Under the condition of the signi�cance level α = 0.05, the rejection region of the hypoth-
esis is t > t0.05 (n− 1) = t0.05 (29). Checking out the table of t-distribution to get the upper
quantile t0.05 (29)= 1.6991.

This hypothesis is tested by calculating the statistic t using the Eq. (17). The results are listed
in Tab. 5, where the results over the upper quantile are indicated in bold.

In order to evaluate whether there is a signi�cant difference between the results obtained by
the FCM–ANN algorithm and the FCM algorithm, we also used the SPSS software to conduct
a Wilcoxon rank-sum test. We compare the results in Tabs. 2–4 with the results of the FCM
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algorithm according to different membership thresholds and calculate their rank-sum. The results
of the rank-sum test are shown in Tab. 6. Given the signi�cance level α = 0.05, we can obtain the
critical value of the rank sum of 166∼ 240. According to the calculated rank-sum, we can judge
whether the difference between the results of the two methods is signi�cant.

Table 5: The results of test statistics

Number of samples U > 0.5 U > 0.6 U > 0.7 U > 0.8 U > 0.9

100 3.6914 2.4127 0.5638 −0.9876 0.8064
200 2.1007 0.4034 −0.4654 −1.8288 −2.8240
300 1.6795 0.0002 −0.9804 −2.7069 −2.9315
400 1.4896 −0.9469 −2.1303 −5.7648 −5.6257

Number of attributes U > 0.5 U > 0.6 U > 0.7 U > 0.8 U > 0.9

2 3.0710 1.6841 −0.4654 −1.8288 −3.6789
3 2.7247 1.4132 0.6665 −1.0897 −1.9154
4 −1.3838 −2.0250 −3.0753 −5.8179 −5.4545
5 −1.3590 −3.1597 −3.9161 −3.8831 −5.1443
6 2.6719 1.9145 0.1122 −0.4268 −0.9552

Noise U > 0.5 U > 0.6 U > 0.7 U > 0.8 U > 0.9

3% 1.5729 0.9312 0.6742 −1.0040 −1.1946
4% 2.4994 1.2952 1.7287 −0.9300 −1.0794
5% 2.6926 1.6928 0.4139 −0.3308 −0.6331
6% 2.7695 1.2594 0.5629 0.2016 −0.6431
7% 2.9427 1.5954 1.3919 0.6868 −0.0248

Table 6: The result of the Wilcoxon rank-sum test

Rank sum U > 0.5 U > 0.6 U > 0.7 U > 0.8 U > 0.9

T 110 105 105 105 105

3.3 Discussion
1) By analyzing Tabs. 2–4, the mean of misclassi�cations obtained by using the FCM–ANN

algorithm is signi�cantly lower than that of the FCM algorithm, except for the experimental
results corresponding to 3% noise in Tab. 4. In addition, from the Wilcoxon rank-sum test results
in Tab. 6, it can be seen that the results obtained by the FCM–ANN algorithm are signi�cantly
different from those obtained by the FCM algorithm. Therefore, we can conclude that the clus-
tering result of the FCM–ANN algorithm is better than the FCM algorithm. At the same time,
according to the results in Tabs. 2–4, as the membership threshold increases, the misclassi�cations
show a downward trend. The results show that the higher the membership threshold, the more the
invalid data can be avoided to participate in the arti�cial neural network training, so the �tting
result is more accurate and the prediction effect is better. However, as the membership threshold
increases, the standard deviation of the misclassi�cation increases, which results in a decrease in
the stability of the results.
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2) According to the results of Tab. 2, in the case where the membership threshold is the
same, the misclassi�cations will decrease as the number of samples increases. According to the
results, as the number of samples increases, the training dataset provided by the experiment will
also increase, which makes the prediction effect of the algorithm more accurate.

3) According to the vertical comparison Tab. 3, the clustering results of the dataset are better
when the different number of attributes are taken. Therefore, it can be concluded that the FCM–
ANN algorithm can achieve effective clustering of functional data with the different number of
attributes. This also shows that the algorithm has favorable stability.

4) According to the results of Tab. 4, when the noise increases, the misclassi�cations of
the experiment using the FCM algorithm has no signi�cant change, which indicates that the
increase of noise will have less in�uence on the clustering result of the FCM algorithm. However,
in the test results using the FCM–ANN algorithm, misclassi�cations will increase as the noise
increases. Therefore, improving the accuracy of datasets and the reduction of noise can improve
the clustering effect of the FCM–ANN algorithm.

5) According to Tab. 5, most of the results of the test are below the upper quantile. Therefore,
it can be considered that the hypothesis H0 is valid, and the FCM–ANN algorithm can effectively
implement the clustering of functional data. However, the results in the reject domain appear when
the membership threshold is small. Therefore, appropriately increasing the membership threshold
can make the clustering result more accurate.

3.4 Computation Cost and Convergence Analysis
3.4.1 Computation Cost

We use the average of running time to measure the computation cost of the algorithm. The
experimental environment is intel(R) Core (TM) i5-9300H 2.40 GHz CPU, 8 GB RAM, Windows
10 operating system, Python 3.7.0. Tab. 7 show comparisons of running times for experiments on
synthetic datasets.

According to the results in Tab. 7, although the FCM–ANN algorithm runs less time than the
FCM algorithm, the results are still within acceptable limits. Therefore, the FCM–ANN algorithm
can be considered to have a lower computation cost. At the same time, in the results, the running
time will increase with the increase of the membership threshold, so the computation cost should
be considered to set a reasonable membership threshold.

3.4.2 Convergence Analysis
Then, we concentrate on the convergence analysis of FCM–ANN algorithm. In the Synthetic

data sets, we selected data sets with the number of attributes of 2–5 for testing, as shown
in Fig. 2.

It can be seen that in the case of different number of attributes, the objective function value
declines rapidly in the �rst 6 iterations and then tends to converge gradually. Therefore, it can be
further proved that the proposed algorithm is effective.

4 Engineering Application on TBM Operation Data

4.1 Project Review
The tunnel project studied in this paper is located on a metro line in China, with a length

of 2,000 meters and a diameter of 6.4 meters. The project adopted earth pressure balance (EPB)
shield TBM. This system consists of a cutterhead, chamber, screw conveyor, tail skin and other
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Table 7: Comparison of running times

Number of
attributes

Running time/s

U > 0.5 U > 0.6 U > 0.7 U > 0.8 U > 0.9 FCM

100 0.3271 0.3989 0.5709 0.5559 0.5527 0.0369
200 0.4092 0.4252 0.6779 0.6681 0.7563 0.1057
300 0.6002 0.5838 0.5714 0.4235 0.9569 0.0768
400 0.7380 0.8997 1.0559 1.1190 1.2350 0.1127

Number of
attributes

Running time/s

U > 0.5 U > 0.6 U > 0.7 U > 0.8 U > 0.9 FCM

2 0.4092 1.4252 1.6778 2.6681 2.7563 0.0439
3 0.7149 0.9637 0.7444 0.9320 1.6733 0.0469
4 0.8643 1.2287 1.2804 1.0578 1.1262 0.7982
5 1.1038 1.1927 1.2482 1.6605 1.7108 0.2075
5 0.9758 1.2253 1.4003 1.8045 2.3908 0.2558

Running time/s
Noise U > 0.5 U > 0.6 U > 0.7 U > 0.8 U > 0.9 FCM

3% 1.4720 1.6738 1.6185 2.3198 2.0802 0.2922
4% 1.5481 2.2992 2.7570 2.9883 2.8625 0.2666
5% 1.3907 2.4404 2.6289 3.4468 3.7464 0.3583
6% 1.2716 1.8903 2.2232 2.9157 3.0527 0.2733
7% 1.5146 1.3511 2.3948 2.6059 2.8353 0.3480

auxiliary. The operation data adopted in this paper are collected from TBM construction projects,
and there are 52 parameters, among which each parameter has different correlation with the
tunneling speed. The statistical chart of the datasets used in this paper is listed in Appendix A.

4.2 Experiments and Results
The experiment is divided into two parts. Experiment 1 uses the neural network algorithm

to directly train the TBM operation data to establish the prediction model of predicting the
tunneling speed. Experiment 2 uses the FCM–ANN algorithm to cluster the TBM operation data
�rstly, aiming to obtain clustering results and prediction models for each cluster, and then use the
model to predict each cluster of data. The two experimental results are compared to verify the
practicability of the algorithm.

The same 1200 sets of TBM operation data were used in both experiments. We divide the
datasets into three parts: Training set, validation set, and test set. Among them, the test set
accounts for 20%, and the remaining 80% of the data is divided into training sets and validation
sets. In addition, in order to prevent over-�tting problems, we perform 5-fold cross-validation on
the training set and the validation set. The data are randomly divided into 5 equal parts, and
each of the 5 equal parts is used as a separate test set, and the remaining 4 parts are used
as the training set for building the model for validity veri�cation. We use mean square error
(MSE) as an indicator to evaluate the prediction accuracy of the validation set, which is calculated



410 CMES, 2021, vol.126, no.1

by Eq. (18).

MSE =
1
n

n∑
i=1

(
yi− ŷi

)2 (18)

Figure 2: Objective function value in the iterative procedure

1) The steps of Experiment 1 are as follows:

1© Use the neural network algorithm to train the training set and the validation set, and adopt
the cross-validation method to obtain multiple neural network prediction models.

2© Use MSE as an indicator to evaluate the predictive effect of each model, and select the
optimal model.
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3© Apply the optimal model to the test set for prediction to obtain prediction results of the
tunneling speed.

4© Compare the prediction results of the tunneling speed with the target values to evaluate the
prediction results of the neural network algorithm.

2) The steps of Experiment 2 are as follows:

1© Use the FCM–ANN algorithm to train the training set, so as to obtain the clustering results
of the training set and their corresponding neural network prediction models.

2© Use the FCM–ANN algorithm to train the validation set, then the clustering results of the
validation set can be obtained.

3© According to the clustering results of the validation set, the neural network prediction models
obtained by the training set is used to predict each cluster of corresponding data, then the
prediction results of the validation set can be obtained.

4© Use the cross-validation method to repeat Steps 1–3, and use MSE as an indicator to evaluate
the effect of each prediction, and select the optimal model.

5© Use the FCM–ANN algorithm to train the test set, then the clustering results of the test set
can be obtained.

6© According to the clustering results of the test set, the optimal neural network prediction
models are used to predict each cluster of corresponding data, then the prediction results of
the tunneling speed can be obtained.

Tab. 8 shows the comparison results of the MSE of the validation set obtained through
cross-validation during the two experiments. According to the above steps, Experiment 1 and
Experiment 2 are executed and we obtain 240 sets of data were respectively. Compare this with
the target values and the results are shown in Figs. 3 and 4.

Table 8: Comparison of Validation MSE

Validation MSE
Experiments 1 2 3 4 5

1 319.22 255.40 230.16 355.52 193.76
43.77 20.16 26.24 31.43 42.94

As can be seen from Fig. 3, the differences between the target values and the predicted
values of the tunneling speed are obvious. This indicates that the neural network algorithm cannot
accurately predict the tunneling speed without the cluster. But in Fig. 4, the target values of the
tunneling speed show a good correlation with the predicted values.
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Figure 3: Correlation between predicted and target values (Experiment 1)

Figure 4: Correlation between predicted and target values (Experiment 2)

4.3 Comparison of Results
In this section, we use root mean square error (RMSE) and coef�cient of determination

R2 as statistical criteria to evaluate the performance of the algorithm. The root mean square
error (RMSE) is a measure of goodness-of-�t that best describes the average measure of error
when predicting a dependent variable. For a set of data y= (y1, y2, . . .yn), the result of regression
prediction is ŷ=

(
ŷ1, ŷ2, . . . ŷn

)
. The RMSE can be expressed as the form shown in Eq. (19).

RMSE=

√∑n
i=1
(
yi− ŷi

)2
n

(19)
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The coef�cient of determination R2 is also a measure of the goodness-of-�t. It can be
used to test the error of the predicted dependent and target values at the variable level. Before
describing the goodness-of-�t, several additional indicators, namely the population squared TSS,
the regression squared ESS, and the residual squared sum RSS, need to be introduced.

TSS=
n∑

i=1

(yi− ȳ)2 (20)

ESS=
n∑

i=1

(
ŷi− ȳ

)2 (21)

RSS=
n∑

i=1

(
yi− ŷi

)2 (22)

where ȳ=
∑n

i=1 yi
n . The equation for calculating the R2 is:

R2
=

ESS
TSS

= 1−
RSS
TSS

(23)

The value range of R2 is [0,1]. The closer R2 is to 1, the higher the goodness-of-�t.

In the prediction experiment of the tunneling speed, 8 independent experiments were per-
formed, and the RMSE and R2 indicators were calculated for each experiment. The results are
shown in Figs. 5 and 6.

Figure 5: RMSE indicator evaluation results

The results of Experiment 1 and Experiment 2 can be compared by the above �gure.
As can be seen from Fig. 5, most of the RMSE values of Experiment 1 are much higher
than Experiment 2, and the results of Experiment 1 varied so much that the maximum value
reached 16.92. However, the results of Experiment 2 remain stable between 3.5 and 6.5. As
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can be seen from Fig. 6, the R2 of Experiment 1 vary so much that some negative values
appear. But the R2 of Experiment 2 are always maintained above 0.9. Therefore, according to
the results of RMSE and R2, it can be concluded that the FCM–ANN algorithm can accu-
rately predict the tunneling speed of TBM, and the effect is obviously better than the neural
network algorithm.

Figure 6: R2 indicator evaluation results

5 Conclusions

In this paper, we propose the FCM–ANN algorithm for functional data that is dif�cult
to cluster effectively in traditional methods. The FCM–ANN algorithm is based on the FCM
algorithm and uses the predicted value of arti�cial neural network as the clustering prototype
to perform the iterative update of the algorithm. We �rst apply the algorithm to the synthetic
datasets and discuss the effects of different number of samples, different number of attributes, and
different noise on the clustering results under different membership thresholds. Then the algorithm
is applied to the TBM operation data and compared with the method of modeling without
clustering. The results show that the FCM–ANN algorithm can accurately and effectively predict
tunneling speed. The future work will be mainly focused on replacing existing ANN models with
more sophisticated neural network models while improving algorithm theory to make the iterative
process more complete.
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Appendix A: Statistics of TBM Operation Data

Parameter (X1) (X2) (X3) (X4) (X5) (X6) (X7) (X8) (X9) (X10)

Min. 712.59 28.38 28.72 13.98 71.90 148.52 20.56 34.48 31.18 58.02
1st quartile 1242.31 33.40 29.74 212.00 107.84 171.89 115.02 64.93 49.24 114.25
Mean 1702.14 37.74 33.41 219.24 111.85 190.18 130.40 93.17 58.88 133.77
3rd quartile 2675.15 41.16 36.58 255.49 135.82 235.63 142.17 97.95 97.95 155.89
Max. 3058.41 51.39 38.10 322.31 197.64 290.47 160.32 115.13 119.14 202.20

Parameter (X11) (X12) (X13) (X14) (X15) (X16) (X17) (X18) (X19) (X20)

Min. 1.32 1.70 1.63 0.00 1.74 2.13 1.59 2.16 0.00 7.12
1st quartile 3.20 2.75 3.49 0.00 4.35 4.39 4.15 4.40 7.67 72.59
Mean 5.33 6.18 5.77 4.27 5.74 6.84 12.57 5.57 11.94 85.71
3rd quartile 14.97 14.50 14.99 12.17 14.62 14.82 15.63 15.45 16.15 112.34
Max. 57.19 57.29 65.54 63.21 46.43 54.31 68.20 57.57 21.61 171.73
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Appendix A: (continued)

Parameter (X21) (X22) (X23) (X24) (X25) (X26) (X27) (X28) (X29) (X30)

Min. −4.31 0.00 1.47 1.30 1.59 1.51 1.37 0.22 30.53 0.00
1st quartile −4.09 0.02 1.68 1.48 1.76 1.67 1.60 2.15 39.84 0.00
Mean −4.03 0.04 1.92 1.54 2.21 2.10 1.70 2.57 41.20 0.00
3rd quartile −3.97 0.10 2.00 1.61 2.29 2.17 1.78 3.53 43.00 1.48
Max. −3.84 0.14 2.25 1.80 2.53 2.34 2.04 6.39 51.24 5.11

Parameter (X31) (X32) (X33) (X34) (X35) (X36) (X37) (X38) (X39) (X40)

Min. 0.00 0.00 0.00 1.22 1.44 1.69 1.15 0.52 1.20 0.00
1st quartile 0.00 0.00 0.00 3.18 3.97 3.82 3.26 2.28 1.37 18.39
Mean 0.00 0.00 0.00 12.47 5.70 5.36 5.17 2.70 1.70 25.99
3rd quartile 0.94 0.00 0.00 18.35 15.02 15.09 15.01 3.67 1.80 31.85
Max. 5.12 0.00 1.49 74.67 61.05 48.54 43.46 5.89 2.04 53.75

Parameter (X41) (X42) (X43) (X44) (X45) (X46) (X47) (X48) (X49) (X50)

Min. 0.00 314.98 335.83 306.87 291.67 0.36 22.79 4.53 0.19 10099.52
1st quartile 3.00 685.91 720.30 702.94 683.34 8.21 35.54 23.89 0.20 14692.63
Mean 3.00 1086.51 1073.90 1040.60 1050.74 10.17 49.59 45.41 7.37 15640.34
3rd quartile 3.00 1334.75 1383.33 1368.67 1334.47 19.48 64.42 48.42 11.75 16340.86
Max. 3.00 1805.12 1828.83 1795.89 1778.86 21.59 66.08 51.73 12.76 16967.07

Parameter (X51) (X52)

Min. 0.50 0.55
1st quartile 0.64 33.67
Mean 1.90 48.02
3rd quartile 2.06 60.31
Max. 2.12 72.64


