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Abstract: Antibody is an important part of adaptive immune system and is produced only by B cells. There are five main

classes (IgM, IgD, IgG, IgA, IgE) and some subclasses in antibodies. IgM and IgD are produced by mature naïve B cells.

On the other hand, IgG, IgA and IgE are produced by activated antigen-specific B cells via class switch recombination

(CSR). CSR is the irreversible DNA rearrangement from upstream to downstream classes in immunoglobulin heavy

chain genes. Co-stimulations of CD40 ligand (CD40L) and cytokines are required for induction of CSR by activating

several transcription factors. These signal transduction pathways involve many protein phosphorylation.

Phosphorylation or dephosphorylation of cellular protein is an important kind of post-translational protein

modification in intracellular signal transduction. In the fact, more than one third of the intracellular proteins are said

to be transiently phosphorylated in human. A protein kinase is an enzyme that catalyzes the addition of phosphate to

substrate protein. Whereas, a protein phosphatase catalyzes the removal of phosphate from the substrate. This review

focuses on the mechanism of CSR controlled by protein phosphorylation and dephosphorylation. We provide the role

of protein kinase and phosphatase in the regulation of class switch recombination.

Introduction

Antibodies, which are a type of glycoprotein produced by B
lymphocytes, play a critical role in the biophylactic
mechanism. When B lymphocytes recognize specific
antigens, they become activated, leading to the production
and release of secretory immunoglobulins. Antibodies are
classified into five isotypes, and some isotypes can be further
divided into subclasses (Ballieux et al., 1964; Ishizaka and
Ishizaka, 1967; Ishizaka et al., 1964; Terry and Fahey, 1964).
Despite the varying functions and characteristics of each
antibody class, all antibodies can be produced from the
same B cells without changing their antigen specificities.
Antibodies are divided into two parts, known as the variable
region and the constant region, based on their structure and
function (Hozumi and Tonegawa, 1976). The former is
important for antigen recognition, while the latter defines
the class of antibody. Irreversible gene rearrangement
enables a change in the constant region, which is known as

class switch recombination (CSR) (Sakano et al., 1980).
During class switching, there are many changes in
intracellular molecules, and intracellular signal transduction
occurs in various cascade formats, leading to final changes.
Various post-translational protein modifications play a role
in cellular modulation. Phosphorylation, in particular, is a
reversible reaction involving numerous proteins. Enzymes
directly involved in phosphorylation occupy approximately
2% of genomic DNA (Cohen, 1985; Krebs and Fischer, 1955).

This review will explain the fundamental mechanism of
class switching, as well as discuss the important changes in
controlling signal transduction during class switching, with
a focus on protein phosphorylation. In recent years, kinase
inhibitors have been used as molecularly targeted drugs for
cancer treatment, and the control of phosphorylation has
become increasingly important (Fabian et al., 2005). Class
switching is essential in a wide range of immune responses
involving antibodies, including infections, autoimmune
diseases, and allergies, and deficiencies of class switching
can cause diseases such as hyper-IgM syndrome (Allen et
al., 1993; Aruffo et al., 1993). Thus, understanding
phosphorylation or dephosphorylation in class switching is
fundamental in gaining new insights into disease regulation.
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Class Switch Recombination

Antibody structure and types
Antibodies play a key role in humoral immunity and have a Y-
shaped structure where 2 H-chains and 2 L-chains, totaling 4
glycoproteins, are coupled by SS-bonding (Marquart et al.,
1980; Watt and Voss, 1979). Individual H-chains and L-
chains can be divided into the variable region and the
constant region, with the variable region being important
for antigen recognition. Meanwhile, the constant region in
H-chains defines the antibody class. Antibody functions
vary depending on their class. Antibodies are classified into
five isotypes, IgM, IgD, IgG, IgA, and IgE. IgG has four
subclasses in both humans and mice, but the subclasses in
humans are IgG1, IgG2, IgG3, and IgG4, whereas mice have
IgG1, IgG2a (BALB/c) or IgG2c (C57BL/6), IgG2b, and
IgG3 (Ballieux et al., 1964; Fahey et al., 1964; Grey et al.,
1971). IgA differs between humans and mice in terms of
whether or not there are subclasses. In humans, subclasses
IgA1 and IgA2 exist, but no subclasses exist for IgA in
mice (Tab. 1).

The H-chain in antibodies is encoded by the long arm of
chromosome 14 (14q32) in human, and the downstream
variable region is composed of variable segments (V),
diversity segments (D), and joining segments (J), known as
the VDJ region (Hozumi and Tonegawa, 1976). The
constant domain (CH) encodes the constant region. All
sequences encoding each class exist in the constant region,
and in each class, the layout of the I region, the switch (S)
region, and the constant (C) region are arranged starting
upstream. However, only Cδ that encodes IgD does not
have the specific I and S regions (Lennon and Perry, 1998).
In the C region of the other immunoglobulins, Cμ, Cδ,
Cγ3, Cγ1, Cα1, Cγ2, Cγ4, Cε, and Cα2 are sequentially
encoded, and each of them has specific I and S regions
upstream nearby.

Antibody production in naïve B cells
When producing antibodies, B cells do not randomly select
the constant region of the H-chain, but they first transcribe
and translate the nearest constant region downstream of the
VDJ region. Therefore, in the case of naïve B cells, since Cμ
exists in the immediate downstream of the VDJ region, the
membrane form of IgM is expressed on the cell membrane
as a B cell receptor (BCR). Unlike other classes, IgD does
not have specific I or S regions, can only be translated when
Cμ and Cδ are transcribed, and is regulated by alternative
splicing. As a result, IgM and IgD are expressed on the
membrane surface of mature B cells. This means that B cells
can only produce IgM and IgD unless there are specific
changes (Kluin et al., 1995; Li et al., 1994).

Molecular mechanism and control of class switching
When B cells recognize a specific antigen through a B cell
receptor, they become activated and receive several stimuli
from CD4+ T cells, which recognize the antigen. These
stimuli induce B cells to perform an irreversible gene
rearrangement called class switching. This reaction removes
certain genomic DNA to enable any class of antibodies to be
produced. Class switching is referred to as a reaction that
removes DNA between Sμ and the downstream S region
(Hozumi and Tonegawa, 1976; Sakano et al., 1980). This
makes the C region, apart from Cμ and Cδ, the most
adjacent to the VDJ region. For example, in the case where
DNA between Sμ-Sε is removed, Cε becomes adjacent, and
B cells start producing IgE (Fig. 1).

Once the coding DNA between the S regions has been
cleaved off, B cells completely lose their ability to produce
the corresponding class of antibodies existing in the
removed DNA. In general, the binding of CD40L (CD145)
expressed mainly on the surface of CD4+ T cells to CD40
expressed on the cell membrane of B cells is important for B

TABLE 1

Class switching in human and mice

Human

Isotypes IgM IgD IgG IgA IgE

Subclasses None None IgG1 IgG2 IgG3 IgG4 IgA1 IgA2 None

Heavy chains μ δ γ1 γ2 γ3 γ4 α1 α2 ε

Responsible cytokines IL-10 IL-10 IL-4, IL-13 IL-10+TGF-β IL-4, IL-13

Transcription factors STAT6, NF-κB, PAX5, PU.1

Mouse

Isotypes IgM IgD IgG IgA IgE

Subclasses None None IgG1 IgG2a (BALB/c) IgG2c
(C57BL/6)

IgG2b IgG3 None None

Heavy chains μ δ γ1 γ2a (BALB/c)
γ2c (C57B/6)

γ2b γ3 α ε

Responsible
cytokines

IL-4, IL-13 IFN-γ (IgG2a) TGF-
β

TGF-β IL-4, IL-13

Transcription
factors

STAT6,
NF-κB

T-bet (IgG2a) RUNX3, R-SMAD,
Co-SMAD

STAT6, NF-κB, PAX5,
PU.1, AP1
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cell activation (Gordon et al., 1989; Gordon et al., 1988;
Hollenbaugh et al., 1992; Noelle et al., 1992; Paulie et al.,
1989). CD40-CD40L binding is a necessary stimulus for B
cell survival as well as induction of class switching (Kawabe
et al., 1994; Marriott et al., 1999). If there is a mutation in
CD40 or CD40L, class switching is inhibited, presenting as a
hyper-IgM syndrome (Allen et al., 1993; Aruffo et al., 1993;
DiSanto et al., 1993). In humans, most mutations are found
in CD40L and rarely found in CD40 (Jhamnani et al., 2018;
Murguia-Favelaa et al., 2017).

It is known that the direction of class switching is
determined by cytokines. For example, in humans,
interleukin (IL) -4 and IL-13 induce class switching to IgG4
and IgE, and IL-10 induces class switching to IgG1 and
IgG3 (Fujieda et al., 1996; Gascan et al., 1991; Malisan et al.,
1996; Punnonen et al., 1993). Furthermore, the application
of IL-10 at the same time as transforming growth factor-β
(TGF-β) induces class switching to IgA1 and IgA2
(Defrance et al., 1992; Kitani and Strober, 1994; Tangye et
al., 2002; Zan et al., 1998). It has been suggested that the
transcription factor activated by the cytokine plays a
significant role. However, how this interaction contributes to
class switching remains unclear. As one of the reasons, some
cytokines affect the regulation of different class switches and
their actions overlap. This relates to transcription factor
binding sites in the I region upstream of the S region that is
specific to each CH domain. There are several transcription
factor-binding sites in individual specifical I regions. The Iε
region has many transcription factor binding sites such as
signal transducer and the activator of transcription 6
(STAT6), nuclear factor-κB (NF-κB), PU.1, B-cell-specific

activator protein (BSAP, also called as PAX5), CCAAT/
enhancer-binding protein (C/EBP) 10, and activator protein
1 (AP1) (Delphin and Stavnezer, 1995; Dryer and Covey,
2005; Linehan et al., 1998; Messner et al., 1997; Mao and
Stavnezer, 2001; Shen and Stavnezer, 2001; Stütz and
Woisetschläger, 1999; Thienes et al., 1997). Furthermore,
binding sites for NF-κB are present at least in Iε, Iα, and Iγ1
domains. Also, it is not completely clear how NF-κB is
involved in the specific regulation of class switches, as it has
been reported that NF-κB deficiency affects not only IgE
and IgA class switching but also class switching of the IgG
subclass (Bhattacharya et al., 2002). NF-κB is composed of
p50, p52, p65 (RelA), c-Rel, and RelB, and has been
variously reported, as the pathways it activates and the
combinations it functions as a transcription factor vary
depending on the cells and the stimuli. For example,
overexpression of RelB suppresses IgG1 CSRs but not IgE
CSRs under IL-4 stimulation (Bhattacharya et al., 2002). In
contrast, it has been reported that both STAT6 and NF-κB
are crucial for IL-4-induced IgE CSR in humans (Messner et
al., 1997). It is possible that they are more complexly
regulated by multiple transcription factors rather than being
regulated by a single factor. This suggests that the
transcription factor is important for class switching, but it is
difficult to conclude that transcription factor regulates only
one CSR in a specific way.

As a fact already known, B cells stimulated by CD40L
and cytokines activate transcription factors bound to specific
I regions through various signal transduction pathways.
Upon transcription factor binding, a complementary single-
stranded RNA called germline transcript (GLT) is

FIGURE 1. Immunoglobulin gene diversification and class switch recombination.
The heavy chain gene regions of human antibodies are shown. Downstream of the VDJ region, which encodes the variable region of the
antibody, there are C regions that determine the class of each antibody. Except for Cδ, there are specific I and S regions in each upstream
of the C region. Therefore, in naïve B-cell DNA, downstream of the VDJ is Iμ-Sμ-Cμ-Cδ, Iγ3-Sγ3-Cγ3, Iγ1-Sγ1-Cγ1, Iα1-Sα1-Cα1, Iγ2-
Sγ2-Cγ2, Iγ4-Sγ4-Cγ4, Iε-Sε-Cε, and Iα2-Sα2-Cα2 in that order. These specific C regions encode IgM or IgD, IgG3, IgG1, IgA1, IgG2,
IgG4, IgE, and IgA2, respectively. In naïve B cells, IgG, IgA, and IgE-encoding C regions are located downstream of the VDJ region that
determines antigen specificity. Naïve B cells translate Cμ or Cδ, which are located next to the VDJ, and synthesize IgM and IgD. The I and
S regions are located upstream of all the C regions except Cδ, and in the event of a class switching, a single-stranded RNA called germline
transcript (GLT) is synthesized in each S region. The GLT triggers the class switching to proceed. When IgE class switching occurs, μGLT
and εGLT are synthesized in the Sμ and Sε regions of the B cell, respectively, and the DNA region between the two S regions is completely
removed. This results in the presence of Cε in the immediate downstream of the VDJ region, allowing the B cell to produce IgE. The
removal of this DNA sequence is an irreversible reaction, making it impossible for the B cell to make antibodies of the class on the
removed sequence.
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synthesized in the downstream area of the S region, which
triggers class switching (Flanagan and Rabbitts, 1982; Islam
et al., 1994; Sakano et al., 1980; Stavnezer-Nordgren and
Sirlin, 1986; Wang et al., 2009). The synthesized GLT forms
a DNA-RNA hybrid with a complementary strand. Thus, a
single-stranded DNA (ssDNA) is formed in the S region.
An enzyme called activation-induced cytidine deaminase
(AID) acts on the ssDNA, and cytosine in the ssDNA is
replaced with uracil (Muramatsu et al., 2000; Muramatsu et
al., 1999). Since this then results in the appearance of U-
contained DNA strands, a base excision repair enzyme
called uracil-N-glycosylase (UNG) recognizes U and
eliminates it. Furthermore, apurinic/apyrimidinic
endonuclease 1 (APE1) makes a cut in the position where U
was and creates a nick (Guikema et al., 2007; Masani et al.,
2013). Although the details of this reaction are still
unknown, it also occurs where cytosines are: A DNA-RNA
hybrid is formed, and ultimately a nick is created with both
DNA strands in the S region, resulting in a double-strand
break (DSB). The same reaction simultaneously happens
with Sμ, and when a DSB occurs in two places of the S
region, the arrangement in between is removed as a circular
DNA. However, both cut sections in the S region are
reconnected by the non-homologous end-joining pathway
(NHEJ) in order for the targeted CH domain to be
consequently positioned proximate to the VDJ region. The S
region is very important in class switching. In mice, CD40
and IL-4 induce class switching to IgG1 or IgE. Sγ1
deficiency completely inhibits class switching to IgG1. In
addition, IL-4 induces class switching to IgG1 or IgE as
explained above, while Sγ1 deficiency increases class
switching to IgE from approximately 3% to more than 40%
(Matthews et al., 2014; Misaghi et al., 2010).

Furthermore, class switching occurs several times. One
study using mice reported that class switching in which
there was direct switching from IgM to IgE, as well as
switching once to IgG1 and then to IgE in stages (Yoshida
et al., 1990). However, class switching to IgG1 never
happens through IgE. The opportunity for class switching to
IgG1 is lost since prior class switching to IgE creates a
situation whereby Cγ1 has already been eliminated, due to
the Cε coded IgE position in the downstream side of Cγ1
coded IgG1.

IgA class switch is triggered by stimulation with TGF-β
in both humans and mice (Coffman et al., 1989; Defrance et
al., 1992; Harriman et al., 1996; Islam et al., 1991; Nilsson et
al., 1991). TGF-β-deficient or TGF-β receptor (TGFβR) II-
deficient mice have lower IgA levels, indicating that
stimulation from TGF-β is important for IgA class switching
(Cazac and Roes, 2000; van Ginkel et al., 1999).

Class switching to IgG depends on specific cytokines and
transcription factors; however, the exact mechanism of class
switching is still not clear. In mice, cytokines that induce
class switching to IgG1, IgG2a, and IgG2b have been
identified. For example, class switching to IgG1 is induced
by the stimulation of IL-4/IL-13 (however, the regulatory
mechanism of class switching to IgE or IgG1 induced by the
same stimulus is not well understood). IgG2a and IgG2b are
reported to be induced by interferon-γ (IFN-γ) and TGF-β,
respectively (Snapper et al., 1988; Deenick et al., 1999).

Also, class switching of human IgG4 is induced by IL-4/IL-
13 stimulation as in mice IgG1 (Cocks et al., 1993; Gascan
et al., 1991). This stimulus also induces a class switching to
IgE, which is the same as in mice. Furthermore, human
IgG1 and IgG3 are induced by IL-10 (Briere et al., 1994;
Malisan et al., 1996). The transcription factors involved in
these processes are poorly understood, and it is thought that
T-bet is required for IgG2a induction, as the deletion of T-
bet represses IFN-γ-induced IgG2a (Peng et al., 2002).

Although the full picture of regulation by transcription
factors is not yet clear, the fact that serum IgG1 and IgE are
severely impaired in B cells of STAT6 knockout (KO) mice
and that IFN-γ-induced IgG2a class switch is inhibited in T-
bet-deficient B lymphocytes suggests that transcription
factors activated by each cytokine contribute to the
specificity of class switching.

Phosphorylation and Dephosphorylation

Phosphorylation or dephosphorylation of cellular protein is
an important kind of post-translational protein modification
in intracellular signal transduction. The existence of
phosphorylation changes protein behavior (Ardito et al.,
2017). Protein phosphorylation/dephosphorylation is a
reversible reaction. Protein kinases catalyze phosphorylation
while protein phosphatases catalyze dephosphorylation.
Phosphorylation in eukaryotes occurs when a phosphate
group in ATP is transferred and added to the hydroxyl
group of serine, threonine, and/or tyrosine residues. Protein
phosphorylation/dephosphorylation impacts a wide variety
of actions such as protein synthesis and regulation, protein-
protein interactions, cell division, cellular differentiation,
and apoptosis (Ardito et al., 2017; Hubbard and Cohen,
1993). In addition, phosphorylation triggers ubiquitination.
More than 1/3 of intracellular proteins are phosphorylated,
in which serines, threonines, and tyrosines are respectively
phosphorylated at 86.4%, 11.8%, and 1.8%, indicating that
the majority of phosphorylation occurs at serine/threonines
(Olsen et al., 2006). The human genome contains more than
500 kinases, approximately 2% of the human genome.

The majority of kinases can be classified into serine-
threonine kinases and tyrosine kinases, and they are
distributed and function in the cytoplasm and the nucleus.
In addition, receptor tyrosine kinases are expressed on the
cell membrane. Tyrosine kinases can be divided into
receptor tyrosine kinases (RTKs), which reside at the cell
membrane, and non-RTKs (NRTKs), which exist in the
cytoplasm. RTK plays an important role in various
biological activities, including cell proliferation,
differentiation, and survival. Therefore, gain-of-function
mutations in RTK are associated with diseases, such as
cancer and leukemia (Greenman et al., 2007; Khan et al.,
2017; Stephens et al., 2005; Zhou et al., 2017). In contrast,
there are four Janus kinase (JAK) isoforms: JAK1, JAK2,
JAK3, and TYK2, which are typical NRTKs, and different
JAKs are specifically bound to various cytokine receptors.
Activated by cytokine stimulation, a JAK first
phosphorylates tyrosine residues of the receptor. Then,
STAT, a transcription factor with an SH2 domain, is
recruited and binds to the phosphorylated tyrosine residue
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of the receptor via SH2. JAK then phosphorylates the tyrosine
residue of STAT bound to the receptor. As a result, activated
STATs form a dimer, which leaves the receptor and
translocates to the nucleus, where it functions as a
transcription factor. This is called the JAK-STAT signaling
pathway, which is important for the immune response. For
example, stimulation with IFN-γ activates STAT1 via JAK1/
JAK2 and exhibits an antiviral effect. Various other
combinations exist: IL-4 stimulation activating JAK1/JAK3-
STAT6 and IL-6 stimulation activating JAK1/JAK2/TYK2-
STAT1/STAT3. Similarly, Abl, another NRTK, localizes and
binds to actin filaments in the cytoplasm and chromatin in
the nucleus. Breakpoint cluster region-Abelson 1 (BCR-
ABL1) is a well-known genetic mutation in chronic
myelogenous leukemia (CML), and unlike the original ABL,
its tyrosine kinase activity is constitutively active. This
activates various intracellular signaling pathways involved in
cell proliferation, transformation, and inhibition of
apoptosis, leading to the development of CML (McWhirter
et al., 1993). Furthermore, an insulin receptor is a tyrosine
kinase; many tyrosine kinases play important roles in cell
division, migration, and survival (Hunter and Sefton, 1980;
Kasuga et al., 1982; Tonks et al., 2002; Ushiro and Cohen,
1980; Wilks et al., 1991). There are many kinds of serine-
threonine kinases, such as mitogen-activated protein kinase
(MAPK), protein kinase A (PKA), protein kinase C (PKC),
and Ca2+/calmodulin-dependent protein kinases (CaMKII),
the substrates of which are composed of transcription
factors and cell cycle regulators. Abnormalities in these
kinases are related to diseases (Aronowski and Grotta, 1996;
Aronowski et al., 2000; Chen et al., 2003). For example, X-
linked agammaglobulinemia is caused by a mutation in the
Bruton tyrosine kinase (BTK) gene that inhibits the
maturation of B cells (Ponader and Burger, 2014). BTK is a
cytoplasmic NRTK and belongs to the Tec kinase family.
BTK is widely expressed on B cells (except plasmatic cells),
monocytes, granulocytes, platelets, etc., but it is particularly
important for the differentiation of pre-B cells to immature
B cells (Tsukada et al., 1993). Downstream of the pre-B cell
receptor, Lyn, Syk, SLP65, BTK, and PLCγ2 are activated to
induce B cell differentiation. Therefore, in X-linked
agammaglobulinemia, which results from a genetic mutation
in the BTK gene, B cells cannot mature from pre-B cells,
and eventually, antibodies cannot be produced as the
number of mature B cells decreases (Conley, 1985). In
mature B cells, BTK also acts downstream of the B cell
receptor and induces the activation of the transcription
factor NF-κB, which is important for cell survival and
proliferation. An association with MAPK and
phosphoinositide 3-kinases (PI3K) has been reported in
asthma, and MAPK is thought to play an important role in
the pathogenesis of the disease, as its inhibition has been
reported to suppress allergic airway inflammation (Liu et al.,
2008; Sousa et al., 1999). Indeed, p38 MAPK is strongly
activated on alveolar macrophages in some asthmatics
(Bhavsar et al., 2010; Wuyts et al., 2003). PI3K (the details
of the molecular mechanism will be described later) causes
bronchodilation, and PI3K inhibitor suppresses eosinophil
accumulation in asthmatic mice, suggesting that PI3K is
important in the pathogenesis of asthma (Duan et al., 2005;

Koziol-White et al., 2016). Also, kinase has been reported to
be associated with many cancers, and epidermal growth factor
receptor (EGFR), an RTK, has been linked to various cancers
such as non-small cell, colon, and pancreatic cancers, and
abnormal activation by EGFR mutation causes cancer cell
growth (Greenman et al., 2007; Khan et al., 2017; Stephens et
al., 2005; Zhou et al., 2017). Furthermore, serine/threonine
kinase AKT2, which is important for cell proliferation and
survival, is known to be overexpressed in pancreatic and
ovarian cancers (Cheng et al., 1992; Miwa et al., 1996). Thus,
kinase inhibitors, such as EGFR and Bcr-Abl inhibitors, are
used as molecularly targeted drugs for cancer treatment
(Gambacorti-Passerini et al., 1997; Shepherd et al., 2005).
Inhibitors of these kinases are now being used as anticancer
drugs. Compared to kinases, there are fewer phosphatases; the
human genome contains approximately 200 phosphatases
(Sacco et al., 2012). Like kinases, phosphatases are divided into
serine-threonine phosphatases and tyrosine phosphatases.

Serine-threonine phosphatases are further classified into
the phosphoprotein phosphatase (PPP) family and the
metallo-dependent protein phosphatase (PPM) family; the
former contains protein phosphatase (PP) 1, PP2A, PP2B,
PP4, PP5, PP6, and PP7, and the latter contains PP2C
(Johnson, 2009; Shi, 2009). The PPP family members
possess a catalytic subunit and regulatory subunits. PPM
family members are composed of a monomer without a
regulatory subunit and contain a catalytic domain and a
domain regulating substrate specificity. PPM family
members also have Mn2+ or Mg2+ -dependent functions.
PPP family members are divided into various groups based
on chemical properties, and among them, PP2A, PP4, and
PP6 are highly homologous and known as the PP2A family.
The PP2A family has subunit A as a foothold and core
enzymes consisting of subunit C, which changes the
substrate and localization depending on which regulatory
subunit B is bound to (holoenzyme). This makeup of
phosphatases enables specific regulation patterns to
dephosphorylation (Brautigan, 2013; Lillo et al., 2014).
Studies of the PP2A family highlight the involvement of
PP2A in autoimmune diseases. For example, in systemic
lupus erythematosus (SLE), there is an abnormal response
to the T-cell receptor (TCR)-mediated stimulation of T cells
and a loss of the CD3ζ chain, which induces the expression
of the Fc receptor γ (FcRγ) chain, ultimately leading to
abnormal T cell activation (Liossis et al., 1998; Nambiar et
al., 2001). It has been reported that PP2A expression and
activity are increased in T cells of SLE patients, and CD3ζ
expression, as well as IL-2 production, are suppressed
(Katsiari et al., 2005; Sunahori et al., 2011). Moreover, mice
lacking PP2A in peripheral blood T cells showed a decrease
in Th17 cells, indicating that PP2A is important for Th17
cell differentiation (Xu et al., 2019). Th17 cells have been
reported to be associated with autoimmune diseases, such as
Crohn’s disease and rheumatoid arthritis, suggesting that
PP2A is associated with various autoimmune diseases as
well as SLE.

Cyclin-dependent kinases (CDK) were originally
discovered as kinases that regulate the cell cycle, but they
are now known to be involved in the regulation of
transcription factors and metabolism as well as the cell
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cycle. CDK1, CDK2, CDK4, and CDK6 are involved in the
regulation of the cell cycle, and CDK1 is important in the
transition from the G2 to the M phase of the cell cycle.
CDK1 inactivation has been shown to lead to the
induction of apoptosis. CDK4/CDK6, cyclin D complex,
CDK2, and cyclin E complex are involved in the
transition from G1 to S phase, called the R-point, which
is important for cell proliferation, and CDK4/6 inhibitors
are used as anticancer drugs (Mukhopadhyay et al., 2002;
Wolter et al., 2001).

Kinase and Class Switching

Class switching establishment and regulation is via various,
intricate signal transduction pathways. Kinases play roles in
class switching modulation/regulation. PI3K has four
subclasses known as IA, IB, II, and III and phosphorylate
the third position of the inositol ring of PtdIns (4, 5,) P2
(PIP2) to produce PtdIns (3, 4, 5,) P3 (PIP3), which acts as
a second messenger within cells. In particular, Class IA
PI3K plays an important role in signal transduction. PI3Kα,
PI3Kβ, and PI3Kδ belong to Class IA PI3K and consist of
each catalytic subunit (p110α, p110β, and p110δ) in
combination with regulatory subunits (p85α, p55α, p50α,
p85β, and p55γ). PI3Kδ consists of the catalytic subunit
p110δ and a regulatory subunit, distributed in the blood and
the immune system, and is important for the activation of T
and B cells (Okkenhaug et al., 2014).

The autosomal dominant gain-of-function mutation in
p110δ coding PIK3CD induces hyperactivation on PI3Kδ,
which causes immunodeficiency accompanied by hyper-IgM
syndrome due to a failure of class switching (Lucas et al.,
2014). This disease is called activated PI3Kδ syndrome
(APDS) and is related to aging T cells. Since class switching
in mice splenic B cells is enhanced when treated with a

PI3K inhibitor, LY294002, or a PI3Kδ inhibitor, IC87114, it
is suggested that activated PI3K suppressively controls class
switching (Omori et al., 2006). The activation of PI3K in B
cells is known to be important for B-cell differentiation and
survival and to be involved in the transcription of different
molecules depending on the stages of differentiation in B
cells (Omori and Rickert, 2007). In peripheral blood B cells,
PI3K/Akt (the serine-threonine kinase; also known as
protein kinase B) activity, such as that induced by CD19
stimulation, is important for cell survival, but the
transcription factor forkhead box protein O1 (FOXO1), it is
transcriptional regulation downstream of PI(3)K, is not
thought to be involved in the mechanism of B-cell survival
(Dengler et al., 2009). However, FOXO1 regulated by PI3K/
Akt signaling has been reported to repress L-selectin
expression and class switching in response to FOXO1
reduction (Dengler et al., 2009). This means that FOXO1
may contribute to L-selectin and AID expression in
peripheral blood B cells. This is supported by the fact that
the generation of a FOXO1 T24A mutant whose activity is
not suppressed by Akt1/2 increases AID expression and
class switching. As a result of PI3K activation, PIP3
produced by the phosphorylation of PIP2 induces
subsequent phosphorylation of PDK1, which leads to the
activation of Akt that inhibits the transcription factor
FOXO1. Since FOXO1 has been reported to exacerbate the
expression of AID genes, activated PI3K may ultimately
inhibit AID (Dengler et al., 2008; Omori and Rickert, 2007)
(Fig. 2). However, in addition, to the FOXO1-mediated
pathway, several other transcription factors, such as NF-κB,
which is a downstream molecule of CD40L stimulation, are
involved in the activation of AIDs. Thus, although we have
introduced PI3K/Akt-mediated production of AIDs via
FOXO1 regulation, it is difficult to explain the specificity
using this activation pathway alone.

FIGURE 2. CSR regulated by AID.
In class switching, a complementary ssRNA, GLT, is synthesized in one strand of the target S regions. That results in the formation of DNA-
RNA hybrids in the S region. Thereafter, AID targets the other strand of DNA that does not form DNA-RNA hybrids and converts its cytosines
to uracils. The converted uracil of ssDNA is removed by APE1, resulting in a double-strand break (DSB) and a class switching. The regulation
of AID involves PI3K as an indirect control of kinase. PI3K represses the transcription factor FOXO1 via the PI3K/Akt pathway. FOXO1
upregulates AID production and, therefore, PI3K activation has an inhibitory effect on CSR. On the other hand, PKA and PKC directly
regulate AID by phosphorylating S38 and S3 in AID, respectively. Phosphorylation of S38 activates AID, and phosphorylation of S3
inhibits its activation.
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AID is an essential enzyme in class switching and is also
important for somatic hypermutation (SHM) during class
switching. It has been reported that AID deficiency causes
hyper-IgM syndrome (Revy et al., 2000). Phosphorylation
on serine 38 (S38) in AID is critical for class switching, and
in mice, class switching was inhibited when a mutant in
which S38 in AID was substituted with alanine (S38A) was
prepared (Cheng et al., 2009). A serine-threonine kinase,
protein kinase A (PKA), is responsible for this
phosphorylation (Basu et al., 2005; Chen et al., 2015;
McBride et al., 2006). Furthermore, phosphorylation by
protein kinase C (PKC) on serine 3 (S3) in AID is also
considered significant for class switching (Gazumyan et al.,
2011). Since class switching increases when an excessive
quantity of mutants, where S3 in AID is substituted with
alanine (S3A), are expressed in AID-deficient B cells,
phosphorylation on S3 suppressively controls class switching
(Gazumyan et al., 2011) (Fig. 2).

When TGF-β binds to TGFβRII, it associates with
TGFβRI to form a heterotetramer in IgA class switching.
Both TGFβRI and TGFβRII have serine/threonine kinase
activation sites, and TGFβRII phosphorylates and activates
TGFβRI. Activated TGFβRI is activated by the
phosphorylation of TGFβRI-bound receptor-activated Smad
(R-SMAD) to form a multimer with common mediator
Smad (Co-SMAD). This multimer is transferred to the
nucleus, where it cooperates with runt-related transcription
factor 3 (RUNX3) to induce a class switch to IgA (Hanai et
al., 1999; Lin and Stavnezer, 1992; Shi and Stavnezer, 1998;
Zhang and Derynck, 2000). In particular, RUNX3 is
considered to be an important transcription factor in the
IgA class switch because TGF-β and retinoic acid (RA)-

stimulated production of αGLT is completely inhibited in
RUNX2/3 KO mice (Watanabe et al., 2010) (Fig. 3A).

With regard to switching to a specific antibody class, it
has been reported that TANK Binding Kinase 1 (TBK1)
suppressively controls IgA class switching (Jin et al., 2012).
TBK1 is known as a kinase that induces the production of
type 1 IFN by phosphorylating transcription factor IRF-3.
TBK1-deficient mice, specifically deficient in B cells, present
increased IgA production and pathological symptoms
similar to nephropathy. TBK1 controls IgA class switching
byinhibiting activation on the NF-κB alternative pathway
(Fig. 3A). Specifically, TBK1 phosphorylates S862 in NIK
that is important for the NF-κB alternative pathway, which
facilitates the decomposition of NF-κB-inducing kinase
(NIK) and inhibits the activating pathway.

JAK is involved in IgE class switching. In particular,
JAK3 is highly expressed in lymphocytes and plays an
important role in the signal transduction of IL-2, IL-4, IL-7,
IL-9, IL-15, and IL-21 receptors using a common γ-chain
(Johnston et al., 1994). IL-4 plays a significant role in IgE
class switching, and the IL-4 receptor forming a
heterodimer upon activation further activates JAK1/3. The
activated JAK1/3 phosphorylates transcription factor STAT6
and forms a dimer. The activated STAT6 is then transferred
to the nucleus and induces IgE class switching by binding
with the Iε promotor (Jiang et al., 2000) (Fig. 3B). STAT6 is
known as an important transcription factor in IgE class
switching since its deficiency impairs IgE production
(Goenka and Kaplan, 2011). However, STAT6 is not
atranscription factor that acts only on the I domain of IgE,
as it also induces a class switch to IgG1 in mice. However,
STAT6 is known to be activated in B cells by stimulation by

FIGURE 3. Class switching with relevant kinase.
(A) In IgA class switching, the tyrosine kinase activity of TGFβRI/II causes R-SMAD to be phosphorylated and bind to Co-SMAD, which
functions as a transcription factor. The NF-κB alternative pathway downstream of CD40 is also involved in IgA CSR. TBK1 inhibits IgA CSRs
by phosphorylating NIK, which is important for the NF-κB alterative pathway, leading to its degradation. (B) Stimulation of IL-4 activates
JAK1/JAK3 and phosphorylates STAT6. The complex of STAT functions as a transcription factor. Also, downstream of CD40, NF-κB
classical and alternative pathways are activated and contribute to IgE CSR. It is possible that CaMKII promotes NF-κB alternative
pathway by CD40L stimulation.
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IL-4 and IL-13 and is thought to be a highly specific
transcription factor for the class switching induced by these
stimuli. The importance of STAT6 for IgE and IgG1 CSRs is
also demonstrated by the fact that B cells from STAT6-
deficient mice showed the lack of the production of εGLT
and γ1GLT by IL-4 stimulation (Shimoda et al., 1996;
Linehan et al., 1998). It is also known that JAK1/TYK2-
STAT1, STAT3, and STAT5 are activated downstream of
IL-10, and these JAK-STAT pathways may also play an
important role in the production of IgG1 and IgG3, as IL-10
is known to induce human IgG1 and IgG3 class switching
(Briere et al., 1994).

We have reported that serine-threonine kinase CaMKII
is important for IgE class switching (Tanabe et al., 2016).
CaMKII has four subtypes known as CaMKIIα, CaMKIIβ,
CaMKIIγ, and CaMKIIδ, and they are all activated in a
complex bound with calmodulin (CaM) in accordance with
an increase in the intracellular Ca2+ concentration level.
CaMKII characteristically maintains activity through
autophosphorylation, even when Ca2+/CaM is isolated.
CaMKII is widely known to play a vital function in memory
related to the central nervous system, and learning disorders
occur in CaMKII knockout mice (Silva et al., 1992).
Furthermore, CaMKII is linked to arrhythmia and cardiac
insufficiency (Rokita and Anderson, 2012; Swaminathan et
al., 2012). Although CaMKII is expressed in lymphocytes,
its function has not yet been clarified. We found that upon
treatment with CaMKII inhibitor KN-93, while IgE class
switching is induced by stimulating mouse B cell strain M12
and mouse splenic B cells, with IL-4 and an anti-CD40
antibody, the index for IgE class switching, εGLT, is
suppressed. Furthermore, it was suggested that suppression
by CaMKII enhances IgE class switching while the NF-κB
alternative pathway is activated by CaMKII, facilitating the
ubiquitination of tumor necrosis factor receptor-associated
factor 3 (TRAF3) molecules that are inhibitors in the NF-κB
alternative pathway (Tanabe et al., 2016) (Fig. 3B).

Phosphatase and Class Switching

There are fewer studies on phosphatases and class switching
than studies on kinases and class switching; however, some
key phosphatases have been identified. PP4 of the PP2A
family is a serine-threonine phosphatase known to be
involved in microtubule growth, DNA repair, apoptosis, and
tumor necrosis factor-α (TNF-α) signaling (Shui et al.,
2007). In a study using B cell-specific PP4 deficient mice,
PP4 was demonstrated to be important for B-cell
differentiation, the formation of germinal centers, and class
switching (Chen et al., 2014; Su et al., 2013). Class switching
is inhibited by inducing DNA replication stress under PP4
deficiency (Chen et al., 2019). PP6 is also a serine-threonine
phosphatase belonging to the PP2A family. PP6c, PPP6R1
(SAPS1), PPP6R2 (SAPS2), and PPP6R3 (SAPS3), consisting
of PP6, are known for the large number of mRNA expressed
in immune cells and tissues (Ziembik et al., 2017). In
particular, there is a very abundant expression of PP6c
mRNA in B cells, natural killer (NK) cells, and dendritic
cells. PP6c protein expression in lymphocytes is also
abundant. Regarding the relationship between PP6 and class

switching, it has been reported that while there is no direct
control over B cells, PP6 does affect T cells, which control
class switching (Ziembik et al., 2017). This was discovered
when serum IgE concentration increased by 100 to 1000
times when mice deficient in SAPS1, which is a PP6 control
subunit, were compared with Ppp6r1 f/f mice and C57BL/6
mice. Thus, IL-4 producing CD4+ T cells are significantly
increased in SAPS1-deficient mice. PP6c protein expression
in lymphocytes is also abundant. Regarding the relationship
between PP6 and class switching, it has been reported that,
although there is no direct control on B cells, PP6 does
affect T cells, which control class switching. Furthermore, an
excessive expression of phosphatase and tensin homolog
(PTEN), known as a tumor suppressor gene, enhances class
switching (Chen et al., 2015). It has also been reported that
class switching is suppressed in PTEN- deficient mice,
leading to hyper-IgM syndrome (Omori et al., 2006). PTEN
is considered to retain a normal balance in class switching
through inhibition of Akt signal transduction pathways,
while dephosphorylating PIP3 produced by activated PI3Kδ,
resulting in PIP2 (Fig. 2).

Conclusion

In this review, we have presented the regulation of antibody
class switching, which plays a vital role in biophylaxis, via
phosphorylation. Although there have been quite a few
findings that revealed how class switching is controlled,
many points remain to be clarified, including the
relationship between cytokines and transcription factors.
Although not outlined in this article, the class switching
control mechanism by infectious diseases cannot be
underestimated. For example, it is well known that the
bacterial component lipopolysaccharide (LPS) induces a
class switch in a T-cell-independent manner (Deenick et al.,
1999; Stavnezer et al., 1988). There have also been reports of
class-switching control mechanisms by specific bacterial,
viral, and parasitic infections. A holistic interpretation that
includes these factors is inherently important for the
elucidation of mechanisms of class switching. In this review,
there have been several reports on the control by kinases,
but only a few reports on the control by phosphatases.
However, as phosphorylation is reversible, phosphatases
may likely be more involved in the control of class
switching than previously thought. Phosphorylation and
dephosphorylation of proteins are reversible post-
translational modifications, and their status is changing
every second. This fact makes it difficult to elucidate the
mechanism involving protein phosphorylation and
dephosphorylation, as they are easily influenced by
stimulation time, sample collection method, and detection
system. Also, many phosphate-specific antibodies have low
sensitivity, which also makes detection difficult.
Furthermore, low concentrations of phosphorylated proteins
also create the need for enrichment. Therefore, there are still
many unclear points about the detailed mechanism.
However, research in protein phosphorylation is one step
ahead in the field of oncology, and the use of kinase
inhibitors as molecular targets is becoming more
widespread. Although there are still many unknowns in the

552 KANO TANABE et al.



regulation of class switching, this field has great potential for
the development of new allergy drugs and efficient methods of
inducing the production of antibodies using vaccines if
research is carried out from the perspective of the control of
protein phosphorylation.
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